Homework for week 2:

Read:

- The Row Vector rule for multiplying a matrix by a vector
- Read Section 1.4, Existence of Solutions
- Answer the following questions, ready for the test on Thursday.
- Practise multiplying a matrix and a vector; this will be the first question on the test.

24. Suppose a system of linear equations has a 3×5 augmented matrix whose fifth column is not a pivot column. Is the system consistent? Why (or why not)?

In Exercises 9 and 10, write a vector equation that is equivalent to the given system of equations.
9.

$$
\begin{aligned}
x_{2}+5 x_{3} & =0 \\
4 x_{1}+6 x_{2}-x_{3} & =0 \\
-x_{1}+3 x_{2}-8 x_{3} & =0
\end{aligned}
$$

10. $3 x_{1}-2 x_{2}+4 x_{3}=3$
$-2 x_{1}-7 x_{2}+5 x_{3}=1$
$5 x_{1}+4 x_{2}-3 x_{3}=2$

In Exercises 11 and 12, determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3}.
11. $\mathbf{a}_{1}=\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{r}5 \\ -6 \\ 8\end{array}\right], \mathbf{b}=\left[\begin{array}{r}2 \\ -1 \\ 6\end{array}\right]$
12. $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{r}-2 \\ 3 \\ -2\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{r}-6 \\ 7 \\ 5\end{array}\right], \mathbf{b}=\left[\begin{array}{r}11 \\ -5 \\ 9\end{array}\right]$
22. Construct a 3×3 matrix A, with nonzero entries, and a vector \mathbf{b} in \mathbb{R}^{3} such that \mathbf{b} is not in the set spanned by the columns of A.
Compute the products in Exercises $1-4$ using (a) the definition, as in Example 1, and (b) the row-vector rule for computing $A \mathbf{x}$. If a product is undefined, explain why.

1. $\left[\begin{array}{rr}-4 & 2 \\ 1 & 6 \\ 0 & 1\end{array}\right]\left[\begin{array}{r}3 \\ -2 \\ 7\end{array}\right]$
2. $\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]\left[\begin{array}{r}5 \\ -1\end{array}\right]$

In Exercises 5-8, use the definition of $A \mathbf{x}$ to write the matrix equation as a vector equation, or vice versa.
8. $z_{1}\left[\begin{array}{r}2 \\ -4\end{array}\right]+z_{2}\left[\begin{array}{r}-1 \\ 5\end{array}\right]-z_{3}\left[\begin{array}{r}-4 \\ 3\end{array}\right]+z_{4}\left[\begin{array}{l}0 \\ 2\end{array}\right]=\left[\begin{array}{r}5 \\ 12\end{array}\right]$
14. Let $\mathbf{u}=\left[\begin{array}{r}4 \\ -1 \\ 4\end{array}\right]$ and $A=\left[\begin{array}{rrr}2 & 5 & -1 \\ 0 & 1 & -1 \\ 1 & 2 & 0\end{array}\right]$. Is $\mathbf{u} \mathbf{~ i n}$ the subset of \mathbb{R}^{3} spanned by the columns of A ? Why or why not?
15. Let $A=\left[\begin{array}{rr}3 & -1 \\ -9 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. Show that the equation $A \mathbf{x}=\mathbf{b}$ does not have a solution for all possible \mathbf{b}, and describe the set of all \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ does have a solution.

True or false (and why):
24. a. Every matrix equation $A \mathbf{x}=\mathbf{b}$ corresponds to a vector equation with the same solution set.
b. If the equation $A \mathbf{x}=\mathbf{b}$ is consistent, then \mathbf{b} is in the set spanned by the columns of A.
c. Any linear combination of vectors can always be written in the form $A \mathbf{x}$ for a suitable matrix A and vector \mathbf{x}.
d. If the coefficient matrix A has a pivot position in every row, then the equation $A \mathbf{x}=\mathbf{b}$ is inconsistent.
e. The solution set of a linear system whose augmented matrix is $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{b}\end{array}\right]$ is the same as the solution set of $A \mathbf{x}=\mathbf{b}$, if $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$.
f. If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^{m}, then the equation $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{m}.
30. Construct a 3×3 matrix, not in echelon form, whose columns do not span \mathbb{R}^{3}. Show that the matrix you construct has the desired property.

