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Lecture 1: Intro to intro

Idea of course

Q: is statistics application driven or mathematics driven?
A: wrong question

Statistical Science and Mathematical Statistics
Venn diagram of maths, statistics, computer science

Book: Venables and Ripley:
Modern Applied Statistics with S-plus (MASS)

Tool: R language (3 S)

Method: alternate theory and practice
sequence lectures directed by MASS



Lecture 2: Distributions and graphics

Convention: Lazy notation

Embellishments like sub- and superscripts, “vector” sign, . . .
are omitted when the context allows

The distinction between random variables and constants is that
random variables are always introduced explicitly as such –
everything else is a constant

In the context of matrix operations a list of random variables
EX = X = (X1, ..., X p) is treated as a column vector



Distributions and graphics

Distribution (law) of a random variable
PX (B) = P(X ∈ B), B ∈ B(R);
a probability measure on the Borel sets of the real line

Distribution function (c.d.f., d.f.)
F(x) = FX (x) = P(X ≤ x), x ∈ R;
right continuous with left hand limits, non-decreasing,
F(−∞) = 0, F(+∞) = 1

Quantile function
Q(p) = F−1(p) = inf{x ∈ R : F(x) ≥ p}, p ∈ [0, 1];
right continuous with left hand limits, non-decreasing,
Q(0) = −∞, sup support (PX ) = Q(1) ≤ ∞

Exercise. Check all of this!



Plots

PP-plot
Plot of probabilities against probabilities

Plot G = FY (vertical axis) against F = FX (horizontal)
(F(x),G(x)) : x ∈ R

Graph of function (G(F−1(p)) : p ∈ [0, 1])

QQ-plot
Plot of quantiles against quantiles

Plot G−1 (vertical axis) against F−1 (horizontal)
(F−1(p),G−1(p)) : p ∈ [0, 1]

Graph of function (G−1(F(x)) : x ∈ R)



Empirical distribution
sample of n observations X i , i = 1, . . . , n

Pn =
1

n

n∑
i=1

δX i

a random probability measure on R
with support the set of observed values

Empirical PP plot, QQ plot
Replace one or both distributions with empirical (sample)
counterparts

Normal plot, exponential plot . . .
Empirical versus theoretical ..

Two sample PP plot, QQ plot
Sample 2 versus sample 1



Empirical density, mass function

Density estimates

Empirical distribution of a statistic

Bootstrapping

(Cross-validation)



Lecture 3: Multivariate normal distribution
Univariate normal distribution:
X ∼ N (µ, σ 2) means X is normally distributed,
mean µ ∈ R, variance σ 2

≥ 0

Let V = EV = (V1, ..., Vp) denote p i.i.d. random variables,
Vi ∼ N (0, 1)

Possible values are v ∈ Rp

Let X = AV + b where A is n × p, b is n × 1.

Definition of MVN: X ∼ Nn(µ,6) where 6 = AA>, µ = b

Exercise: (i) Definition makes sense: the distribution depends
only on mean µ and covariance 6
Hint: characteristic function
(ii) Its support is the affine subspace µ+R(6)
(iii) 6 nonsingular implies X cts. dist. on Rn with density

exp(− 1
2
(x − µ)>6−1(x − µ))
√

det 2π6



Properties

Property I: affine transformations

X ∼MVN H⇒ AX + b ∼MVN

Parameters: just compute mean and variance



Property II: marginalization and conditioning

Partition EX ∼ N (µ,6) as X = ( EX1, EX2)

Partition µ and 6 accordingly; then we have the disintegration

X1 ∼ N (µ1, 611)

X2 | X1 = x1 ∼

N

(
µ2 +6216

−

11(x1 − µ1) , 622 −6216
−

11612

)
6−11 is a generalized inverse of 611: specifically, the one defined
by

6−11611 = 6116
−

11 = 5R(611) = 5N (611)
⊥



Lecture 4: Maximum likelihood estimation

Suppose X ∼ p(x; θ0), density w.r.t. µ, where θ0 ∈ 2 ⊆ Rp

Define:
I `(θ) = log p(X; θ), the log likelihood
I U (θ) = d

dθ `(θ), the score function
I I (θ) = − d

dθU (θ), the observed information



Verify:

I E0`(θ) ≤ E0`(θ0), by Jenssen (equality iff
p(x; θ) = p(x; θ0) a.e.)

I E0U (θ0) = 0, by interchange of integration over x and
differentiation w.r.t. θ

I E0 I (θ0) = var0U (θ0), idem

Interesting (semi)-example: the location family based on
the Laplace or double exponential distribution,
p(x; θ) = 1

2
exp(|x − θ |) w.r.t. Lebesgue



Now suppose X = (X1, . . . , Xn) where the X i are i.i.d.

For each θ , ln(θ)/n→ E0`1(θ) ≤ E0`1(θ0) by l.l.n.

θ̂n = ! maxθ `n(θ)/n maximizes a random function of θ ,
converging pointwise in θ to a deterministic function of θ ,
with unique maximum at θ = θ0

Smoothness of model and (effective) compactness of
parameter space gives control of oscillations of `n and of its
“behaviour at infinity”

Pointwise convergence then extends to uniform convergence
hence gives consistency of θ̂n



By mean value theorem

0 = Un(θ̂n) = Un(θ0)− In(θ̃n)
(
θ̂n − θ0

)
where θ̃n (different for each component of this vector
equation) lies on the line-segment between θ̂n and θ0

Suppose In(θ)/n converges not only pointwise (l.l.n.)
but also uniformly in θ to j0(θ) = E0 I1(θ)

Define i0 = i(θ0) = j0(θ0)

Suppose j0 is continuous in θ and suppose i0 is non-singular

n−1/2Un(θ0) = n−1 In(θ̃n) n1/2(θ̂n − θ0)

n−1/2Un(θ0)→ Np(0, i0) as n→∞, by c.l.t.



n1/2(θ̂n − θ0) → i−1
0 Np(0, i0) = Np(0, i

−1
0 )

Similarly,

`n(θ̂n) = `n(θ0)+Un(θ0)
>(θ̂n − θ0) −

1
2
(θ̂n − θ̂0)

> In(θ̃n) (θ̂n − θ̂0)

Thus

`n(θ̂n) − `n(θ0) ≈
1
2
(θ̂n − θ̂0)

> In(θ̃n) (θ̂n − θ̂0)

→ Np(0, i
−1
0 ) i0 Np(0, i

−1
0 ) = χ2

p

The first result permits us to pretend

θ̂n − θ0 ≈ Np(0, In(θ̂n)
−1)



The obvious (and asymptotically equivalent) tests of θ = θ0

based on the large sample distributions of
Un(θ0), θ̂n − θ0, and of 2(`n(θ̂n)− `n(θ0)),
replacing expected Fisher information by observed Fisher
information where convenient,
are called the Rao, Wald and Wilks’ tests respectively.

Note that “n” does not appear in the resulting
approximate statistical inference (confidence regions, tests):
we just need to know the log likelihood function

Since we have l.l.n. and c.l.t. in the non-identically distributed
case; for martingales and Markov processes and stationary
time series ... the results which we use in practice have much
wider validity...



In general:
the number n is replaced by a sequence of scaling constants

Consistency of the m.l.e. is proven using global considerations
and the relationship with the Kulback-Leibler divergence

Asymptotic normality follows from local considerations

Must show
(i) the scaled score function is asymptotically Gaussian
(ii) the scaled observed information is asymptotically
deterministic



See Aad van der Vaart’s book for actual theorems, making use
of empirical process theory (lln and clt for families of functions
of the observations)

Lucien LeCam’s theory of local asymptotic normality gives a
deeper explanation of what is going on as well as of the
asymptotic optimality (in appropriate sense) of the likelihood
based inference

Interesting examples: the Laplace distribution; the Cauchy
distribution (location families)
cf. Reeds’ result: number of inconsistent roots of Cauchy
likelihood equation is asymptotically Poisson (1/π )



Lecture 5: Density estimation

Histogram as a density estimator

For x in a certain bin (interval) of width h

the histogram estimates the density f (x) by
f̂ (x) = #{observations in bin}/nh

So with p =
∫

bin f (y)dy ≈ h f (x), for large n and small h,
and for a “typical” x half way between the midpoint of the
bin and the boundary of the bin

var f̂ (x) =
np(1− p)

(nh)2
≈

f (x)

nh

bias f̂ (x) =
p

h
− f (x) ≈ ±

f ′(x)h

4



The mean square error = variance + (bias)2 is therefore of the
order

f (x)

nh
+

f ′(x)2h2

16

This is a convex function of h, minimal where its derivative is
zero, i.e., where

−
f (x)

nh2
+

f ′(x)2h

8
= 0

Optimal bin-width is therefore

hopt =

(
8 f (x)

n f ′(x)2

) 1
3



Suppose instead we use the frequency polygon as an
estimator of f , i.e., join the midpoints of the histogram bars
with straight lines

For x on the boundary of two bins

var f̂ (x) =
1

4

np1(1− p1)

(nh)2
+

1

4

np2(1− p2)

(nh)2
≈

f (x)

2nh

bias f̂ (x) =
1

2

p1

h
+

1

2

p2

h
− f (x) ≈

f ′′(x)h2

6

Exercise. Check that for general x one has a similar
expansion, only the constants differ.



The mean square error = variance + (bias)2 is therefore of the
order

f (x)

2nh
+

f ′′(x)2h4

36

This is a convex function of h, minimal where its derivative is
zero, i.e., where

−
f (x)

2nh2
+

f ′′(x)2h3

9
= 0

Optimal bin-width is therefore

hopt =

(
9 f (x)

2n f ′′(x)2

) 1
5



Lecture 6: Linear models

y = Xβ + ε

(n × 1) = (n × p)(p × 1)+ (n × 1)

I E(y) = Xβ

I var(y) = σ 2 In

I ε ∼ multivariate normal

I y: vector of observed responses
I X : design matrix, each column represents one covariate,

fixed and known
I β and σ 2: unknown parameters



The least squares estimator of β is a minimizer of
(y − Xb)>(y − Xb) = ‖y − Xb‖2.
With some matrix algebra one finds that it is unique and
equal to β̂ = (X>X)−1 X>y iff the matrix X>X is nonsingular.
Otherwise it is not-unique, but one choice is found by
substituting the generalized inverse (X>X)− for the inverse.
Define also ŷ = X β̂ and ε̂ = y − ŷ;
these are called the fitted values and the residuals
respectively (and are unique, even if β̂ isn’t).



By its definition,
ŷ is the orthogonal projection of y onto col(X), the column
space of X

ε̂ is the orthogonal projection of y onto col(X)⊥.
Since Ey = Xβ lies in col(X),
ŷ equals Xβ plus the orthogonal projection of ε onto col(X),
ε̂ is the orthogonal projection of ε onto col(X)⊥.
Moreover, β̂ is a minimizer of ‖ŷ − Xb‖2,
and equivalently a solution of ŷ − Xb = 0,
unique if and only if the columns of X are linearly
independent.



Under the complete set of model assumptions, ε ∼ Nn(0, σ
2 I ).

Choose an orthonormal basis of Rn such that the first
q = rank(X) ≤ p elements span col(X),
the remaining elements span col(X)⊥.
Express ε in this basis, partitioned as (ε1, ε2).
By the rotational symmetry of the Nn(0, σ

2 I ) distribution,
ε1 and ε2 are independent and
Nq(0, σ

2 I ) and Nn−q(0, σ
2 I ) distributed respectively.

ŷ and β̂ are affine functions of ε1,
while (in this basis) ε̂ = (01, ε2).



The projector onto col(X) is X (X>X)−X>,
the projector onto col(X)⊥ is I − X (X>X)−X>.
Recall: a projector 5 is characterized by 52

= 5 = 5>;
I −5 is also a projector and trace(5) = dim(range(5)).
We find that ŷ ∼ Nn(Xβ, σ

2 X (X>X)−X>),
ε̂ ∼ Nn(0, σ

2(I − X (X>X)−X>)),
and the two are independent.



If β̂ is unique, it is independent of ε̂, and
β̂ ∼ Np(β, σ

2(X>X)−1).
It follows that ‖̂ε‖2 = ‖ε2‖

2
∼ σ 2χ2

n−q , independent of β̂, and

β̂i − βi√(
σ̂ 2(X>X)−1

)
i i

∼ tn−q

Exercise. What does β̂ = (X>X)−X>y estimate when
rank(X) < p? Show that β̂ is the solution of the least squares
problem which furthermore minimizes ‖b‖2



Consider now a (linear) submodel of our linear model
y = Xβ + ε.
That is a linear model y = Yγ + ε such that col(Y ) is a
subspace of col(X).
Let the dimension of this subspace be r < q .
We refer to the models as the small and the large model.
Choose an orthonormal basis of Rn such that the first r

elements span col(Y ) and together with the next q − r span
col(X).
Partition ε, expressed in this basis, as (ε1, ε2, ε3).



We see that the residual sums of squares in the two models
are ‖ε3‖

2 (big model) and
‖ε2‖

2
+ ‖ε3‖

2 (small model)
and hence that, if the submodel is true,

reduction in SSR/(q − r)

SSR of large model/(n − q)
∼ Fq−r,n−q

If the larger model is true, but the submodel is not true,
then we have a non-central chi-square distribution
(exercise: which?).

Exercise. I separated the model assumptions into assumptions
on the expectation, variance, and distribution of y. Investigate
what remains true when we drop the distributional
assumption; and when we also drop the variance assumption.
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