The Hammersley-Clifford theorem

Richard D. Gill
Mathematical Institute, University of Leiden, Netherlands
http://www.math.leidenuniv.nl/~gill

October 4, 2011

Suppose \(X_v, v \in \mathcal{V} \) is a finite collection of discrete random variables with strictly positive joint probability mass function \(p \). Choose a fixed reference value \(x^* \) and define for all \(A \subseteq \mathcal{V} \)

\[
\psi_A(x_A) = \log p(x_A, x_A^*),
\]

\[
\phi_A(x_A) = \sum_{B : B \subseteq A} (-1)^{|A \setminus B|} \psi_B(x_B).
\]

By the Möbius inversion lemma (please prove it yourself!), we can invert the relationship between the \(\phi \) and the \(\psi \) functions evaluated at \(x \) to obtain for all \(B \)

\[
\psi_B(x_B) = \sum_{A \subseteq B} \phi_A(x_A),
\]

and in particular,

\[
\log p(x) = \psi_\emptyset(x) = \sum_{A \subseteq \mathcal{V}} \phi_A(x_A).
\]

We will show that under the pairwise local Markov property, \(\phi_A = 0 \) if \(A \) is not a complete subset of \(\mathcal{V} \). If \(A \) is not complete, there exist points \(\alpha, \beta \) in \(A \) such that \(\alpha \not\sim \beta \). Recall that \(\phi_A(x_A) = \sum_{B : B \subseteq A} (-1)^{|A \setminus B|} \psi_B(x_B) \). Define \(C = A \setminus \{\alpha, \beta\} \). We can now write

\[
\phi_A(x_A) = \sum_{B : B \subseteq C} (-1)^{|A \setminus B|} \left(\psi_B(x_B) - \psi_{B \cup \{\alpha\}}(x_{B \cup \{\alpha\}}) - \psi_{B \cup \{\beta\}}(x_{B \cup \{\beta\}}) + \psi_{B \cup \{\alpha, \beta\}}(x_{B \cup \{\alpha, \beta\}}) \right).
\]

Now, for given \(B \) define \(D = \mathcal{V} \setminus (B \cup \{\alpha, \beta\}) \). It follows that

\[
\psi_B(x_B) - \psi_{B \cup \{\alpha\}}(x_{B \cup \{\alpha\}}) - \psi_{B \cup \{\beta\}}(x_{B \cup \{\beta\}}) + \psi_{B \cup \{\alpha, \beta\}}(x_{B \cup \{\alpha, \beta\}}) = \log \left(\frac{p(x_B, x_{\alpha}, x_{\beta}, x_D') p(x_B, x_{\alpha}', x_{\beta}', x'_D)}{p(x_B, x_{\alpha}, x_{\beta}, x_D') p(x_B, x_{\alpha}', x_{\beta}', x_D')} \right).
\]

Now the last expression is the logarithm of the ratio of the conditional odds on \(X_\alpha = x_\alpha \) against \(X_\beta = x_\beta \), under the conditions \(X_B = x_B, X_D = x_D' \) and \(X_\beta = x_\beta \) and under the conditions \(X_B = x_B, X_D = x_D' \) and \(X_\beta = x_\beta' \). Thus if \(X_\alpha \) is independent of \(X_\beta \) conditional on \(X_{B \cup D} \), this log odds ratio is zero.