Homework for week 2:

Read:

- The Row Vector rule for multiplying a matrix by a vector
- Read Section 1.4, Existence of Solutions
- Answer the following questions, ready for the test on Thursday.
- Practise multiplying a matrix and a vector; this will be the first question on the test.

24. Suppose a system of linear equations has a 3 × 5 augmented matrix whose fifth column is not a pivot column. Is the system consistent? Why (or why not)?

In Exercises 9 and 10, write a vector equation that is equivalent to the given system of equations.

9.
$$x_2 + 5x_3 = 0$$
 10. $3x_1 - 2x_2 + 4x_3 = 3$
 $4x_1 + 6x_2 - x_3 = 0$ $-2x_1 - 7x_2 + 5x_3 = 1$
 $-x_1 + 3x_2 - 8x_3 = 0$ $5x_1 + 4x_2 - 3x_3 = 2$

In Exercises 11 and 12, determine if **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .

11.
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$

12.
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} -2 \\ 3 \\ -2 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} -6 \\ 7 \\ 5 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 11 \\ -5 \\ 9 \end{bmatrix}$

22. Construct a 3×3 matrix A, with nonzero entries, and a vector \mathbf{b} in \mathbb{R}^3 such that \mathbf{b} is *not* in the set spanned by the columns of A.

Compute the products in Exercises 1–4 using (a) the definition, as in Example 1, and (b) the row-vector rule for computing Ax. If a product is undefined, explain why.

1.
$$\begin{bmatrix} -4 & 2 \\ 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 7 \end{bmatrix}$$
 2.
$$\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$

In Exercises 5–8, use the definition of Ax to write the matrix equation as a vector equation, or vice versa.

8.
$$z_1 \begin{bmatrix} 2 \\ -4 \end{bmatrix} + z_2 \begin{bmatrix} -1 \\ 5 \end{bmatrix} + z_3 \begin{bmatrix} -4 \\ 3 \end{bmatrix} + z_4 \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$

14. Let
$$\mathbf{u} = \begin{bmatrix} 4 \\ -1 \\ 4 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & 5 & -1 \\ 0 & 1 & -1 \\ 1 & 2 & 0 \end{bmatrix}$. Is \mathbf{u} in the subset of \mathbb{R}^3 spanned by the columns of A ? Why or why not?

15. Let $A = \begin{bmatrix} 3 & -1 \\ -9 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. Show that the equation $A\mathbf{x} = \mathbf{b}$ does not have a solution for all possible \mathbf{b} , and describe the set of all \mathbf{b} for which $A\mathbf{x} = \mathbf{b}$ does have a solution.

True or false (and why):

- **24.** a. Every matrix equation $A\mathbf{x} = \mathbf{b}$ corresponds to a vector equation with the same solution set.
 - b. If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then **b** is in the set spanned by the columns of A.
 - c. Any linear combination of vectors can always be written in the form $A\mathbf{x}$ for a suitable matrix A and vector \mathbf{x} .
 - d. If the coefficient matrix A has a pivot position in every row, then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent.
 - e. The solution set of a linear system whose augmented matrix is [a₁ a₂ a₃ b] is the same as the solution set of Ax = b, if A = [a₁ a₂ a₃].
 - f. If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^m .
- 30. Construct a 3×3 matrix, not in echelon form, whose columns do *not* span \mathbb{R}^3 . Show that the matrix you construct has the desired property.