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Abstract

There are notes from lectures by Angelo Vistoli at the summer school on
Stacks in Mainz, 2015. They are being tex’d during the lectures by David,
and subsequently improved by Raymond. As you will see, the notes are very
rough, and there are surely still many things we missed; our excuse is that
the aim is to give participants something useful to use immediately after the
lecture, rather than produce a polished set of notes.

Comments and corrections are very welcome. If you want to edit the tex
file yourself just let me know.

1 Lecture 1: torsors

Let C a site, for example:

1. C is the category of open subsets of a topological space, covers are jointly
surjective collections of open subsets.

2. Top, the category of topological spaces (or topological spaces over a fixed
topological space S);

3. S a scheme, then Aff/S has as objects affine schemes over S 1. Then put a
topology such as Zariski, étale, fppf cf. [Sta13, Tag 021L], fpqc cf. [Sta13,
Tag 022A] (he gave simplified versions which work in affine setting).

Let X ∈ ob C, let hX : Cop → Set by hX(S) = Hom(S,X). If C is any of
the above then hX is a sheaf. If C is one of the above affine sites and X is any
scheme, then can define hX by the same formula, and it is still a sheaf. Moreover,
Hom(X, Y )→ Hom(hX , hY ) is a bijection (in any of the above settings) - if X and
Y are objects of C then this is Yoneda, otherwise needs a moment’s thought.

1affine means in an absolute sense, not relative to S. So in general the identity is not a cover.
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Let G be a sheaf of groups on C, P : Cop → Set, and P ×G→ P a right action
of G on P . Suppose f : P → X is an invariant map; this means that the following
diagram commutes:

P ×G acts //

p1
��

P

f
��

P
f // X.

(1)

Then define P ×G→ P ×X P by (p, g) 7→ (p, pg) (the invariance is key, otherwise
not a map over X).

Lemma 1.1 (Exercise). The following are equivalent:

1. P → X is an epi (of sheaves), and P ×G→ P ×X P is an isomorphism of
functors;

2. there exists an epi Y → X of sheaves and a G-equivariant Y -isomorphism
Y ×X P → Y ×G.

Proof. 1 =⇒ 2 is basically obvious, take Y = P . The other needs a little
thought.

Definition 1.2. P → X is a G-torsor if either of the two above equivalent condi-
tions are satisfied. Note that P is just a sheaf, not a scheme/space in general.

Say C = Aff /k and G/k is a group scheme of finite type (so hG comes with a
factorisation via Grp). Now being of finite type is local in the fpqc topology.

Let hX = X be a k-scheme. If P → X is a G-torsor in fpqc then P is auto-
matically an algebraic space, and P → X is flat and locally of finite presentation.
So P → X is an fppf cover, so P → X is a torsor in fppf (not a-priori obvious).
If G/k is smooth then it is even an etale torsor; we know P → X is smooth, and
any smooth map has local sections in the étale topology.

Definition 1.3. Fix G, X a above. The category TorsX has torsors as objects,
and maps are G-equivariant arrows.

Exactly in the classical case, have

Lemma 1.4 (Exercise). 1. The category TorsX is a groupoid, i.e. all arrows
are isomorphisms.

2. A torsor P is trivial (i.e. p ∼= X ×G) iff P → X has a section.

Lemma 1.5 (Exercise). 1. If P → X is a G-torsor, then the action of G on
P is free (pointwise, i.e. on each object X the action G(X) on P (X) is
set-theoretically free).
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2. X = P/G is a sheaf quotient. So P → P/G is universal invariant map, and
P/G is the sheaf associated to S 7→ P (S)/G(S).

Lemma 1.6 (Exercise). If P × X → P is a free action, then P → P/G is a
G-torsor

Let P → X be a G-torsor. Let F be a sheaf, and G × F → F a left action.
Then G acts on P × F by (p, f)g = (pg, g−1f), and the action is free. Write
P ×G F = (P × F )/G. Then get a Cartesian diagram

P × F //

��

P

��
P ×G F // X = P/G.

A very important application of this is that if ϕ : G→ H is a homomorphism
of sheaves of groups and P is a G-torsor, you can apply the above. Find that
P ×G H → X is an H-torsor via

(p, h)h′ = (p, hh′)

and action of G commutes with this:

(p, h)g = (pg, ϕ(g)h)

and there is an induced X-map P → P ×GH, which is ϕ-equivariant (p 7→ (p, 1)).
So have a ϕ-equivariant map from a G-torsor to an H-torsor, and moreover this
map is universal wrt that.

If Q → X is an H-torsor and P → Q is ϕ-equivariant, then this extends
uniquely2 to an H-equivariant map P ×H → Q (the one sending (p, h) 7→ f(p)h.
Thus we get an X-map of torsors P ×G H → Q, and since it is a map of torsors
it is an isomorphism.

SayX is a terminal object in C, and P → X is aG-torsor. The rule F 7→ P×GF
defines a functor from sheaves with an action of G to sheaves.

Lemma 1.7 (Exercise). This sends products to products (even preserves all limits).

If F is a sheaf of groups then P ×G F is a sheaf of groups.
If we take F = G and G acts on itself by conjugation gh = hgh−1, and P → X

is a torsor, then P ×G G =: G̃ is another sheaf of groups, a‘twisted form of G’. If
G is abelian then G̃ = G. If not then things can happen!

2It is unique map respecting the maps from P .
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Lemma 1.8 (Exercise). G̃ = AutG(P ), i.e. G-equivariant automorphisms of P
as a bundle. The formula is T 7→ AutG(T ×X P/T ).

Then P is a (G̃, G)-bitorsor; G̃ acts on the left, G acts on the right, the actions
commute, and P is a torsor for both [this is the definition of a bi-torsor].

If I is a (H,G)-bitorsor, then (exercise) there is automatically a map H →
AutG(I) (which is automatically an isomorphism), so H = G̃.

The group G̃ is called an ‘inner form’ of G [beware that terminology varies].

Remark 1.9. If P is trivial (i.e. P = G×G) then G̃ = G, nothing happens.

Example 1.10. Suppose that (V, q) and (V ′, q′) are non-degenerate quadratic
forms (same dimension n) on a field k with 2 ∈ k×. Then we get two group
schemes3 O(q) and O(q′), in general not isomorphic. Define a functor I : Affk →
Set, sending SpecA 7→ (the set of isometries V ⊗k A ∼= V ′ ⊗k A) (this set is
non-empty for some finite separable field extension of k). Then O(q) acts on the
right on I and O(q′) acts on the left, so I is a (O(q), O(q′)-bitorsor. So any two
orthogonal groups of the same dimension are inner forms of each other.

2 Lecture 2: Gerbes

Warning: all Auts and Isoms should be underlined, but are not. Rooms for after-
noon sessions:
04-224: Algelo
04-422: Jared
04-426: Martin
04-432: Max

Some examples of torsors.
Let C = Affk with fppf topology, k a field, G→ Spec k affine group scheme of

finite type. Then by descent theory, if S is a scheme, a G-torsor P/S is an affine
map of schemes.

Examples:

1. G = GLn = Spec k[xi,j : 1 ≤ i, j ≤ n]det. Then the functor sends an algebra
A to GLn(A). Basic result: GLn torsors correspond to vector bundles of rank
n (equivalence of categories, allowing only isomorphisms of vector bundles).

Idea of proof of equivalence: say that P → S is a GLn-torsor, then P ×GLn

On|Xzar is a vector bundle. If E is a vector bundle on S then define

P : Affop
k → Set

U 7→ {(f, ϕ) : f : U → S, ϕ : O ∼= f ∗E}
3Here O(q)(T ) is the set of isomorphisms from VT to itself which preserve the form q.
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2. V an n-dimensional vector space over k (assume 2 ∈ k×), q an orthonormal
quadratic form on V , G = O(q) (so G(A) is the set of A-isometries4 from
A⊗k V to itself.

Given P → S an O(q)-torsor, then P ×O(q) V is a vector bundle of rank n
on S together with a non-degenerate quadratic form. Conversely, if E is a
vector bundle of rank n on S with a non-degenerate quadratic form then
set P := IsometriesS(OS ⊗k V,E). Then O(q) acts on this P by compo-
sition, and P becomes a torsor under this group. In this way you get an
equivalence between O(q)-torsors on S and vector bundles of rank n with a
non-degenerate quadratic form.

3. G = PGLn = GLn /Gm (sheaf quotient!). Now PGLn is the automorphism
group of5 Mn,k and also of Pn−1

k .

If P → Spec k is a PGLn-torsor then P ×PGLn Mn,k is a k-algebra. The
k-algebras that become matrix algebras after an extension are the central
simple algebras (could use this as a definition).

The product P ×PGLn Pn−1
k is a variety that becomes Pn−1 after a field ex-

tension (a Brauer-Severi variety). If C is a CSA of dimension n, then

Isomk(Mn,k, C)

A 7→ IsomA(A⊗k Mn,k, A⊗k C)

is a PGLn-torsor.

So you get correspondences between (PGLn-torsors), (CSA of dimension n)
and (Brauer-Severi varieties of dimension n−1). To go from a CSA to a BS,
send the CSA C to the set of left ideals of codimensionk = n.

2.1 Gerbes

Definition 2.1. Let C be a site (cat with Grothendieck topology) with a terminal
object pt. A gerbe Γ→ C is a fibred category such that

1. Γ is a stack;

2. there exists a covering Ui → pt such that ∀i, Γ(Ui) 6= ∅.

3. If S ∈ ob C and ξ, η ∈ Γ(S) then there exists a covering {Si → S} such that
ξSi
∼= ηSi

in Γ(Si).

4i.e. preserving q
5i.e. algebra of n× n matrices over k
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Definition 2.2 (Stack). 1. If S ∈ ob C and ξ, η ∈ Γ(S) define

IsomS(ξ, η) : (C/S)op → Set

T → S 7→ IsomΓ(T )(ξ|T , η|T ).

Then this functor should be a sheaf.

2. ‘You can glue objects, with morphisms satisfying a cocycle condition’ (David:
I think this is ‘every descent datum is effective’, cf [Sta13, Tag 026E]).

Remark 2.3. Let ξ ∈ Γ(S). Then get (from conditions in above definition in order):

1. define

AutS(ξ) : (C/S)op → Set

T → S 7→ AutT (ξ|T ).

Then this AutS(ξ) is a sheaf of groups on C/S.

2. If ξ, η ∈ Γ(S), then AutS(ξ) acts on IsomS(ξ, η) on the right.

3. IsomS(ξ, η) is an AutS(ξ)-torsor.

Remark 2.4 (Examples of gerbes). 1. If G is a sheaf of groups on C, then the
classifying stack BG→ C has objects G-torsors P → S and morphisms are

Q //

��

P

��
T // S

where Q→ P is G-equivariant.

What about the conditions of the definition?

(a) is an exercise.

(b) We take the trivial covering pt→ pt, and the torsor is Γ(pt) 3 G→ pt.

(c) clear.

Let Γ → C be a Gerbe, and ξ0 ∈ Γ(pt). The functor (C/S)op → Set given by
ξ 7→ IsomS(ξ0|S, ξ) is an Aut(ξ0)-torsor. Write G = Aut(ξ0). Define a functor
Γ → BG over C by sending ξ to IsomS(ξ0|S, ξ), which is an equivalence. Proof:
see notes on descent by torsors. Then ξ0 corresponds to the trivial torsor G→ pt.

Example: C = Affk with étale topology. ThenQn → Affk is define byQn(U) =
{(E, q)} where E is a VB on U and q a non-degenerate quadratic form on E.

Then Qn is a gerbe (cf. previous discussion). If (V, q) ∈ Qn(k) then get an
equivalence between Qn and BO(q). This explains why all these groups O(q) give
the same classifying space - they are different sections of the same gerbe.

More generally: Sheaves of groups correspond to gerbes with a section. Differ-
ent section corresponds to different groups.
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2.1.1 Example of a gerbe without a section:

Suppose
1→ G′ → G→ G′′ → 1

is a SES of sheaves of groups. Say P ′′ → pt is a G′′-torsor. Then we can define a
gerbe Γ→ C by setting Γ(S) to be the set of G→ G′′equivariant S-maps P → P ′′S
of G-torsors. IOW, Γ is the gerbe of liftings of P ′′ to G. Exercise: this is a gerbe.

For example, take

1→ Gm → GLn → PGLn → 1.

Then GLn-torsors over k are trivial (because always trivial Zariski locally). Hence
if P → k is a non-trivial PGLn-torsor then Γ has no sections! This corresponds to
examples from Max’s lectures.

3 Lecture 3

Recall: Let G, H sheaves of groups on C. The following are equivalent:

1. H is an inner form of G

2. ∃ an (H,G)-bitorsor

3. BG and BH are equivalent

Say C = Affk and G, H affine group schemes. Then can associate to G the
category

Rep(G) = {reps of G},

which has canonical structure of a k-linear tensor category.
We define Vect(BG) to be the category of vector bundles (and suitable mor-

phisms...) on BG [David: i.e. quasicoherent sheaves which are vector bundles on
every scheme. Quasicoherent in sense of Max; recall:

Definition 3.1. An OX -module F is quasicoherent if

1. for all x ∈X , the restriction F |x is a quasicoherent Oϕ(x)-module

2. for every f : y → x ∈ X , the natural arrow F |x → f∗F |y is adjoint in qcoh
to an isomorphism. (‘Cartesian’)
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Condition (2) is a pedantic version of saying that f ∗(F |x) → Fy is an isomor-
phism. ]

We define a map Rep(G)→ Vect(BG) by sending a representationG 7→ GL(V )
to the vector bundle which on a G-torsor P has fibre P×GV (doing this functorially
gets you a vector bundle - what we have done above is to associate to each point
of BG a vector space, so there are of course some things to check).

Then descent theory implies that Rep(G) → Vect(BG) is an equivalence of
tensor categories.

If BG ∼= BH then (eg. by the above) we get an isomorphism Rep(G)
∼→

Rep(H).
If q, q′ are non-degenerate quadratic forms of the same dimension n then com-

bining this with things form the previous lectures we get an iso RepO(q)
∼→

RepO(q′).
Part of the package of Tannakian duality is that if we have an equivalence of

k-linear tensor cats Rep(G) → Rep(H) then we get an equivalence of BG with
BH. But to recover the group itself you need a fibre functor, and different fibre
functors give different groups.

3.1 Bands

Let Γ → C be a gerbe, and S ∈ ob C. Let ξ, η ∈ ob Γ(S). Given an isomorphism
ϕ : ξ

∼→ η then get an induced isomorphism AutS(ξ) → AutS(η) by conjugating
with ϕ : α 7→ ϕαϕ−1 (or the other way around...?).

If you change ϕ then the above equivalence will change (in general).
On the other hand, if the sheaf is abelian then it is independent of the choice

of automorphism (cf. fundamental groups)!
We say Γ is abelian is for all S ∈ C and all ξ ∈ Γ(S) we have that AutS(ξ)

is abelian. Assume Γ abelian. Then for any ξ, η ∈ Γ(S) we get a canonical
isomorphism AutS(ξ)

∼→ AutS(η). Omitting details, you get a sheaf of abelian
groups G on C such that for each object S ∈ C and each ξ ∈ Γ(S), there is a
canonical isomorphism GS → AutS(ξ).

This G is called the band of Γ, written BandC(Γ).

Definition 3.2. Let G be a sheaf of abelian groups on C. A gerbe banded by G is
an abelian gerbe Γ→ C together with an isomorphism G→ BandC(Γ).

[David: basic example: if G is an abelian group scheme then BG should be
a gerbe banded by G. Indeed, by lemma 1.8 we have that, for a G-torsor P , the
formula AutG(P ) = G̃ holds, and if G is abelian then G̃ = G. ]

Let Γ, ∆ be abelian gerbes on C. Let Φ: Γ→ ∆ be a functor over C. Then we
get a homomorphism of sheaves Band Γ→ Band ∆, by sending an automorphism
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of an object of Γ to the corresponding automorphism of the image object in ∆ (the
map Φ is a functor!). Need to check that everything descends - details omitted.

If Γ is banded by G and ∆ is banded by H and ϕ : G → H a homomorphism
of sheaves of groups, then we say Φ is ϕ-equivariant if TFDC:

G
ϕ //

=
��

H

=
��

Band(Γ) Band Φ// Band(∆)

If G = H and ϕ = id then we say Φ is G-equivariant if it is ϕ-equivariant.
Exercise: If Γ, ∆ are gerbes banded by G and Φ: Γ → ∆ is a functor over

C and Φ is G-equivariant then Φ is an equivalence. [This should be very similar
to the classical statement that a map of torsors is an equivalence (here ‘map of
torsors’ includes equivariance)].

Lemma 3.3. Let ϕ : G → H be a homomorphism of sheaves of abelian groups.
Let Γ be a gerbe banded by G. Then there exists a gerbe ∆ banded by H and a
(unique up to an equivalence unique up to 2-equivalence 6) ϕ-equivariant functor
Φ: Γ→ ∆.

We want to construct something like ∆ = Γ×GH, but this doesn’t make sense
as written because there is no action of G on Γ. So we need to work a little more.

Idea of construction: we start with Γ and then ‘modify’ it until we get someting
that works as ∆. First modify the arrows. Define ∆̃ to have the same objects as
Γ, but given S ∈ C, we define

Isom∆/S(η, ξ) =
(
IsomΓ/S(η, ξ)×G H

)
(S)

Here IsomΓ/S(η, ξ) is a G-torsor by definition, so IsomΓ/S(η, ξ) ×G H is an H-

torsor living over S, and we have taken the set of sections. However, this ∆̃
is not a gerbe. The hom functors are certainly sheaves, but there are problems
with glueing objects. So we ‘stackify’ (analogous to sheafification, but a bit more
complicated). Details are a little unpleasant, and there are set theoretical issues.
We end up with a map ∆̃→ ∆.

Theorem 3.4. Suppose that G is a a sheaf of abelian groups on C Then

1. Isomorphism classes of G-torsors on C are parametrised by H1(C, G)

2. equivalence classes of (gerbes banded by G) are parametrised by H2(C, G).

62-cat fun
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Sketch proof. Define H̃1(G) to be the set of isomorphism classes of G-torsors on C,
and define H̃2(G) to be equivalence classes of gerbes banded by G. Firstly, these
are abelian groups: the group law is given by the following procedure:

say P → pt and Q → pt are G-torsors, then P × Q is a G × G torsor. Then
define (P ×Q)×G×GG via the multiplication map G×G→ G (a hom because G
is abelian). Then define [P ] + [Q] = [(P × Q) ×G×G G]. The identity is given by
the trivial torsor, and the inverse is given by putting a ?−1 in the action.

We also need a group law on the H̃2 (gerbes), which is constructed in more or
less the same way.

Then H̃1(G) and H̃2(G) are functorial in G, so we get functors.
To complete the proof we need two things:

1. exact sequences: given a SES 0 → G′
α→ G

β→ G′′ → 0 of abelian sheaves,
we get

0→ H0(G′)→ H0(G)→ H0(G′′)

and we need the rest of the long exact sequence (up to the H2s). We get all
but the connecting homomorphisms by the functoriality, so it is enough to
define the connecting homs (in a functorial way).

Suppose given s ∈ G′′(pt). want to make a G′-torsor ∂s. Well, just take
∂s = β−1s. Then [∂s] = 0 iff s is in the image of G(pt)→ G′′(pt).

Now to define the connecting hom H̃1(G′′) → H̃2(G′). Given a G′′-torsor
P ′ → pt, we define ∂P ′′ to be the gerbe of liftings of P ′′ to G (cf. previous
lecture). This is banded by G′ because G′ is central in G: in Γ(S) we have
a diagram:

P
π //

G   

P ′′S

��
S

So G′(S) is the set of transformations f : P → P over S such that π ◦ f = π.
SO G′(S) is the automorphism group in Γ(S) of the above diagram.

Define ∂P ′′ = Γ.

The class [∂P ′′] ∈ H̃2(G) of the gerbe we just defined is zero iff Γ ∼= BG′ iff
Γ(pt) 6= ∅. Also need to check that elements are erasable.

2. If ξ ∈ H̃1(G), then we want to show there exists G ⊂ H such that

H̃ i(G)→ H̃ i(H)

ξ 7→ 0
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If P → pt is any G-torsor then we want to show there exists G ⊂ H such
that (P ×G H)(pt) 6= ∅.
Let S → pt be a cover such that we have a lift

P

pt

��
S

??

π // pt

Define H = π∗π
∗G = Hompt(S,G)

Adjunction yields a map G→ H.

Then P ×G H = π∗π
∗P .

So we deduce (P ×G H)(pt) 6= ∅ (because it is push forward of a thing with
a section, and so has a section).

4 Lecture 4: an application of the theory

4.1 Essential dimension

Introduced in 1993 by Reichstein - Buhler (essential dimension of a finite group).
Let Γ→ Affk be a fibred cat, let K/k be a field extension, and let ξ ∈ Γ(K).

Given k ⊂ L ⊂ K, we say ξ is defined over L if there exists η ∈ Γ(L) such that
ηK ∼= ξ.

The essential dimension edk(ξ) of ξ is the minimal transcendence degree of
k ⊂ L ⊂ K such that ξ is defined over L.

Define edk(Γ) to be the supremum of the essential dimensions of elements of
Γ(k).

If Γ is limit preserving then the essential dimension should be finite (?).
Given an algebraic group G→ Spec k, then define edk(G) := edk(BG).

4.2 Examples

4.2.1 G = GLn

Well BGLn(K) is the groupoid of vector spaces over K. S the essential dimension
of GLn is 0 (groups with this property are called special).
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4.2.2 G = On

Then BOn is the stack of non-degenerate quadratic forms of rank n. We know that
every quadratic form q can be diagonalised (written as q ∼=

∑
i aix

2
i ). This implies

that edk On ≤ n. Can you do better? Well, let k(a1, · · · , an) and take universal
form over it. Can we define this form over a smaller field? Yes, for example we
can take k(a3

1, · · · , a3
n). But the transcendence degree does not change. In fact,

this will ‘always happen’, so edk On = n [Reichstein, 2000].

4.2.3 G = PGLn

Well, B PGLn(K) corresponds to twisted forms of Mn,K , AKA central simple al-
gebras of degree n. A basic example is that of cyclic algebras:

Assume µn ⊂ k, write µn = 〈w〉. Let a, b ∈ k×. Take the algebra generated by
x, y with the relations xn = a, yn = b, yx = wxy (cf quaternions). This turns out
to be a CSA

For n = 2 and n = 3, every CSA is cyclic (for n = 3 this is a fairly deep theorem
of Wedderburn). For n = 4 it is not true. A major open question is whether, for
n prime, every CSA is cyclic (always assuming n ∈ k× and µn ⊂ k).

It is clear that a CSA has essential dimension at most 2, since there are only
two things (a and b) needed to generate it. So if you can show that edk PGLn > 2
for some n then there must be non-cyclic CSAs of degree n.

Theorem 4.1 (Reichstein, ?, ?, ?). Let n prime and n ≥ 5. Then

2 ≤ edk PGLn ≤
(n− 1)(n− 2)

2
.

4.2.4 Other examples

edk On = n and edk SOn = n− 1.

4.2.5 Spin group

1→ µn → Spinn → SOn → 1,

Known (Reichstein-?, Serre -?...):

edk Spinn ≥ bn/2c.
Rost computed it exactly for n ≤ 14.

Theorem 4.2 (B?, Reichstein, Vistoli). Let k = C. Then

edk Spinn ≥ 2b
n−1
2
c − n(n− 1)

2
,

with equality if (n ≥ 15 and 4 - n).
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4.3 How proven above theorem?

Proposition 4.3 (BRV). Let

1→ Z → G→ H → 1

be an exact sequence of algebraic groups. Pick an extension K/k and an H-torsor
Q→ SpecK. As usual write ∂Q for the gerbe of liftings of Q to GK. Then

edkG ≥ edK(∂Q)− dimH.

The boundary map

∂ : H1(K,SOn)→ H2(K,µ2) ⊂ Br(K) (2)

is the Hasse-Witt invariant (note H1(K,SOn) corresponds to SOn torsors, equiv-
alently to quadratic forms with discriminant 1).

Proof.
edkG ≥ edK GK ,

so may assume k = K.
Let e := edk(∂Q). Then there exists an extension F/k and a G-torsor PF →

QF ∈ ∂Q(F ) such that edF (PF ) = e.
Then there exists k ⊂ L ⊂ F with tr. deg(L/k) ≤ edkG and such that there

exist some P ′/L such that P ′F
∼= P (note that in general the map does not descend).

Then define I → SpecL by I(SpecS) = {P ′A → QA : G − equivariant}. Then
dim I = dimH.

We have a point SpecF → I over SpecL. This must factor through some
SpecE where tr. deg(E/L) ≤ dimH. Then by definition the map PF → QF is
defined over E. Then can complete proof by collecting together the inequalities.

We want to apply this to spin groups. If Γ is a gerbe banded by µn, then what
can I say about edk Γ?

Back to general theory of the Brauer group. Given [Γ] ∈ H2
fppf (k, µn) ⊂

H2(k,Gm) (étale OK in char 0) we get an exact sequence (use Hilbert 90)

1→ µn → Gm → Gm → 1

0 = H1(k,Gm)→ H2(k, µn)→ H2(k,Gm)
n→ H2(k,Gm)

(recall H2(k,Gm) = Br(k). Then

H2(k, µn) = Br(k)[n].

If a ∈ Br(k) then define
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1. exp(a) is the order of a in Br(k)

2. ind(a) as in Max’s lectures.

Have
1 //

��

µn //

��

SLn //

��

PGLn //

��

1

1 // Gm
// GLn // PGLn // 1

We have that exp(a) | ind(a) and that exp(a) and ind(a) have the same prime
factors.

Have ∂Q ∈ H2(k, µn) and map ∂ : H1(SOn)→ H2(k, µ2) ⊂ Br(k)[2].

If Q is ‘generic’ then ind[∂Q] = 2b(
n−1
2

)c.

4.4 Canonical dimension

Definition 4.4. Let X a smooth projective geom con variety /k. Then the canon-
ical dimension

cd(X) = min{dim

(
imX

rat
99K X

)
} (3)

Exercise: canonical dimension cd(X) = 0 iff X has a rational point.

Theorem 4.5 (BRV). Suppose that Γ is a gerbe banded by µn (so [Γ] ∈ Br(k).
Let X be a Brauer-Severi variety whose Brauer class is [Γ] (this X is not unique,
just pick one). Then

edk Γ = cd(X) + 1.

Theorem 4.6 (Karpenko). Let X be a Brauer-Severi variety with class a ∈ Br(X).
If exp(a) is a prime power (this is the same as saying that ind(a) is a prime power)
then

cd(X) = ind(a)− 1.

Putting together these results we get that if ind(a) | exp(a) is a prime power
then

edk Γ = ind[Γ]. (4)

Putting all these together proves the above theorem giving a lower bound on the
essential dimension of the spin group. For the upper bounds you have to do some
more work, ‘much more classical’.
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