Answer the following questions, ready for the test on thursday.

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & -5 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix},$$
$$C = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 5 \\ -1 & 4 \end{bmatrix}, \quad E = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$$
$$1. \quad -2A, \quad B - 2A, \quad AC, \quad CD$$
$$2. \quad A + 3B, \quad 2C - 3E, \quad DB, \quad EC$$

In Exercises 5 and 6, compute the product AB in two ways: (a) by the definition, where $A\mathbf{b}_1$ and $A\mathbf{b}_2$ are computed separately, and (b) by the row–column rule for computing AB.

5.
$$A = \begin{bmatrix} -1 & 3 \\ 2 & 4 \\ 5 & -3 \end{bmatrix}, B = \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix}$$

- 7. If a matrix A is 5 × 3 and the product AB is 5 × 7, what is the size of B?
- 8. How many rows does B have if BC is a 5×4 matrix?

9. Let
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 9 \\ -3 & k \end{bmatrix}$. What value(s) of k, if any, will make $AB = BA$?

- **11.** Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ and $D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. Compute *AD* and *DA*. Explain how the columns or rows of *A* change when *A* is multiplied by *D* on the right or on the left. Find a 3 × 3 matrix *B*, not the identity matrix or the zero matrix, such that AB = BA.
- **12.** Let $A = \begin{bmatrix} 3 & -6 \\ -2 & 4 \end{bmatrix}$. Construct a 2 × 2 matrix *B* such that *AB* is the zero matrix. Use two different nonzero columns for *B*.

Exercises 15 and 16 concern arbitrary matrices A, B, and C for which the indicated sums and products are defined. Mark each statement True or False. Justify each answer.

- **15.** a. If A and B are 2×2 matrices with columns \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{b}_1 , \mathbf{b}_2 , respectively, then $AB = [\mathbf{a}_1\mathbf{b}_1 \quad \mathbf{a}_2\mathbf{b}_2]$.
 - b. Each column of AB is a linear combination of the columns of B using weights from the corresponding column of A.
 - c. AB + AC = A(B + C)
 - d. $A^T + B^T = (A + B)^T$
 - e. The transpose of a product of matrices equals the product of their transposes in the same order.

- **31.** Show that $I_m A = A$ where A is an $m \times n$ matrix. Assume $I_m \mathbf{x} = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^m .
- **32.** Show that $AI_n = A$ when A is an $m \times n$ matrix. [*Hint:* Use the (column) definition of AI_n .]

Find the inverses of the matrices in Exercises 1–4.

1.
$$\begin{bmatrix} 8 & 6 \\ 5 & 4 \end{bmatrix}$$
 2. $\begin{bmatrix} 3 & 2 \\ 8 & 5 \end{bmatrix}$

- 5. Use the inverse found in Exercise 1 to solve the system
 - $8x_1 + 6x_2 = 2$ $5x_1 + 4x_2 = -1$
- 8. Suppose P is invertible and $A = PBP^{-1}$. Solve for B in terms of A.
 - 16. Suppose A and B are $n \times n$ matrices, B is invertible, and AB is invertible. Show that A is invertible. [*Hint*: Let C = AB, and solve this equation for A.]