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1. Desingularization

Before introducing the notion of canonical model, we need to recall some basic
facts from the theory of desingularization.

Definition 1.1. Let X be a reduced locally Noetherian scheme. A proper bira-
tional morphism π : Z → X with Z regular is called a desingularization of X (or a
resolution of singularities of X). If π is an isomorphism above every regular point
of X, we say that it is a desingularization in the strong sense.

Example 1.2. Let X be a reduced curve over a field k; the normalization X ′→ X
is a desingularization. More generally, let X be an excellent, reduced, Noether-
ian scheme of dimension 1; then the normalization X ′ → X is a desingulariza-
tion. Hence the problem of the existence of desingularizations essentially concerns
schemes in higher dimensions.

Let X be an excellent, reduced, Noetherian scheme of dimension 2. Consider
the following sequence of proper birational morphisms:

· · · → Xn+1 → Xn → · · · → X1 → X, (*)

where X1 → X is the normalization of X, and for every i ≥ 1, Xi+1 → Xi is

the composition of the blowing up X
′
i → Xi of the singular locus Sing(Xi) =

Xi \ Reg(Xi) (which is closed because Xi excellent) endowed with the reduced

scheme structure, and of the normalization Xi+1 → X
′
i. The sequence stops at n

when Xn is regular.

Theorem 1.3. Let X → S be a fibered surface. Let us suppose that dimS = 1
and that Xη is smooth. Then the sequence (*) is defined and finite. In particular,
X admits a desingularization Z → X in the strong sense. Moreover, Z → X is
projective if S affine.

Proof. See [Liu, Theorem 8.3.50] and [Liu, Corollary 8.3.51]. �

The following classical example will be used in the main example (Example 3.7)
of the talk.

Date: April 19, 2018.

1
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Example 1.4. Let OK be a DVR with discrete valuation ν. Let us set S =
Spec OK and take a ∈ OK such that ν(a) ≥ 2. Consider

X = Spec OK [x, y]/(xy − a).

Notice that X contains a unique singular point corresponding to the maximal ideal
(t, x, y), say p.

It turns out that after [e/2] successive blowing-ups of singular points, we end up
with a desingularization f : Z → X of X. Moreover, the special fiber Zs has e+ 1
irreducible components and is of the form

where the components on the edges are affine lines over k (a cross means that
we have removed a point from a projective curve) and the other components are
projective lines over k. Furthermore, the fiber Zp at the singular point p under f
is the chain of the e− 1 projective lines given above. See [Liu, Example 8.3.53] for
further details.

2. Contraction

Definition 2.1. Let X → S be a normal fibered surface. Let E be a finite set
of integral vertical curves on X. A normal fibered surface Y → S together with
a projective birational morphism f : X → Y such that for every integral vertical
curve E on X, the set f(E) is a point if and only if E ∈ E is called a contraction
of the E ∈ E .

The existence of a contraction morphism is a big deal, but it satisfies nice prop-
erties if it exists:

Proposition 2.2. Let X → S be a normal fibered surface. Let E be a finite set of
integral vertical curves on X and ∆ = ∪E∈EE. If a contraction f : X → Y of the
E ∈ E exists, then it induces an isomorphism

X \∆→ Y \ f(∆)

and it is unique up to unique isomorphism.

Proof. By Zariski’s connectedness principle ([Liu, Theorem 5.3.15]), for any y ∈
f(∆), f−1(y) is connected of dimension 1. Therefore it is union of some E ∈ E
which implies that f−1(f(∆)) = ∆. Hence

X \∆ = f−1(Y \ f(∆))→ Y \ f(∆)

is projective, quasi-finite, hence finite, and birational; so it is an isomorphism.
Let f ′ : X → Y ′ be another contraction. By above, we have isomorphisms

X \∆→ Y \ f(∆), X \∆→ Y ′ \ f ′(∆)

which give a unique birational map g : Y 99K Y ′ such that f ′ = g ◦ f . It follows
from [Liu, Corollary 8.3.23] that g is in fact an isomorphism. �

The proposition above says that ∆ is the exceptional locus of f , see [Liu, Defi-
nition 7.2.21].
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3. Canonical Models

Let X → S be a normal fibered surface and E be a finite set of integral vertical
curves on X. By Proposition 2.2, if a contraction f : X → Y of the E ∈ E exists,
then it is unique. This section is devoted to the existence of such morphism under
additional conditions.

Proposition 3.1. Let X → S be a regular fibered surface. Let Γ1, . . . ,Γr be vertical
prime divisors contained in a closed fiber Xs such that

KX/S · Γi = 0, i = 1, . . . , r,

and that the intersection matrix (Γi · Γj)1≤i,j≤r is negative definite. Then there
exists a contraction morhism f : X → Y of the Γi.

Proof. This is [Liu, Corollary 9.4.7]. �

Proposition 3.2. Let X → S be an arithmetic surface with pa(Xη) ≥ 2. Let s ∈ S
be a closed point, let Γ be an irreducible component of Xs, and k′ = H0(Γ,OΓ).
Then the following properties are equivalent.

(1) KX/S · Γ = 0.

(2) H1(Γ,OΓ) = 0 and Γ2 = −2[k′ : k(s)].

Proof. The adjunction formula

pa(Γ) = 1 +
1

2
(Γ2 +KX/S · Γ)

(see [Liu, Theorem 9.1.37]) and the calculation

pa(Γ) = 1− χk(s)(Γ)

= 1− (dimk(s)H
0(Γ,OΓ)− dimk(s)H

1(Γ,OΓ))

= 1− [k′ : k(s)](dim
k′H

0(Γ,OΓ)− dim
k′H

1(Γ,OΓ))

= 1 + [k′ : k(s)](−1 + dim
k′H

1(Γ,OΓ)).

give

Γ2 +KX/S · Γ = 2[k′ : k(s)](−1 + dim
k′H

1(Γ,OΓ)).

Therefore (2) clearly implies (1).
Now assume that (1) holds. Then we have

Γ2 = 2[k′ : k(s)](−1 + dim
k′H

1(Γ,OΓ)).

It is enough to show that Γ2 < 0. Suppose Γ2 = 0. Then Γ is a connected
component of Xs ([Liu, Exercise 9.1.6]). By suitably replacing S, we may assume
that Xs connected (see [Liu, Proposition 8.3.8]). Then

Xs = dΓ

for some d ≥ 1. The equality

2pa(Xη)− 2 = dKX/S · Γ
([Liu, Proposition 9.1.35]) implies that pa(Xη) = 1, a contradiction. �

Definition 3.3. The vertical prime divisors Γ verifying condition (2) of the Propo-
sition 3.2 and smooth over k′ are called (−2)-curves.

We are ready to state the main result of the talk.
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Proposition 3.4. Let X → S be a minimal arithmetic surface with pa(Xη) ≥ 2.
Set

E = {vertical prime divisors Γ such that KX/S · Γ = 0}.
Then the following properties are true.

(1) The set E is finite.
(2) There exists a contraction morphism f : X → Y of the Γ ∈ E.
(3) If S is affine, then the sheaf ωY/S is ample.

Proof. Set K = K(S).
(1) By [Liu, Lemma 8.3.3] and [Liu, Corollary 8.3.6(d)], Xη is a l.c.i. projective

curve over K. [Liu, Corollary 8.3.31] says that

deg ωXη/K = 2(pa(Xη)− 1) > 0.

Again by [Liu, Corollary 8.3.6(d)], we have

ωX/S |Xη = ωXη/K .

Therefore ωX/S is ample over Xη according to [Liu, Proposition 7.5.5]. Then by
[Liu, Proposition 5.1.37(b)], there exists an open subscheme V of S such that ωXV /V
is ample. Then

E ⊆ {irreducible components of the Xs, s ∈ S \ V }.

But the latter is finite.
(2) As for Proposition 3.2, we see that the intersection matrix of the components

of E is negative definite. Therefore there exists a contraction morphism f : X → Y
of the Γ ∈ E by virtue of Proposition 3.1.

(3) Take s ∈ S closed. Let Γ be an irreducible component of Ys and Γ′ its strict
transform in X. Then the restriction

h : Γ′→ Γ

of f is a finite birational morphism. By [Liu, Corollary 9.4.18], we have

ωX/S |Γ′ ' (f∗ωY/S)|
Γ′ = h∗(ωY/S |Γ)

which gives

deg ωY/S |Γ = deg h∗(ωY/S |Γ) = deg ωX/S |Γ′
thanks to [Liu, Proposition 7.3.8]. As Γ′ /∈ E , deg ωX/S |Γ′ > 0 so that deg ωY/S |Γ >
0. Then ωY/S |Ys is ample by [Liu, Proposition 7.5.5]. By virtue of [Liu, Corollary
5.3.24] (this is the step that requires the assumption S is affine), the sheaf ωY/S is
ample. �

Definition 3.5. Let X → S be a minimal arithmetic surface with pa(Xη) ≥ 2. Let
f : X → Y be the contraction of the vertical prime divisors Γ such that KX/S ·Γ = 0
(which exists by the proposition above). The surface Y → S is called the canonical
model of X.

Remark 3.6. According to Proposition 3.4, the canonical sheaf ωY/S is ample
if S is affine and that is great news! The prize we have to pay for this is that
the canonical model is singular as soon as there exists at least one contracted
component. Life is not that simple...
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Example 3.7. Let OK be a DVR with uniformizing parameter t, field of fractions
K and residue field k of char(k) 6= 2, 3. Let us set S = Spec OK and fix n ≥ 1. Let
us consider the scheme X0 over S, normalization of

P1
OK = Spec OK [x] ∪ Spec OK [1/x]

in
K(x)[y]/(y2 − (x2 + tn)(x3 + 1)).

Then X0 is the union of the open subschemes

U = Spec OK [x, y]/(y2 − (x2 + tn)(x3 + 1)),

V = Spec OK [x1, y1]/(y2
1 − x1(1 + tnx2

1)(1 + x3
1), x1 = 1/x, y1 = y/x3.

Notice that V is smooth over S and U contains a unique singular point corre-
sponding to the maximal ideal (t, x, y), say p. By Theorem 1.3, X0 admits a
desingularization X → X0 in the strong sense and it is obtained by blowing-up and
normalizing. Moreover it is projective since S is affine.

Let z ∈ ÔU,p be a square root of 1 + x3 ([Liu, Exercise 1.3.9]). We see that

ÔU,p ' ÔK [[x, v]]/((v − x)(v + x)− tn), v = y/z.

By Example 1.4, Xp is made up of a chain of n projective lines Γ1, . . . ,Γn over k.
With the help of [Liu, Proposition 9.1.21(b)], we have Γ2

i = −2.
The normalization of the irreducible singular curve Us is an elliptic curve E

([Liu, Exercise 4.1.18]). After the blowing ups, what we get as the special fiber is
a normal crossing divisor, so its irreducible components are regular ([Liu, Exercise
9.1.3]). Thus the strict transform of Us is normal and therefore equal to its nor-
malization E. Hence Xs is the union of the elliptic curve E and of the Γi.

By Castelnuovo’s criterion ([Liu, Theorem 9.3.8]), X does not contain any ex-
ceptional divisor, i.e., it is relatively minimal. Moreover, by [Liu, Corollary 9.3.24],
it is minimal. Thus, we can talk about the canonical model of X.

We will show that the canonical model of X is none other than X0 itself. By
adjunction formula ([Liu, Theorem 9.1.37]),

0 = pa(Γi) = 1 +
1

2
(Γ2
i +KX/S · Γi), i = 1, . . . , n

so that
KX/S · Γi = 0, i = 1, . . . , n.

Combining these equalities with [Liu, Proposition 9.1.35] we have

2pa(Xη)− 2 = KX/S ·Xs = KX/S · E
so that KX/S · E 6= 0. Hence the set E of vertical prime divisors Γ such that
KX/S · Γ = 0 is precisely {Γ1, . . . ,Γn}. By Proposition 2.2, the canonical model of
X is X0. Notice that the canonical model is singular.
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Let X → S be a minimal arithmetic surface with pa(Xη) ≥ 2 and let Y → S
be the canonical model of X. As we have seen in the Example 3.7, we may lose
the regularity of the surface. On the other hand, we gain in the simplicity of the
closed fibers. More precisely, for a closed point s ∈ S, the closed fiber Xs can have
as many irreducible components as we want as we have seen in the example above;
but this is not true for Ys:

Proposition 3.8. Let us keep the notation above and let n be the number of irre-
ducible components of Ys. Then

n ≤ 2pa(Xη)− 2.

Proof. By [Liu, Corollary 9.4.18] Y is a l.c.i. over S. By [Liu, Corollary 6.3.24] this
implies that Ys is a l.c.i. over k(s). Moreover, by [Liu, Theorem 6.4.9(b)], we have

ωY/S |Ys = ωYs/k(s).

Let us calculate the degrees. [Liu, Corollary 7.3.31] and [Liu, Proposition 5.3.28]
give that

degk(s)ωYs/k(s) = −2χk(s)(OYs) = −2χk(η)(OYη ) = 2pa(Xη)− 2.

Let F1, . . . , Fn be the irreducible components of Ys with respective multiplicities
d1, . . . , dn. By Proposition 3.4(b) ωY/S is ample. Since the restriction of an ample
divisor to a closed subscheme remains ample, ωY/S |Fi is ample for all i. This
implies, by [Liu, Proposition 7.5.5], that degk(s)ωY/S |Fi > 0. We then have

degk(s)ωY/S |Ys =
∑

1≤i≤n

didegk(s)(ωY/S |Fi) ≥
∑

1≤i≤n

di ≥ n

by virtue of [Liu, Proposition 7.5.7]. �
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