Ho mework

- Revise forearm! Practise questionson injectrity \& sujectivity, \& attempt the proactive exam on the website.
- Answer these questions.

Let G be the graph

1- Try to urrte dour all the sporing trees of G. 2.W/nte down the Laplacian matrix of G.
3.Compnte a cotactor of the Laplacian. Does it aggie with your answer to 1? If not, find your mistake.

In each of questions 1,2,15,22, you should also decide whether the transformation is injective ('one-to-one'), and whether it is surjective ('onto').

In Exercises $1-10$, assume that T is a linear transformation. Find the standard matrix of T.

1. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}, T\left(\mathbf{e}_{1}\right)=(3,1,3,1)$, and $T\left(\mathbf{e}_{2}\right)=(-5,2,0,0)$, where $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$.
2. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad T\left(\mathbf{e}_{1}\right)=(1,4), \quad T\left(\mathbf{e}_{2}\right)=(-2,9), \quad$ and $T\left(\mathbf{e}_{3}\right)=(3,-8)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{e}_{3} are the columns of the 3×3 identity matrix.

In Exercises 15 and 16, fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.
15. $\left[\begin{array}{lll}? & ? & ? \\ ? & ? & ? \\ ? & ? & ?\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}2 x_{1}-4 x_{2} \\ x_{1}-x_{3} \\ -x_{2}+3 x_{3}\end{array}\right]$
22. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation with $T\left(x_{1}, x_{2}\right)=\left(2 x_{1}-x_{2},-3 x_{1}+x_{2}, 2 x_{1}-3 x_{2}\right)$. Find \mathbf{x} such that $T(\mathbf{x})=(0,-1,-4)$.
31. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: " T is one-to-one if and only if A has __ pivot columns." Explain why the statement is true. [Hint: Look in the exercises for Section 1.7.]
32. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: " T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if and only if A has pivot columns." Find some theorems that explain why the statement is true.

