Read chapters 1.8 and 1.9 of the book. Answer the following questions. Test on Thursday as usual.

2. Let
$$A = \begin{bmatrix} \frac{1}{3} & 0 & 0\\ 0 & \frac{1}{3} & 0\\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 3\\ 6\\ -9 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} a\\ b\\ c \end{bmatrix}$.
Define $T : \mathbb{R}^3 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$. Find $T(\mathbf{u})$ and $T(\mathbf{v})$.

In Exercises 3–6, with T defined by $T(\mathbf{x}) = A\mathbf{x}$, find a vector \mathbf{x} whose image under T is **b**, and determine whether \mathbf{x} is unique.

3.
$$A = \begin{bmatrix} 1 & 0 & -3 \\ -3 & 1 & 6 \\ 2 & -2 & -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ 3 \\ -1 \end{bmatrix}$$

7. Let A be a 6×5 matrix. What must a and b be in order to define $T : \mathbb{R}^a \to \mathbb{R}^b$ by $T(\mathbf{x}) = A\mathbf{x}$?

For Exercises 9 and 10, find all \mathbf{x} in \mathbb{R}^4 that are mapped into the zero vector by the transformation $\mathbf{x} \mapsto A\mathbf{x}$ for the given matrix A.

$$\mathbf{9.} \ A = \begin{bmatrix} 1 & -3 & 5 & -5 \\ 0 & 1 & -3 & 5 \\ 2 & -4 & 4 & -4 \end{bmatrix}$$

17. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps $\mathbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ into $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ and maps $\mathbf{v} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ into $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$. Use the fact that *T* is linear to find the images under *T* of 2**u**, 3**v**, and 2**u** + 3**v**.

In Exercises 21 and 22, mark each statement True or False. Justify each answer.

- **21.** a. A linear transformation is a special type of function.
 - b. If A is a 3×5 matrix and T is a transformation defined by $T(\mathbf{x}) = A\mathbf{x}$, then the domain of T is \mathbb{R}^3 .
 - c. If A is an $m \times n$ matrix, then the range of the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is \mathbb{R}^m .
 - d. Every linear transformation is a matrix transformation.
 - e. A transformation T is linear if and only if

 $T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2)$

for all \mathbf{v}_1 and \mathbf{v}_2 in the domain of T and for all scalars c_1 and c_2 .

24. An affine transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ has the form $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, with A an $m \times n$ matrix and \mathbf{b} in \mathbb{R}^m . Show that T is *not* a linear transformation when $\mathbf{b} \neq \mathbf{0}$. (Affine transformations are important in computer graphics.)

In Exercises 32–36, column vectors are written as rows, such as $\mathbf{x} = (x_1, x_2)$, and $T(\mathbf{x})$ is written as $T(x_1, x_2)$.

32. Show that the transformation T defined by $T(x_1, x_2) = (x_1 - 2|x_2|, x_1 - 4x_2)$ is not linear.

In Exercises 1–10, assume that T is a linear transformation. Find the standard matrix of T.

- **1.** $T : \mathbb{R}^2 \to \mathbb{R}^4$, $T(\mathbf{e}_1) = (3, 1, 3, 1)$, and $T(\mathbf{e}_2) = (-5, 2, 0, 0)$, where $\mathbf{e}_1 = (1, 0)$ and $\mathbf{e}_2 = (0, 1)$.
- 2. $T : \mathbb{R}^3 \to \mathbb{R}^2$, $T(\mathbf{e}_1) = (1, 4)$, $T(\mathbf{e}_2) = (-2, 9)$, and $T(\mathbf{e}_3) = (3, -8)$, where \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 are the columns of the 3 × 3 identity matrix.
- 11. A linear transformation T : ℝ² → ℝ² first reflects points through the x₁-axis and then reflects points through the x₂-axis. Show that T can also be described as a linear transformation that rotates points about the origin. What is the angle of that rotation?

In Exercises 15 and 16, fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.

15.
$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 - 4x_2 \\ x_1 - x_3 \\ -x_2 + 3x_3 \end{bmatrix}$$

In Exercises 23 and 24, mark each statement True or False. Justify each answer.

- **23.** a. A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
 - b. If $T : \mathbb{R}^2 \to \mathbb{R}^2$ rotates vectors about the origin through an angle φ , then T is a linear transformation.
 - c. When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
 - d. A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector **x** in \mathbb{R}^n maps onto some vector in \mathbb{R}^m .
 - e. If A is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ cannot be one-to-one.
- **35.** If a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ maps \mathbb{R}^n onto \mathbb{R}^m , can you give a relation between *m* and *n*? If *T* is one-to-one, what can you say about *m* and *n*?