In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let
$A=\left[\begin{array}{rrr}2 & 0 & -1 \\ 4 & -5 & 2\end{array}\right], \quad B=\left[\begin{array}{rrr}7 & -5 & 1 \\ 1 & -4 & -3\end{array}\right]$,
$C=\left[\begin{array}{rr}1 & 2 \\ -2 & 1\end{array}\right], \quad D=\left[\begin{array}{rr}3 & 5 \\ -1 & 4\end{array}\right], \quad E=\left[\begin{array}{r}-5 \\ 3\end{array}\right]$

1. $-2 A, B-2 A, A C, C D$
2. $A+3 B, 2 C-3 E, D B, E C$

In Exercises 5 and 6, compute the product $A B$ in two ways: (a) by the definition, where $A \mathbf{b}_{1}$ and $A \mathbf{b}_{2}$ are computed separately, and (b) by the row-column rule for computing $A B$.
5. $A=\left[\begin{array}{rr}-1 & 3 \\ 2 & 4 \\ 5 & -3\end{array}\right], \quad B=\left[\begin{array}{rr}4 & -2 \\ -2 & 3\end{array}\right]$
7. If a matrix A is 5×3 and the product $A B$ is 5×7, what is the size of B ?
8. How many rows does B have if $B C$ is a 5×4 matrix?
9. Let $A=\left[\begin{array}{rr}2 & 3 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 9 \\ -3 & k\end{array}\right]$. What value(s) of k, if any, will make $A B=B A$?
11. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$ and $D=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2\end{array}\right]$. Com-
pute $A D$ and $D A$. Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a 3×3 matrix B, not the identity matrix or the zero matrix, such that $A B=B A$.
12. Let $A=\left[\begin{array}{rr}3 & -6 \\ -2 & 4\end{array}\right]$. Construct a 2×2 matrix B such that $A B$ is the zero matrix. Use two different nonzero columns for B.

Exercises 15 and 16 concern arbitrary matrices A, B, and C for which the indicated sums and products are defined. Mark each statement True or False. Justify each answer.
15. a. If A and B are 2×2 matrices with columns $\mathbf{a}_{1}, \mathbf{a}_{2}$, and $\mathbf{b}_{1}, \mathbf{b}_{2}$, respectively, then $A B=\left[\begin{array}{ll}\mathbf{a}_{1} \mathbf{b}_{1} & \mathbf{a}_{2} \mathbf{b}_{2}\end{array}\right]$.
b. Each column of $A B$ is a linear combination of the columns of B using weights from the corresponding column of A.
c. $A B+A C=A(B+C)$
d. $A^{T}+B^{T}=(A+B)^{T}$
e. The transpose of a product of matrices equals the product of their transposes in the same order.
31. Show that $I_{m} A=A$ where A is an $m \times n$ matrix. Assume $I_{m} \mathbf{x}=\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{m}.
32. Show that $A I_{n}=A$ when A is an $m \times n$ matrix. [Hint: Use the (column) definition of $A I_{n}$.]

