
Statistics II: Estimating simple parametric models

Richard Gill∗

March 6, 2009

First of all we look at a normal plot of a sample from the t distribution with 9
degrees of freedom (and before that, we set the seed to my birthday, so that the
results will be perfectly reproducible)

> set.seed(11091951)

> xt <- rt(250, df = 9)

> xc <- rcauchy(250)

> x <- xt

> par(pty = "s")

> qqnorm(x)

> qqline(x)

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

∗http://www.math.leidenuniv.nl/∼gill/teaching/statistics

1

And now the same for a sample from the Cauchy

> x <- xc

> qqnorm(x)

> qqline(x)

● ●● ●● ●●● ●● ●●● ●●●●● ●

●
● ●

●

●●● ● ●● ●● ●● ●
● ●● ●●● ●● ●●● ●●● ●●● ●●● ● ●● ●●●● ● ● ●●●●● ● ● ●●

●
●● ● ●●

●
● ● ● ●● ●● ● ● ● ●● ●● ● ●●

●
●●● ●●● ●● ●● ●●●● ● ● ●● ●● ●●●●● ●● ● ●●● ● ●● ● ●●

● ● ●● ●● ● ●● ●● ●●●
●

●● ●● ●
●

●● ● ●●● ●● ● ●●● ● ●

●

●●●● ●● ●● ●●● ● ● ●● ● ●●●● ●● ●●● ● ●
●

● ●

●

● ●●●

●

●
●●●● ●●●● ●● ●●

●

●●●● ● ● ●● ● ●

●

●
●●● ●● ●● ●

●

● ●●● ●● ●●
●

−3 −2 −1 0 1 2 3

0
20

0
40

0
60

0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

2

That was a strange graph! Let’s zoom in a bit:

> qqnorm(x, xlim = c(-3, 3), ylim = c(-50, 50))

> qqline(x)

●

●

● ●

●
●

●

●

●
● ●●●

●
●

●●
●

●

●

● ●

●

●
●● ● ●

●

●
● ●

●

●

●

●●
●●

●
●●

●

●● ●
●●

●

●●
●

●● ● ●
●

●
●●

●
● ● ●●

●●● ● ●
●

●

●

●
●

● ●●

●

●
● ● ●

●
●● ● ●

●
●

●

●

● ●
●●

●

●●
●

●
●●

●

●
●●

●●●

●

●
●

●

●
●●

●

●●

●
●

●
●

● ●●

●

●

●

●

● ●●

●

●

●

●
●

●
● ●●

●
● ●●●

●

●

●

●
●

●

●

●
●

● ●●
●

●

● ●
●

●● ● ●

●

●●●●
●

●
●

●
●

●
●

● ●

●

●
●

●●●●

●

●
●

●● ●

●

●

●
●

●

●
●

●●

●

●●
●● ●●●

●

●

●

●●

●

●●●
● ● ● ●

● ●●

●

●

●●● ●
● ●

●

●

●

● ●●●
●

●

●
●

●

−3 −2 −1 0 1 2 3

−
40

−
20

0
20

40

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

3

Now we’ll fit the Cauchy location model to our data by maximum likelihood

> library(MASS)

> fitdistr(x, "cauchy", start = list(location = 0, scale = 1))

location scale

0.05083830 1.12719758

(0.10492878) (0.09716141)

> logLik(fitdistr(x, "cauchy", start = list(location = 0, scale = 1)))

'log Lik.' -655.1167 (df=2)

> logLik(fitdistr(x, "cauchy", start = list(location = 0), scale = 1))

'log Lik.' -656.0805 (df=1)

> logdcauchy <- function(mu, x) {

+ dcauchy(x, scale = 1, location = mu, log = TRUE)

+ }

> loglikcauchy <- function(mu) {

+ apply(outer(mu, x, logdcauchy), 1, sum)

+ }

> loglikcauchy(0)

[1] -656.2065

> optimize(loglikcauchy, lower = -1, upper = 1)

$minimum

[1] -0.999959

$objective

[1] -707.542

> result <- optimize(loglikcauchy, lower = -1, upper = 1)

> mu <- seq(from = -1, to = 1, by = 0.01)

> plot(mu, loglikcauchy(mu), type = "l")

> optimize(loglikcauchy, lower = -1, upper = 1)

$minimum

[1] -0.999959

$objective

[1] -707.542

> points(result[[1]], result[[2]])

4

−1.0 −0.5 0.0 0.5 1.0

−
70

0
−

69
0

−
68

0
−

67
0

−
66

0

mu

lo
gl

ik
ca

uc
hy

(m
u)

●

It turned out that in ”optimize”, we were minimizing, not maximizing!
The second call of logLik(fitdist) (with just one parameter) produced a load

of errors. I’m not sure why. Here are the error messages, for completeness:

Warning messages:

1: In optim(x = c(-1.33917884613114, 4.48099859454494, 0.105654587255878, :

one-diml optimization by Nelder-Mead is unreliable: use optimize

2: In optim(x = c(-1.33917884613114, 4.48099859454494, 0.105654587255878, :

one-diml optimization by Nelder-Mead is unreliable: use optimize

3: In optim(x = c(-1.33917884613114, 4.48099859454494, 0.105654587255878, :

one-diml optimization by Nelder-Mead is unreliable: use optimize

5

Now we’ll fix the optimization problem. And show the cut-off of an approximate
95% confidence interval for the location parameter.

> negloglikcauchy <- function(mu) {

+ -apply(outer(mu, x, logdcauchy), 1, sum)

+ }

> optimize(negloglikcauchy, lower = -1, upper = 1)

$minimum

[1] 0.05021444

$objective

[1] 656.0805

> result <- optimize(negloglikcauchy, lower = -1, upper = 1)

> plot(mu, loglikcauchy(mu), type = "l")

> points(result[[1]], -result[[2]])

> abline(h = -result[[2]] - (qchisq(0.95, 1)/2))

−1.0 −0.5 0.0 0.5 1.0

−
70

0
−

69
0

−
68

0
−

67
0

−
66

0

mu

lo
gl

ik
ca

uc
hy

(m
u)

●

6

According to Reeds (1986), the number of inconsistent local maxima of the
log likelihood for the Cauchy location model is asymptotically Poisson (1/π)
distributed. We certainly caught one with this sample:

> max(x)

[1] 740.4062

> mu <- seq(from = 735, to = 745, by = 0.1)

> plot(mu, loglikcauchy(mu), type = "l")

736 738 740 742 744

−
35

83
−

35
81

−
35

79
−

35
77

mu

lo
gl

ik
ca

uc
hy

(m
u)

7

Now we go back to the real mle, zooming in on where the action is.

> mu <- seq(from = -0.3, to = 0.3, by = 0.01)

> optimize(negloglikcauchy, lower = -0.3, upper = 0.3)

$minimum

[1] 0.05021571

$objective

[1] 656.0805

> plot(mu, loglikcauchy(mu), type = "l")

> result <- optimize(negloglikcauchy, lower = -0.3, upper = 0.3)

> points(result[[1]], -result[[2]])

> abline(h = -result[[2]] - (qchisq(0.95, 1)/2))

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
66

2
−

66
1

−
66

0
−

65
9

−
65

8
−

65
7

−
65

6

mu

lo
gl

ik
ca

uc
hy

(m
u)

●

8

Now we’ll do contour plots and wire frame plots of the log likelihood surface.
I’ll subtract off the maximum and multiply by two, so that the vertical scale
becomes more meaningful.

> mu <- seq(from = -0.4, to = 0.4, by = 0.01)

> sigma <- exp(seq(from = -0.5, to = 0.5, length = 100))

> loglikcauchy <- function(mu, sigma) {

+ sum(dcauchy(x, location = mu, scale = sigma, log = TRUE))

+ }

> loglik <- function(mu, sigma) {

+ matrix(mapply(loglikcauchy, mu = as.vector(outer(mu, rep(1,

+ length(sigma)))), sigma = as.vector(outer(rep(1, length(mu)),

+ sigma))), length(mu), length(sigma), dimnames = list(mu = mu,

+ sigma = sigma))

+ }

> ll <- loglik(mu, sigma)

> contour(mu, sigma, 2 * (ll - max(ll)))

> contour(mu, sigma, 2 * (ll - max(ll)), levels = -c(0.001, qchisq(0.95,

+ 2), qchisq(0.99, 2)), add = TRUE)

> library(MASS)

> fitdistr(x, "cauchy", start = list(location = 0, scale = 1))

location scale

0.05083830 1.12719758

(0.10492878) (0.09716141)

> points(fitdistr(x, "cauchy", start = list(location = 0, scale = 1))[[1]])

 −70 −60 −60 −50

 −40

 −30

 −30

 −20

 −20 −20

 −10

−0.4 −0.2 0.0 0.2 0.4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

 −5.991465

 −9.21034

9

Here’s a wireframe plot. It is even more fun to use the package rgl to get this,
so that you can rotate the wireframe with your mouse. Unfortunately we can’t
do this in a pdf yet.

> persp(mu, sigma, (ll - max(ll)), theta = 45)

mu sig
ma

(ll −
 m

ax(ll))

10

Now we’ll do the same for the location-scale model based on the Laplace or
double exponential distribution. The interesting thing about this example is
that the log likelihood is not differentiable at one important point. The iden-
tity “expected score equals zero” does hold, but the identity ”variance of score
equals minus expected Hessian” does not. Still, the maximum likelihood esti-
mator behaves perfectly well, and even the fitdist function from MASS, which
computes first and second derivatives of log likelihood by numerical approxi-
mation (differences, and differences of differences) gives perfectly meaningful
standard deviations as if the observed information matrix behaved as it does for
smooth models. The “usual asymptotic theory” is valid as usual, as long as we
compute the observed information by making a quadratic approximation to the
log likelihood in a one over square root of n neighbourhood of the mle, rather
than by differentiating twice at a particular point.

> set.seed(11091951)

> x <- rexp(1000) * (2 * (runif(1000) < 0.5) - 1)

> loglikdexp <- function(mu, sigma) {

+ sum(-((abs(x - mu))/sigma) - log(sigma))

+ }

> mu <- seq(from = -0.2, to = 0.2, length = 100)

> sigma <- exp(seq(from = -0.2, to = 0.2, length = 100))

> loglik <- function(mu, sigma) {

+ matrix(mapply(loglikdexp, mu = as.vector(outer(mu, rep(1,

+ length(sigma)))), sigma = as.vector(outer(rep(1, length(mu)),

+ sigma))), length(mu), length(sigma), dimnames = list(mu = mu,

+ sigma = sigma))

+ }

> ll <- loglik(mu, sigma)

> contour(mu, sigma, 2 * (ll - max(ll)))

> contour(mu, sigma, 2 * (ll - max(ll)), levels = -c(0.001, qchisq(0.95,

+ 2), qchisq(0.99, 2)), add = TRUE)

> ddexp <- function(x, mu, sigma) {

+ (1/(2 * sigma)) * exp(-abs(x - mu)/sigma)

+ }

> fitdistr(x, ddexp, start = list(mu = 0, sigma = 1))

mu sigma

0.05539934 1.00202043

(0.02333902) (0.03168830)

> points(fitdistr(x, ddexp, start = list(mu = 0, sigma = 1))[[1]])

11

 −100
 −90

 −80

 −70

 −
70

 −60

 −
60

 −60 −50 −50

 −50

 −40

 −40

 −30

 −20

 −10

−0.2 −0.1 0.0 0.1 0.2

0.
9

1.
0

1.
1

1.
2

 −5.991465

 −9.21034

We got some error messages here but they seem harmless:

4: In log(dens(parm, ...)) : NaNs produced

5: In log(dens(parm, ...)) : NaNs produced

6: In log(dens(parm, ...)) : NaNs produced

7: In log(dens(parm, ...)) : NaNs produced

8: In log(dens(parm, ...)) : NaNs produced

9: In log(dens(parm, ...)) : NaNs produced

12

For completeness, here’s the wireframe plot:

> persp(mu, sigma, 2 * (ll - max(ll)), theta = 45)

mu sig
ma

2 * (ll −
 m

ax(ll))

13

And finally, the log likelihood for 10 observations, just to convince you of its
nonsmoothness

> mu <- seq(from = -5, to = 5, length = 100)

> set.seed(11091951)

> x <- rexp(10) * (2 * (runif(10) < 0.5) - 1)

> ll <- loglik(mu, 1)

> plot(mu, ll, type = "l")

> points(x, loglik(x, 1))

−4 −2 0 2 4

−
50

−
40

−
30

−
20

−
10

mu

ll

●

●

●

●●

●

●●

●

●

Exercise Write me an elegant short transparent R function for computing the
log likelihood for user specified two-parameter models on a user supplied grid
of points, to replace my clumsy code above. (A beer or bar of chocolate for the
winner).

14

