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1. CARTIER DIVISORS
1.1. The definition.

Definition 1.1.1 (Sheaf of meromorphic functions). For any commutative ring A, we denote R(A) for the
non-zero-divisors of A. Let X be a scheme, the sheaf Rx is defined as: for any open subset U C X,
Rx = {a € Ox(U) Ve eU,a, € R(OX@>}
Moreover, K's is defined to be the presheaf such that
Kx(U) :=Rx(U)" Ox(U),
and Kx is the sheafification of K'y. Then we call Kx the sheaf of meromorphic functions on X. We
note that if X is integral, then Kx is just the constant sheaf K(X).

Lemma 1.1.2. Let X be a locally noetherian scheme, then for any x € X, IC'X@ ~ FracOx ., where
Frac Ox , denote for the totally ring of fraction of Ox ;.

Proof. We have IC'X’I = ’R)_(lw Ox, and Rx, C R(Ox,). It suffices to show R(Ox ) C Rx,, when X is
locally noetherian. Let b, € R(Ox ,), then b, comes from a b € Ox(U) where U is an affine open subset in
X. Let I be the annihilator of b, then I Ox , = 0. Since X is locally noetherian, we may assume Ox (U)
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is noetherian, therefore I is finitely generated. This then implies there exists an affine open subset V' C U
such that I Ox (V) =0. Then bly € R(Ox(V)) and hence b, € Rx ;. O

Definition 1.1.3 (Cartier divisors). Let K% be the subsheaf of invertible elements of Kx and O% be the
subsheaf of invertible elements of Ox. We denote K% / O% to be the sheafification of the presheaf U
Kx(U)/ O%(U). Then there is a natural morphism K% — K% / O%.
(1) The group of Cartier divisors on X is defined to be Div(X) := H*(X,K% / O%).
(2) The natural morphism above yields a homomorphism
div: HY(X,K%) = HY(X,K% /| O%).

A Cartier divisor D is called to be a principal Cartier divisor if and only if D € Imdiv.
(3) We denote the group law on Div(X) as addition. Then for any Dy, Dy € Div(X), one say D1 and
Dy are equivalent, Dy ~ Ds, if and only if D1 — Dy € Imdiv.
(4) Let D € Div(X). D is said to be effective if and only if D € Im(H°(X,0x NK%) — HY(X,K% / 0%)).
We then write D > 0 and the set of effective Cartier divisors is denoted by Divy(X).
(5) CaCl(X) :=Div(X)/ ~.
1.1.4. The above definition allows us to represent a Cartier divisors by a system {(U;, f;)} where {U;} forms
a open cover of X and each f; € HO(Ui,IC)X() such that filv,; € filv,, Ox(U;j)*, where U;; = U;NU; = Uy,.

1.1.5. Suppose now we have two systems {(U;, f;)} and {(V}, f;)} which representing a same Cartier divisor
D. Then on U; NV}, f; = hyjg; for some h;; € Ox(U; NV;)*. And the converse also holds. Therefore, for
convenience, we denote D = [{(U;, fi)}]-
1.1.6. Let D, = [{(U“fl)}],Dg = [{(Vj,g])}] € DiV(X), then

Dy + Dy = {(Ui NVj, fig;)}].
Additionally, let D = [{(U,, fi)}] € Div(X). Then D € Div,(X) if and only if f; € Ox(U;). And D is
principal if [{(U;, fi)}] = [{(X, f)}].

1.1.7. For any D € Div(X), we would like to associate a sheaf to D. Namely, let D = [{(U;, fi)}], Ox (D)
is the sheaf on X defined by

Ox(D)lu, = 7' Ox v
Then D € Divy(X) if and only if Ox(—D) C Ox. Moreover, if U is a open subset of X, then Ox (D)|y =
Oy (D|y). We should note that this construction is independent to the choice of the representatives.

1.2. Cartier divisors and the Picard group.

Definition 1.2.1 (The Picard group). Let X be a scheme.

(1) An Ox-module L on X is invertible if for every point x € X, there exists a open neighbourhood U
of x in X such that Ox |y ~ Ly as Ox-modules. Note that if X is locally noetherian, then this is
equivalent to say that L is coherent and L, is free of rank 1 over Ox .

(2) Pic(X) denote the set of isomorphism classes of invertible sheaves on X, which is called to be the
Picard group of X. Note that the tensor product makes Pic(X) into a commutative group, whose
unit element is the class of Ox.

Proposition 1.2.2 (Cartier divisors and the Picard group). Let X be a scheme. Then
(1) The assignment p : D — Ox (D) is additive, namely,
p(Dl + DQ) = Ox(Dl) Ox(Dg) ~ Ox(Dl) ROy Ox(DQ)

(2) p induces an injective homomorphism CaCl(X) — Pic(X).
(3) The image of p corresponds to the invertible sheaves contained in Kx .
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(1) Let Dy = [{(Ui, fi)}], D2 = [{(V},9;)}] € Div(X), then Dy + Dy = [{(U; NV}, fig;)}]. Thus
p: D1+ Dy Ox (D1 + Do), Ox(Dy+ D)

On the other hand, we may consider
Dy = [{U:nV;, fi)}],  Ox(D1)
Dy = [{(UiNVj,95)},  Ox(D2)

Hence the result follows.

For any principal divisor div(f), it can be represented by {(U;, f|v,)}. Then Ox(div(f))|y, =
1 Ox |y, yields that Ox(div(f)) ~ Ox as an Ox-module. Therefore p indeed induces a group
homomorphism CaCl(X) — Pic(X).

Now let D € ker p, then Ox (D) ~ Ox as Ox-modules yields that there exists f € H°(X, Kx)

such that Ox(D) = fOx. Write D = [{(U;, f;)}], then f|y, = f; ' € H°(U;,K%). Therefore
f € H(X,K%) and D = div(f) follows immediately.
The construction of Ox (D) for any D € Div(X) yields that Ox (D) is a locally of free rank one.
Let £ C Kx be an invertible subsheaf, and {U;} be an open cover of X such that £ |y, is free of
rank one and is generated by an element f; € K’y (U;) for each i. Then f; € K'x(U;)* C Kx(U;)*
because L is invertible. By letting D = [{(U;, f;)}], then we obtained the result.

-1 -1
vinv; = fi 0 9; " Ox |uiny;-

~1
vinv; = fi  Oxluiny;, and

-1
vinv; = 9; Ox |uiny;-

O

Corollary 1.2.3. If X is "nice” enough (e.g. an integral scheme or a reduced noetherian scheme), then

CaCl(X

) — Pic(X) is an isomorphism. (cf. [HarTT, IT Proposition 6.15.] and [Liu02, Corollary 7.1.19])

2. WEIL DIVISORS

2.1. The definition.

Definition 2.1.1 (Weil divisors). Let X be a noetherian scheme.

(1)

A cycle on X is an element of the direct sum yASRS Thus, for any cycle Z on X, Z can be uniquely

written as
Z = Z ng[x].
zeX
Then we put mult, (Z) := n,, the multiplicity of Z at x.
Let Z be a cycle on X. We say Z is positive if mult,(Z) > 0 for all x € X. The support of Z,
Supp Z, is defined to be the union of {x} where mult,(Z) # 0.
A cycle Z on X is of codimension 1 if every m in Supp Z is of codimension 1. We note that@
is of codimension 1 if and only if dimOx , = 1. The cycles of codimension 1 then form a subgroup
ZY(X) of the group of cycles on X.
Let X be a noetherian integral scheme. Then a cycle of codimension 1 is called a Weil divisor.
Let X be a normal noetherian (hence integral) scheme, and let x € X such that {x} is of codimension
1. Then Ox 5 is local of dimension 1 and normal, and it is therefore a discrete valuation ring. We
then can define
mult, : K(X) — ZU{oco}

by extending the valuation on Ox 4. Let f € K(X) be a non-zero rational function, we define

(f):= > mult(f)a]-

z€X,dim Ox =1

Then (f) is a Weil divisor and we call such divisors principal.
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(6) Let X be a normal noetherian scheme. C1(X) is defined to be the quotient group of Z*(X) by the
subgroup of principal Weil divisors. Two Weil divisors are then said to be equivalent if and only if
they are in the same class in Cl(X), i.e., their difference is principal.

Example (The ideal class group). Let K be a number field and X = Spec Ok, where Ok is the ring of
integers of K. Note that X consists of the prime ideals sitting above the prime numbers in Z and the zero
ideal. Moreover, one can decompose every ideal in Ok into a product of prime ideals. (cf. [Lan94] or any
book of Algebraic Number Theory.) Then for any Weil divisor D = )" cq,cc 0, MplP], We can associate a
fractional ideal [],cgpec 0 P™* to it. This correspondence then gives (an evidence) that CI(X) is isomorphic
to the class group of K.

2.2. Welil divisors and Cartier divisors.

Definition 2.2.1. Let A be a commutative ring and M be any A-module.
(1) M is said to be simple if M # 0 and the only sub-A-modules of M are only 0 and itself.
(2) Suppose there exists a chain
0=MyC..CM,=M
of sub-A-modules of M such that each M;1/M; is simple, then we put
length 4 (M) = n.
Note that this is independent to the choice of the chain.

Lemma 2.2.2. Let A be a noetherian local ring of dimension 1 and f,g € R(A). Then A/fA is of finite
length and
length(A/fgA) = length(A/fA) 4 length(A/gA).

Proof. We first note that since A is of dimension 1, thus the prime ideals in A is either minimal or maximal.
Since f is not a zero-divisor, then f does not belong to any minimal ideal (result from commutative algebra).
Note that the prime ideals in A/ f A corresponds to the prime ideals in A containing f, therefore we conclude
that A/fA is of dimension 0. Hence we have v/0 = m, where m is the one and only one prime ideal in A/fA.
Since A is noetherian, so is A/fA, therefore there exists n € Z~( such that m™ = 0, which implies that
A/fA is artinian.

Suppose A/fA # 0 and contains no simple sub-A-modules. Then we can obtain a descending infinite
chain of proper submodules of A/fA, which contradict to A/fA being artinian. Hence let M7 be a simple
submodule of A/fA. If (A/fA)/My = 0, then length(A/fA) = 1. If not, then we are facing the case as
above but with (A/fA)/M; rather than A/fA. Inductively, we obtain M; C My C ... C M,, = A/fA with
M;+1/M; being simple. The index n is finite because A/ fA is noetherian. Hence length(A/fA) is finite.

Finally, we know that length(A/fA) and length(A/gA) are finite, and consider

-f

0——gA/fgA—— A/fgA AlgA 0,

)
A/fA
then the result follows. |

2.2.3. Let A be as in the lemma above, then for any f € R(A), length(A/fA) is finite integer. Therefore
the above lemma allows us to extend the map f +— length(A/fA) to a group homomorphism (Frac A)* —
Z. Moreover, if f € A*, then f is in the kernel of this homomorphism. Therefore we have the group
homomorphism

multy : (Frac A)*/A* — Z.
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Definition 2.2.ﬂDegrees of Cartier divisors). Let X be a noetherian scheme and D € Div(X). For any
x € X such that {x} is of codimension 1, the stalk of D at x belongs to (Kx / O% )z = (FracOx .)*/ Ox,
We then define

mult, (D) = multo, , (D), and [D]:= Z mult, (D)[z] € Z'(X).
z€X,dim Ox =1
Proposition 2.2.5. Let X be a noetherian scheme. Then
(1) The assignment D +— [D] establishes a group homomorphism

Div(X) — Z'(X),

which sends the effective Cartier divisors to positive cycles.

(2) Suppose X is now a normal noetherian scheme. Let f € HO(X,K%) = K(X)*, then the Weil divisor
(f) coincides with the image of the principal Cartier divisor dlv( ).

(3) Suppose X is again a normal noetherian scheme. Then Div(X) — ZY(X) is injective and induces
an injective homomorphism

CaCl(X) — CI(X).

Proof. (1) It suffices to show that for any D € Div(X), there are only finitely many z € X with
dimOx , = 1 such that mult,(D) # 0. Let U be an open subset in X such that U is everywhere
dens in X and D|y = Then for any = € X such that {z} is of codimension 1 and mult, (D) # 0
is a generic point of X — U. Therefore in any affine open subset of X, there are only finitely many
points z with {2} of codimension 1 such that mult,(D) # 0. Since X is noetherian, then X can be
covered by only finitely many affine opens which are from noetherian rings, hence the result follows.

(2) We have
= Zmultm(f)[x] and [div(f Zmult (div(f))[=],

where mult, (div(f)) = multo, , (div(f),) = multo, , (fw) Therefore it is sufficient to show

length(Ox 5 / fz Ox,z) = multy(f)

for f € Ox(X)NK(X)*. Let t € Ox 4 be an uniformiser at =, then f, € (¢)" for some n € Zxg
but f ¢ (t)"*!. Consider the following chain

Ox.= ) >oH)>)D>-d>Ft)D -,

where (t'71)/(¢") is a simple O x ,-module for each i. The image of this chain in O, /f; Ox ., then
yields the result.
(3) Let D = [{(Ui, fi)}] € Div(X), and we have [D|y,] = (fi) = Y scv, dim 0x..—1 multz(fi)[z] (thanks
to (2)). Then
D>0onU; & f; € Ox(U;) & mult,(f;) >0 for all z € U; & [D

DZOOHUi@fiEOX( z) @multw(fi)zoforalleUi<:>[

]20 and
vl =

Hence we are done.
O

IThis can always happen. Suppose D is locally given by f = a/b € Frac A where A is a noetherian ring. Let p € Spec A
such that ap = 0, then a € p. Since a € R(A) thus V(a) contains no generic points in Spec A, hence D(a) is dense in Spec A.
Apply the same argument b, hence we have D|p(qnp(s)) = 0 since a/b € Ox (D(a) N D(b))*.
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Corollary 2.2.6. Suppose X is a regular integral noetherian scheme (hence normal), then
Div(X) — Z'(X), CaCl(X) — CI(X)
are isomorphisms. (cf. [Liu02, Proposition 7.2.16])

3. THE RIEMANN-ROCH THEOREM

3.1. The Riemann-Roch theorem.

3.1.1. Let k be a field. By an affine variety over k, we mean an affine scheme associated to a finitely
generated algebra over k. Then an algebraic variety over k is then a k-scheme which admits a finite affine
open cover which are affine varieties over k. Similarly, a projective variety over k is a projective scheme
over k, and projective varieties are then algebraic varieties. We should furthermore note that the morphisms
of varieties are just the morphisms of k-schemes.

3.1.2. By a curve over a field k£, we mean an algebraic variety whose irreducible components are of dimension
1. In this subsection, we will fix a field k£ and a curve X over k. We should note that in this situation, the
Cartier divisors are isomorphic to the Weil divisors (thanks to Proposition [2.2.5)).

Definition 3.1.3. Let D € Div(X), then
degy D := Y multy(D)[k() : k]

where x Tuns through all the closed points of X. Then
degy, : Div(X) — Z
s then a group homomorphism.

3.1.4. Let Y be a scheme and D € Div,(Y). Recall that we have defined a sheaf associated to each Cartier
divisors in We then have Oy (—D) is a Oy-module lying in Oy, and is hence a sheaf of ideals.
Therefore we let (D, Op) to be the closed subscheme in Y associated to the sheaf of ideals Oy (—D).

Lemma 3.1.5. Let D € Divy(X) be a non-zero Cartier divisor, then

deg;, D = dimy, H°(D, Op).
Proof. Locally on D is cut out by an element which is not a unit as well as not a zero-divisor. Therefore
D = SpecR/fR with R/fR has one and only one prime ideal. Therefore, D consists of closed points in
X. Since X is a curve (a variety) over k, and the polynomial rings over k are UFDs, therefore D is finite,

and hence affine. Let A = H°(D,Op), then A = ®zecp Op({z}). Hence dimy A = 3, p dim, Ox ({z}).
Exercise 7.1.6(d) (see Section [4) yields that

mult, (D) = lengthy (Op,.) = [k(z) : k]~! dimy Op . .
Hence we obtain the lemma. O

Lemma 3.1.6. Let Y be a noetherian scheme of dimension 1 and D € Div(Y') be a non-zero Cartier divisor
on'Y. Then there exists two non-zero effective Cartier divisors E,F on'Y such that D = E — F.

Proof. Let D = [{(U;, f;)}] with f; = a;/b;. Consider V' (b;) C U;. Without loss of generality, we may assume
U; = Spec A, where A is noetherian. Since b; is not a unit and as well as not a zero-divisor, thus V' (b;) has
dimension 0 with Oy (,)(V (b;)) = A/b; A which is also noetherian. Apply [Liu02, Corollary 7.1.3 & Corollary
7.1.5]EL then we have V'(b;) is finite. Since b; is not a zero-divisor, V' (b;) does not contain generic point of Uy,
and V (b;) is closed in U;. Let D; be the Cartier divisor on X defined by the system {(X —V'(b;),1), (U;, b;)}-
Then F':= 3" D; is an effective Cartier divisor, and so is E := D + F. Adding a non-zero effective Cartier
divisor to F' and F if necessary, then we have E, F' be non-zero effective Cartier divisors satisfying what we
want. |
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Theorem 3.1.7 (Riemann). Now we suppose X is furthermore projective and D € Div(X). The Euler-
Poincaré characteristilof Ox (D) is defined to be x1,(Ox (D)) = dimy, H*(X, Ox(D))~dimy, H' (X, Ox(D)).
Similarly we define x,x(Ox) for Ox. Then

xk(Ox (D)) = degy, D + x1(Ox).

Proof. Thanks to Lemma we can write D = E — F', where E, F' are non-zero effective Cartier divisors.
Then we have an exact sequence of sheaves

0= Ox(—F)—>0Ox - 0Op —0.

Note that Ox (E) is flat over Ox, therefore the sequence stay exact after tensoring, that is, we have an exact
sequence

0— Ox(D) — Ox(E) Ox(E)|F — 0.
Since F' is a finite scheme, thus Ox (E)|p ~ Op. Therefore

0—— H°(X,0x(D)) —— H°(X,0x(E)) *)HO(X’OF)D

L) HY(X,0x(D)) — HYX,0x(E)) ———0

is exact. Then we have
0 = dim H°(X,Ox (D)) —dim H*(X, Ox(E)) +dim H*(X,Or) —dim H' (X, Ox (D)) +dim H' (X, Ox (E)).

Apply Lemma |3.1.5, we have x(Ox (D)) = x(Ox(E)) — degF. Let D = 0, then we have x(Ox(FE)) =
x(Ox) + deg E. Therefore

X(Ox (D)) = x(Ox) +deg E —deg F' = x(Ox) + deg D.

Definition 3.1.8. Let X be a projective curve over k. The arithmetic genus of X is defined to be
ga(X) =1- Xk(OX)-

Theorem 3.1.9 (Riemann-Roch). Let X be a projective curve over k. Thanks to Serre’s duality, we have
the dualising sheaf wx of X over k. Then for any divisor D € Div(X), we have

dimy, H*(X, Ox (D)) — dimy, H*(X,wx ® Ox(—D)) = deg, D + 1 — go(X).

3.1.10. Suppose k is an algebraically closed field and X is a smooth irreducible projective curve over k.
Then the smoothness of X yields that the tangent space of X at every point is of dimension 1, which allows
us to define a discrete valuation on the rational functions K (X). Moreover, the smoothness also yields that
[k(x) : k] = 1, hence the formula of the degree and the Riemann-Roch theorem then turn out to be the
version provided in Silverman’s book [Sil94] (as well as in AG1).

2Corollaury 7.1.3 gives that minimal prime ideals in a noetherian ring are associated prime ideals, while Corollary 7.1.5 tells
us that the associated prime ideals of a finitely generated module over a noetherian ring is finite.

3The Euler-Poincaré characteristic can be defined in a more general case:
Let Y be a projective variety over k and F be a coherent sheaf on Y. Then xi(F) := Zi>0(—1)idimk HY(X,F). Note that

HY(X,F) =0 for all i > dim X, thus the sum is in fact a finite sum.



8 JU-FENG WU

3.2. An application to elliptic curves. A classical application of the Riemann-Roch theorem is to show
that every elliptic curve (defined over an algebraically closed field) is defined by a Weierstral equation.
However, one may also want to consider the elliptic curves defined a ring (or even defined over a scheme),
and one may come up with the question: Are such ”abstract” elliptic curves also associated to Weierstrafl
equations?

Definition 3.2.1 (Elliptic curves). Let S be a scheme.

(1) By a curve C over S, we mean C' — S is a smooth morphism of relative dimension 1 (all the non-
empty fibres are of dimension 1), which is separated and of finite presentation, i.e., locally of finite
presentation, pullback of quasi-compact sets are quasi-compact, and the pull-back of quasi-compact
sets in C xg C under C — C xg C is quasi-compact.

(2) By an elliptic curve E over S, we mean E is a proper smooth curve over S with geometrically
connected fibres all of genus 1 and together with a fized section 0.

S

3.2.2. Let S be an arbitrary scheme. We first recall that in we can consider the effective Cartier
divisors as ”closed subsechemes with the ideal sheaves are locally O x-modules of rank 1”. Now, in order
to talk about Cartier divisors on a S-scheme X, we should define the effective Cartier divisors on it with
some "nice” structure over S, then using the strategy provided in Lemma [3.1.6] to define the group of Cartier
divisors.

Therefore, in [Ka&Mal, a (relative) effective Cartier divisor D C X is considered to be a closed subsecheme
of X which is flat over S and its ideal sheaf is an invertible O x-module. The flatness then yields the (relative)
Cartier divisors being stable under any base changing.

With this notion, locally on S, say S = Spec R, and cover X by open affines U; = Spec R;, then DNU; is
defined in U; by cutting out an element f; € R; such that f; is not a zero-divisor in R; and R;/f;R; is flat
over R. (Compare to[L.1.4])

Lemma 3.2.3. Let C be a smooth curve over a scheme S. Then any section s € C(S) defines an effective
Cartier divisor.

Lemma 3.2.4. Suppose C is a proper smooth curve over a scheme S, then every effective Cartier divisor
is proper over S.

Definition 3.2.5. Let C' be a smooth curve over a scheme S, and D € Divy(C), which is proper over S.
Then locally on S, say S = Spec R, the affine ring of D is a locally free R-module of finite rank. This rank
is then constant locally on S. Then we define deg D to be this rank. (Compare to Lemma )

Lemma 3.2.6. Let C be a smooth curve over a scheme S. Then for any s € C(S), the associated effective
Cartier divisor is proper over S and of degree 1. The converse also holds.

3.2.7. To apply the Riemann-Roch theorem, we first consider the classical case, where k is an algebraically
closed field and C to be a curve defined over k. Consider D to be the trivial divisor, then the Riemann-
Roch theorem gives that dimy H%(X,wx) = ¢a(X). Secondly, we consider the divisor associated to the
canonical sheaf wy, denote by K. Apply Riemann-Roch to D = K¢, then we have deg;, Ko = 2 — 2¢,(C).
Exercise 7.1.13 (see [4) then allows us to conclude dimy H°(X, D) = deg D + 1 — g,(C) for divisor D with
deg D > 2 —2g,(C).
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Now consider the case of an elliptic curve E, which we have g,(E) = 1. Therefore for any effective Cartier
divisor D, we have dimy H°(X, D) = deg D. Consider the divisor defined by the section 0, then we have

n=1= H(X,0x([0])) is free on 1,
n=2= H°(X,0x(2[0]))
n=3= H°(X,0x(3[0])) i
n=4= H°(X,0x(4[0])) is free on 1,2,y, 2,
( (3[01)) i
(6[0]))
f

is free on 1, x,

is free on 1, z, y,

n=>5= H(X,0x(3[0
n=6= H(X,0x(6[0

is free on 1,z,y, 2%, zy
is free on 1,z,y, 2%, zy, 2>, or 1, z,y, 22, zy, y>.

Therefore there must be a relation o
have the Weierstrafl equation

1,z,y,2%, 9% zy, 23,92, By a suitable changing of variables, we then

y2 + a1y +asy = v + asx + ag.

3.2.8. Now we turn our attention to the elliptic curves over an arbitrary scheme. The first glance from
Definition to Lemma [3.2.6] seems to make everything work fine if we consider the Riemann-Roch
theorem on the fibres. However, we don’t know if the dimensions of the cohomologies vary or not while the
fibres varying. That is, we some how need stronger conditions to make what we want really work.

Theorem 3.2.9 (Cohomology and Base Change). Let f : X — Y be a projective morphism of noetherian
schemes (will smooth proper flat morphisms work?), and let F be a coherent sheaf on X, flat over Y. Let
y €Y Then

(1) if the natural map
©'(y) : R fu(F) ®@oy k(y) = H'(Xy, Fy)

is surjective, then it is an isomorphism, and the same is true for all y' in a suitable neighbourhood
of y, where X, is the fibre of y, F, is the pull-back of F via X, — X, and k(y) is the constant sheaf
ony CY;

(2) if p'(y) is surjective, then the following conditions are equivalent:
(a) »'~Y(y) is also surjective;
(b) R!f.(F) is locally free in a neighbourhood of y.

(cf. [Har77, III Theorem 12.11])

3.2.10. Let’s just assume we are in the case that we can apply this Theorem, as well as the situation that
we have the isomorphism
HY (X, F)~ H" (X, F* @uwx,y)"

where wx/y is the canonical sheaf of X — Y, and F is a invertible sheaf over X flat over Y.

For elliptic curve f : E — S, we have H(C,, Fs) = 0 for all i > 1 and s € S. Therefore Theorem
tells us that

R%*f.(0Ox(D)) ® k(s) = 0,
for any relative effective Cartier divisor D. Since H'(E,, Ox(D);) = 0, we again have ¢! (s) being surjective,
and thus
R'f.(0Ox(D)) ® k(s) ~ H'(E,,0x(D)s) = 0.

Since R'f.(Ox (D)) is a push-forward of a coherent sheaf flat over S under a proper morphism [Har77, 1T
Caution 5.8.1], it coherent again. By Nakayama’s lemma, it is then locally free of rank 0 at s. Therefore
©%(s) is an isomorphism again. If we define the H" (X, F) = 0 for all n < 0 (we need to be careful at this),
then we have p~1(s) surjective again, which implies R°f.(Ox (D)) is locally free in a neighbourhood of s.
Therefore we can conclude that we can apply the Riemann-Roch Theorem in this manner, and obtain the
Weierstrafl equation locally as we expect.
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4. SELECTED EXERCISES FROM LIU’S BOOK

Exercise 5.1.12 (d). Let X be a scheme. Show that the invertible sheaves are actually ”invertible”. That
is, for any invertible sheaf £ on X, its inverse is given by £* := Home, (£, Ox).

Solution. Tt is sufficient to show that L ®p, L* — Ox is an isomorphism. This is an isomorphism if and
only if for all z € X, the induced homomorphism

EI ®(’)x)m Hom(’)x)m (El‘a OX,z) — OX,Q:

is an isomorphism. The definition of invertible sheaves then give the result immediately. O

Exercise 7.1.6. Let (A, m) be a noetherian local ring. Let M be a finitely generated A-module.

(1)
(2)
(3)

(4)

Show that M is simple if and only if M ~ A/m.
Show that M is of finite length if and only if there exists an r € Z~( such that m"M = 0.
Suppose M is of finite length. Show that

length 4 (M) 1= dim g/ (m’M/m" T M).
i>0
Suppose A is an algebra over a field k. Show that
length 4 (M) dimy A/m = dimy, M.

Solution. (1) M is simple if and only if M # 0 and the only submodules of M is O and M itself. Then

(2)

(4)

mM =0or M. If mM = M, then Nakayama’s lemma tells us that M = 0, which is a contradiction.
Therefore mM must be 0. Then M turns out to be a A/m-vector space with finite dimension.
However, since M is simple, then M ~ A/m. The converse is trivial.

Without loss of generality, we suppose M is not simple. Consider M/mM, which is a finite dimen-
sional A/m-vector space. Then A/mM is of finite length, which is equal to its dimension over A/m.
Therefore we can obtain

M=MyDM D ---DM,=mM
with M;_1/M; being simple for all i. Now apply this to all m/M/mI 1M, And obtain a chain
M=My>DM >--DM,=mM>--->m?*M > ---.

If M is of finite length, then the chain is finite, which implies our procedure ends at some point, and
hence m"M = 0. The converse holds by the same strategy.
Suppose M is of finite length, then

M>---D>mM>---om" 'M>--->m"M.

—_—

dim g/ M/mM dim gy m™ =1 M/m" M=0

Then the formula holds.
This follows directly from (3) and A/m is a field extension of k.

O

Exercise 7.1.13. Let £ be an invertible sheaf on an integral scheme X. Let s € HY(X,L®0, Kx) be a
non-zero rational section of L.

(1)

(2)
(3)

Let {U;} be an open cover of X such that L |y, is free and generated by an element e;. Show that
there exists f; € K(X)* such that sy, = e;f;. Show that {(U;, f;)} defines a Cartier divisor on X,
denoted by div(s). Show that Ox (div(s)) = L.

If £ = Ox, show that div(s) is the principal divisor associated to s.

Show that div(s) € Divy(X) if and only if s € H*(X, £).
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(4) Let D € Div(X). For any open U C X, show that
Ox(D)(U) ={f € Kx(U) : div(f) + D|v = 0} U{0}.

Solution. (1) We have (L®o, Kx)|lu, = ¢, Ox ®0, Kx = €; Kx. Since X is integral, Kx is the
constant sheaf K (X). Therefore there exists f; € K(X) such that sy, = e;f;. Since s is non-zero,
therefore f; € K(X)*.

To show {(U;, fi)} defines a Cartier divisor, it suffices to show that fi|y,, € fjlv,, Ox(U;)*. We
have

(eifi)|Uij =SU; = (ejfj)|Uij'
Then f; = (ej/ei)fj on Uj;. Since eiIUu Ox |Uij = ej‘Uij Ox |U'ij’ thus (ej/ei)‘Uij € OX(Uij)X'
Hence {(U;, f;)} indeed defines a Cartier divisor.
We have
Ox(div(s))|v, = f; ' Ox |u, = eisy, Ox |u,-
(2) If £L = Ox, then s € H°(X,Kx), that is sy, = f;. So nothing really happens here.
(3) Follow the same notation as above, we have

div(s) € Divy(X) & f; € Ox(U;) for alli & s € HY(X, L®p, Ox) = HY(X, L).

(4) Without loss of generality, we assume D is not the trivial divisor. Let £ = Ox (D), then Ox (D)|y, =
e; Ox |y, with D = [{(U;,e;')}. Let U be any open subset of X, then for any f € K5 (U)

Vi,f € Ox(UNU;) =e;Ox(UNU;) & Vi, f = e;g; for some g; € Ox (U NU;)
& Vi, g = fei_l
& div(f) + Dlvru, = {UNU;, fe; '} with fe; ' € Ox(UNU;)Vi
& div(f) 4+ D|y > 0.
]

Exercise 7.2.1. Let A be a normal noetherian ring and X = Spec A. Suppose Cl(X) = 0.

(1) Let p be a prime ideal of height 1 in A. Let f € Frac A such that V(p) = (f) as Weil divisor on X.
Show that p = fA.

(2) Let f € A be an irreducible element, i.e., if f = gh, then g or h is invertible. Let p be a prime ideal,
minimal among those containing fA. Show that p = fA.

(3) Show that A is a UFD.

(4) Show that if B is a UFD, then Cl(Y) = Pic(Y) = CaCl(Y) = 0, where Y = Spec B.

Solution. (1) We note that p is of height 1 means that dim A, = 1, which is as same as V(p) is of
codimension 1. Additionally, multy(f) = 1 when q = p, and equals 0 otherwise. Then the image
of f under A — A, is a uniformiser of pA, in A,, ie., fA, = pA, and is a unit in A, under
A — A, for other g. From here, we can conclude that f € p. Now consider the composition map
A— Ay — Ay /pA, = Ap/fA,. The kernel of this map then forces fA = p.

(2) We should suppose f is not a unit and not zero. Consider the Weil divisor

(f) = > multy (f)[q]-

q€Spec A,dim A;=1

For any q with multy(f) # 0, the image if f under A — A, is inside qA,, and hence f € q. Therefore
q € V(p), which implies p = q. In pA,, we have f € (z") but f & (7"*') where 7 is a uniformiser of
pA,, which can be chosen to be an element in p, and some r € Z~. Then there exists b € A —p,
¢ € A such that bf = cn”. Suppose ¢ is not a unit, then x|b since f is irreducible, which leads to a
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contradiction. Therefore » = 1 and ¢ is a unit. That is, fA, = pA,. Now apply (1), and we obtain
the result.

(3) For any g € A, we have (9) = 3" cspec A,dim 4,—1 Multp[p]. Apply (2), we know that every p can be
generated by one irreducible element, say f,. Hence we have

H f;ﬂultp (9)

mult, #0

has a same divisor with g, which implies that they are different up to multiplication by a unit since
K(X)* determines the cycles.
(4) Consider the polynomial ring k[X1, Xa, ...] with infinity variables over a field k. This ring is a UFD
but not noetherian, so how can we define the Weil divisor on it?
O

Exercise 7.2.3. Let A — B be a homomorphism of local rings. ep,4 := lengthp(B/m4B) is defined to be
the ramification index of B over A. Let f: X — Y be a morphism of noetherian schemes.
(1) Let € X such that {z} is of codimension 1 and y = f(x). Show that dim Oy, = 1 if f is finite
surjective, dim Oy,,, < 1if f is flat. Show that e/, :=eoy , 0y, is finite when Oy, = 1.
(2) Let D € Div(Y). Show that mult,(f*(D)) = e, mult,(D) or 0, according to whether y is codi-
mension 1 or 0. Deduce from this and show that

[f*D] = Z gy mult, (D)[x]

where the sum taken over the set of points « € X such that dim Ox , = 1 such that y = f(z) is also
of dim Oy, = 1.

Exercise 7.3.1. Let X be a projective curve over a field k and let k¥'/k be an extension. Let p : Xjv — X
be the projection morphism. Let D € Div(X).

(1) Show that D is principal if and only if H*(X,K*) N L(D) # 0, where L(D) = H°(X, Ox(D)).

(2) Suppose X is integral. Show that D is principal if and only if p*D is.

APPENDIX APPENDIX A SOME RECAPS

Here we provide some definitions which may be helpful for the readers who want to recollect some termi-
nologies which were used in this note. We also give a quick review of cohomology of sheaves and the duality
theorems.

A.1 A glossary of some definitions.

Definition A.1.1 (Noetherian schemes). Let X be a scheme.
(1) X is said to be noetherian if it is a finite union of affine open {U;} such that Ox (U;) is a noetherian
ring for every i.
(2) X is said to be locally noetherian if every point admits a noetherian open neighbourhood.

Definition A.1.2 (Reduced schemes). Let X be a scheme and x € X. We say X is reduced at = if Ox .
is reduced, i.e., it has no non-zero nilpotents. X is said to be reduced if it is reduced at everywhere.

Definition A.1.3 (Integral schemes). Let X be a scheme and x € X. We say X is integral at v if Ox ,
is an integral domain. X is then integral if it is integral at all its points.

Definition A.1.4 (Normal schemes). Let X be a scheme and x € X. We say X is normal at x (or z is
a normal point) if Ox , is normal, i.e., it is a integral domain and is integrally closed in FracOx 5. X is
further to be integral if it is irreducible and normal at all its points.
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Definition A.1.5 (Regular schemes). (1) By a regular local ring, we mean a noetherian local ring
with the property that the minimal number of the generators of its maximal ideal equals to its Krull
dimension.

(2) A regular scheme is then a scheme such that all its local rings are regular.

Definition A.1.6 (Proper schemes). Let f: X — Y be a morphism of schemes.

(1) f is locally of finite type if there exist a covering of Y consists of open affine subsets V; = Spec B;
such that for for each i, f=1(V;) can be covered by open affine subsets U;; = Spec A;; with each A;;
is a finitely generated B;-algebra. f is called to be of finite type is in addition each f~1(V;) can be
covered by a finite number of Uy;.

(2) Recall that f is closed if it maps any closed subset of X onto a closed subset of Y. We say f is
universally closed if for any based change, Y — Y, X xy Y’ =Y’ stays closed.
(3) f is called to be separated if the diagonal map A : X — X Xy X is a closed subspace of X xy X.

(4) f is said to be proper if it is of finite type, separated, and universally closed. In this case, we also
say X 1is proper over'Y .

Definition A.1.7 (Coherent sheaves). Let X be a scheme with structure sheaf Ox.

(1) An Ox-module F is said to be quasi-coherent if for all x € X, there is a open neighbourhood U of
x such that there exists an exact sequence

@aca Ox v = Ope Ox v = Flu — 0,

i.e., F has a local presentation at every x € X.
(2) F is furthermore said to be coherent if it is locally finitely presented.

A.2 Cohomology of sheaves.

Definition A.2.1 (Derived functors). Let X be a scheme. We consider the category of O x -modules, Mod(X).

(1) A sheaf of Ox-module T is called to be injective if the functor Hom(-,T) is exact.
(2) Let M € Mod(X). An injective resolution I® of M is a complex together with a morphism
e: M — I such that the sequence

0->MST0 57— ...

s exact.

(3) Let F : Mod(X) — Ab be a covariant left exact functor from the category of Ox-modules to the
category of abelian groups. We define the right derived functors R'F for each i € Zxq as

RIF(M) = H'(F(L*))
the i-th cohomology of the complex F(I*), where I® is an injective resolution of M.
Example (Godement resolution). Let X be a scheme, and any F € Mod(X ). We define the sheaf G by
Gr(U):= H Fz, YU C X open.
z€U

There then exists a natural morphism d=! : F — Gr. Now we let G° := Gz and define G' := G qerqi—1

where d"~! : G"=2 — G'~! is the natural morphism occurs by defining it inductively. Now taking the global
sections (we denote I'(X,-)), we have

0—-TI'(X,F)=TI(X,6% = T(X,G") — .
Then R'T(X,F) = H(T(X,G*)).
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Example (Cech complex). Let U = {Ux}reca be an open covering of the scheme X and F be a O x-module.
We consider the complex

cruF) = [ FiUs)

B0yemmrin €A
and
n+1
4 CMUTF) = O™ (i) (Z(—l)JSiO,...i;,...in+1)io<~-<in+1~
=0

We then obtained a chain complex
COU,F) = C* U, F) = C*(UF) — - .
Then the cohomolgy groups of this complex are
H"(U,F) = H"(C*(U,F))
are called the Cech cohomology.

A.2.2. We shall note that the Cech cohomolgy of a sheaf may not coincide with the cohomology defined
by the right derived functors. However, it is a fact that if X is a noetherian separated scheme, U is a finite
cover of affine open subsets, and F is quasi-coherent, then

H"(U,F) ~ R"T(X,F)
for all n € Zxy.

Theorem A.2.3 (Duality for Projective Schemes). Let X be a projective scheme of dimension n over a
field k. Then the dualising sheaf wx ), exists, where wx, is a coherent sheaf on X together with a trace
morphism tr : H™(X,wx ) — k such that for all coherent sheaf F on X, the natural pairing

Hom(]—',wx/k) X Hn(X,f) — H"(X,wx/k)
followed by tr gives an isomorphism
Hom(F,wx/x) — H™(X,F)*.

Theorem A.2.4 (Duality for Proper Smooth Schemes). Let X — S be a proper smooth morphism of relative
dimension v between locally noetherian schemes . Then the r-dualising sheaf wx /g exists. (cf. [Har66] and
[MeelS])
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