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In this note, most of the proofs of the statements will not be given, but the author will refer the proofs to Liu’s
book (or other references). Instead of proofs, the author wishes to provide enough examples to build up the feeling
for studying this topic.

1. Models of Algebraic Curves

We first recall some facts from Liu’s book:

Theorem 1.1 (Serre’s criterion). Let X be a locally noetherian scheme, which is connect. Then X is normal if and
only if X satisfies:

(1) X is regular at all of its points of codimension  1.
(2) For any x 2 X, depthOX,x � inf{2, dimOX,x}.

(cf. [Liu02, Theorem 8.2.23])

Corollary 1.2. Let X be a local complete intersection over a regular locally noetherian scheme. Then X is normal
if and only if X is normal at the points of codimension 1. (cf. [Liu02, Corollary 8.2.24])

Example 1.3. Let S = SpecR be an a�ne Dedekind scheme. Let F 2 R[x, y] � R, and B := R[x, y]/(F ). We
would like to know when SpecB will be normal. Since SpecB is defined by one equation, it is a locally complete
intersection, and hence we can apply the above Corollary and pay out attention to the points of codimension 1 in
SpecB. Such points are either closed points in the generic fibre or the generic points in the closed fibres. The
situations we are going to face down below are easy for closed points in the generic fibre. Therefore we would like to
focus on the generic points in the closed fibres.

Let s 2 S be a closed point and ⇠ 2 X = SpecB be the generic point of the closed fibre Xs. Let t be the
uniformiser of A = OS,s. Then ⇠ corresponds to the prime ideal generated by t and a polynomial G 2 A[x, y] such
that G 2 k(s)[x, y] is irreducible. Then one can write

F = GrH1 + tsH2 for H1, H2 2 A[x, y] and r, s 2 Z>0

with H1 62 Gk(s)[x, y] and H2 6= 0. Now we recall from Liu’s book:

Corollary 4.2.12. Let (A,M) be a regular noetherian local ring, and f 2 M � {0}. Then A/fA is regular if and
only if f 62 M2.
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Corollary 4.2.17. Let X be a noetherian scheme. If X is regular, then its connected components are normal.
These two results then yields us to conclude that X is normal at ⇠ if and only if either r = 1; or s = 1 and
H2 62 Gk(s)[x, y].

Now we can begin to discuss the models of algebraic curves.

Definition 1.4. Let S be a Dedekind scheme of dimension 1 with function field K, and C is a normal connected
projective curve over K. Then a model of C over S is a normal fibred surface C ! S together with an isomorphism
f : C⌘

⇠
�! C, where ⌘ is the generic point of S.

Example 1.5. Let q be a square-free integer and C be a projective curve over Q defined by

Xq + Y q + Zq = 0.

Let C be the closed subscheme in P
2

Z defined by the same equation. We claim that C is a model of C over Z.
To see this, it su�ces to show that C is normal. The Jacobian criterion tells us that C is regular outside the primes

that divide q, then Corollary 4.2.17 tells us it is normal. Therefore we only need to consider the primes p|q.
Let r := q/p, since q is square-free, thus p 6 |r. Then we have

Cp = ProjFp[X,Y, Z]/(Xr + Y r + Zr)p.

Then Cp is irreducible and (Cp)red = Vproj(Xr + Y r + Zr) in P
2

Fp
. Now consider the a�ne open subscheme U =

SpecZ[x, y]/(xq + yq + 1) of C and the prime ideal corresponds to Cp is generated by xr + yr + 1. One has

xq + yq + 1 = (xr + yr + 1)p � p((xr + yr)F (xr, yr) + (xr + yr + 1)F (xr + yr, 1)),

with F (xr, yr) modulo p is homogeneous and not equal to 0. Then we have F (xr, yr) is not divisible by xr + yr + 1.
Applying Example 1.3, Cp is then normal.

Proposition 1.6. Suppose S is further a�ne and C is a smooth projective curve of genus g over K. Then C admits
a relatively minimal regular model (resp. a regular model with normal crossing) over S. If moreover g � 1, then C
admits a unique minimal regular model Cmin and a unique minimal regular model with normal crossing. (cf. [Liu02,
Proposition 10.1.8])

Definition 1.7. Suppose C is a smooth projective curve over K with genus g � 2. Suppose C admits a minimal
regular model Cmin over S (as in the Proposition, S should be a�ne). Then we call the canonical model Ccan of the
minimal surface Cmin the canonical model of C over S.

Example 1.8. Let C be the projective curve defined by

X4 + Y 4 + Z4 = 0

over Q (The Fermat curve of degree 4 with genus 3 and Euler-Poincaré characteristc �2). We aim to see what Cmin

and Ccan look like in this example.
As same as the strategy shown in the previous Example, we consider C to be the closed subscheme in P

2

Z defined
by the same equation. Then the Jacobian criterion tells us that C is regular outside the prime 2. Consider the a�ne
chart U = Dproj(Z), then U is defined by

x4 + y4 + 1 = 0.

In order to make the computation much easier, we consider the change of variables: v = y + 1, u = x� v. Then our
equation becomes

u4 + 2((v2 � v + 1)2 + 3v2u2 + 2v3u+ 2vu3) = 0.

Applying Example 1.3, C is then normal and hence a model of C.
Denote F = u and G = (v2�v+1)2+3v2u2+2v3u+2vu3. We note that Corollary 4.2.12 yields that the singular

points in U correspond to the zeros of G. Therefore there is one and only one such point q which corresponds to the
ideal (2, u, v2�v+1). In particular, x = 0, y = z = 1 is not a singular point and hence by symmetry x = y = 1, z = 0
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is not a singular point. Hence q is the only singular point in U . Now consider the blowing-up ‹U ! U centre at q.
Then [Liu02, Lemma 8.1.4] gives that ‹U is a union of three a�ne pieces, given by the following table:

SpecA1 SpecA2 SpecA3

A1 is a sub-Z-algebra of K(C) A2 is a sub-Z-algebra of K(C) A3 is a sub-Z-algebra of K(C)
Z[u, v, u1, v1] with Z[u, v, t1, s1] with Z[u, v, w1, z1] with
2u1 = u, 2v1 = v2 � v + 1 ut1 = 2, us1 = v2 � v + 1 (v2 � v + 1)w1 = 2, (v2 � v + 1)z1 = u
After modulo 2 After modulo 2 After modulo 2ß

v2 � v + 1 = 0
v2
1
+ 3v2u2

1
+ v3u1 = 0

ß
v2 � v + 1 = 0
t2
1
(s2

1
+ 3v2 + v3t1) = 0

ß
(v2 � v + 1)w1 = 0
(v2 � v + 1)z4

1
+ w1(1 + v2z2

1
+ w1v3z1) = 0

A smooth conic over F4

An a�ne line over F4

of multiplicity 2
A smooth conic over F4

An a�ne line over F2

of multiplicity 4
An a�ne line over F4

of multiplicity 2
A smooth conic over F4

This process gives us an explicit description of the blowing-up eC centre at q. The fibre of eC over 2 then has three
irreducible �0 ' P

2

F2
of multiplicity 4; �1 a smooth conic over F4; �2 ' P

2

F4
of multiplicity 2. Computing the

intersection numbers and using the formula given in [Liu02, Proposition 9.1.21], one has

�0 · �2 = 2, �0 · �1 = 0, �1 · �2 = 4, �2

0
= �1, �2

1
= �8, �2

2
= �6.

Castelnuovo’s criterion yields that �0 is an exceptional divisor, and after the contraction along �0, �0
2
is a singular

conic since it is birational to �2 and has rational points over F2 (by [Liu02, Proposition 9.3.16]). However, Castel-
nuovo’s criterion gives that there is no exceptional component and hence we get the minimal regular model Cmin.
Moreover, the adjunction formula gives KCmin /Z ·�0

2
= 0, thus the fibre of Ccan over 2 consists of only one irreducible

component �0
1
.

Figure 1. The fibres over 2 of models of the curve X4 + Y 4 + Z4 over Q
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Remark. As we have seen in our equation in the above Example, one would like to make the étale base change
Z[1/3] ,! Z[1/3][X]/(X2

� X + 1). Then for the fibre above the prime number 2, one then has the base change
F2 ,! F4 ' F2[X]/(X2

� X + 1). If one does so, then we will see two copies of the blowing-up, which are Galois
conjugate to each other.

Figure 2. The fibres over 2 of models of the curve X4 + Y 4 + Z4 over Q after étale base change

2. Reduction and Reduction Map

Definition 2.1. Let S be a Dedekind scheme of dimension 1 with function field K. Let C be a normal connected
projective curve over K.

(1) Let C be a model of C over S and s 2 S be a closed point. Then we call the fibre Cs a reduction of C at s.
(2) We say C has a good reduction at s if it admits a smooth model over SpecOS,s. Otherwise, we say C has

a bad reduction at s.

Example 2.2. Let C be the projective curve over Q given by X3 + Y 3 + p3Z3 with p being a prime not equal to
3. Then let C be the projective scheme over Z by taking the same equation. Then Cp is a singular curve over Fp.
However, by letting W = pZ, we also obtain a model of C over Z, which is smooth over Fp. Hence C has a good
reduction at p.

This example shows that one cannot directly determine a curve having bad reduction at a point by looking at any
model. The following Proposition, however, gives a su�cient and necessary condition to determine whether a curve
has good reduction over the base Dedekind scheme or not.

Proposition 2.3. Let S be a Dedekind scheme of dimension 1 and C be a smooth projective curve over the function
field of S with genus g � 1.

(1) C has good reductions at almost all closed points in S, i.e., there exists at most finitely many closed points
s 2 S such that C has a bad reduction at s.

(2) Suppose S is a�ne. Then C has good reduction over S (i.e., has a good reduction at every closed point in
S) if and only if the minimal regular model Cmin of C over S is smooth. Moreover, this implies that Cmin is
the unique smooth model of C over S.

(3) Let S0 be a Dedekind scheme of dimension 1 which is étale over S. Let s0 2 S0 and s be its image in S .Then
CK0 has a good reduction at s0 if and only if C has a good reduction at s, where K 0 is the function field of
S0.

Example 2.4. Let C be the projective curve over Q defined by the equation

X4 + Y 4 + Z4 = 0.
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Consider S = SpecZ[1/2], then define C to be the subscheme of P2

Z[
1
2 ]

defined by the same equation. Then C is

smooth over S, and hence has good reduction over S by applying the above Proposition. Since S ,! SpecZ, thus
we may also consider C as a scheme over Z. This then shows that C has good reductions at primes outside 2.
Additionally, as we mentioned in the Example 1.8, Cmin consists of a singular conic, hence is not smooth, hence it
has a bad reduction at 2.

Definition 2.5. Let S be a Dedekind scheme of dimension 1 and K be its function field. Let C be a smooth projective
curve over K. Then we say C has potential good reduction at s 2 S if there exists a dominate morphism of
Dedekind schemes S0

! S and s is the image of some s0 2 S0 such that CK(S0) has a good reduction at s0.

Example 2.6. Consider C be the projective curve given by y2 = x4
� 1 over Q2. We claim that C has potential

good reduction over Z2. To see this, we make the following change of variables:

Set x = 1 + x�1

1
, y = y1x

�2

1
) y2

1
= 4x3

1
+ 6x2

1
+ 4x1 + 1

Set x1 = v + ↵, y1 = 2z + (�v + �), where we wish to choose ↵,�, � 2 Q2 such that z2 + (�v + �)z = v3.

For such choice of ↵,�, �, one consider the system of equations:
8
<

:

4(1 + 4↵+ 6↵2 + 4↵3)(6 + 12↵) = (4 + 12↵+ 12↵2)2

�2 = 1 + 4↵+ 6↵2 + 4↵3

�2 = 6 + 12↵
.

The solution exists with

|↵| = |2|�1/4, |�| = |2|1/2, |� � 1| = |2|1/4.

Now let L = Q2(↵,�, �) and let W 0 = SpecOL[v, z]/(z2 + (�v + �)z � v3), then W 0 is smooth over OL and its
special fibre is an open subscheme of an elliptic curve. Hence we conclude that CL has good reduction.

Definition 2.7. (1) A noetherian local ring A is called Henselian if and only if every (module) finite A-algebra
is a direct sum of local A-algebras.

(2) Let S be the spectrum of a Henselian discrete valuation ring (e.g. complete). Let X ! S be a surjective
proper morphism with generic fibre X. Let X0 be the set of closed points of X and s the closed point in S.
We define the reduction map as

red : X0
! X , x 7! • 2 {x} \ X s .

We note that the closure is taken in X and the reduction map depends on the choice of X .

Remark. Here we should note that the map is well-defined. To see this, we first note that {x} is closed and X ! S
is proper, thus the image of {x} is closed, and hence is S. Hence {x} does intersect with Xs. Now let S = SpecR
and we have the following diagram locally:

B BK

A AK

I IK

R K

,

which is Cartesian everywhere. Note that BK is a K vector space, and hence is flat over K. Since x is a closed point
in X, thus IK is a maximal ideal, and hence BK is a field. Since B ,! BK , therefore it is reduced. Therefore we can
conclude that {x} is flat over S by [Liu02, Proposition 4.3.9]. Then the dimension of each fibre will be equal, hence
{x} \ X s is finite, and hence {x} ! S is quasi-finite. Since {x} ! S is moreover proper, thus {x} is finite over S.
Now since R is Henselian, therefore A in our diagram is then a finite direct sum of local R-algebras. Since {x} is
irreducible, therefore there should be only one piece, and implies {x} is a local scheme.
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Lemma 2.8. Let OK be a Henselian discrete valuation ring, x be a closed point of the generic fibre of X =
ProjOK [T0, ..., Tn] with homogeneous coordinates (x0, ..., xn) 2 O

n+1

K
with at least one xi 2 O

⇥

K
. Then redX (x) =

(fx0, ...,fxn).

Proof. 1 Without lose of generality, one may assume i = 0 and x0 = 1. Then on x 2 Dproj(T0), and is defined
by the ideal (Ti/T0 � xi)ni=1

in K[T1/T0, ..., Tn/T0]. Then x is defined by the same ideal in OK [T1/T0, ..., Tn/T0].
Since OK [T1/T0, ..., Tn/T0]/(Ti/T0 � xi)ni=1

' OK , therefore (Ti/T0 � xi)ni=1
is a prime ideal. Therefore we have

redX (x) = (fx1, ...,fxn) in A
n
O

K
. Now we need to show that closure of x in Dproj(T0) coincides with the closure of x in

X . However, Dproj(T0) ,! X is an open immersion, therefore the closure of x in Dproj(T0) coincides with the closure
of x in X . ⇤

Corollary 2.9. Let C be a normal projective curve over the field of fraction of a Henselian discrete valuation ring
OK , and C ⇢ ProjOK [T0, ..., Tn] be a model of C. Let x = (x0, ..., xn) be a closed point of C with homogeneous
coordinated xi 2 OK of which at least one belongs to O

⇥

K
. Then red(x) = (fx0, ...,fxn).

3. Graphs

Definition 3.1. Let C > 0 be a vertical divisor contained in a closed fibre Xs of a regular fibred surface X ! S.
Let �1, ...,�n be the irreducible components of C. The dual graph G associated to C is given by:

• The vertices of G are the irreducible components �1, ...,�n.
• Between two di↵erent vertices vi, vj (associated to �i,�j respectively), there are �i · �j edges, where �i · �j

is the intersection number of �i and �j.

Example 3.2. The following figure shows that the two curves on the left admit the same dual graph (on the right).

Figure 3. Two curves having the same dual graph

Lemma 3.3. Let (A,M) be a regular local ring of dimension 2 and let f1, ..., fn 2 M be pairwise relatively prime
irreducible elements. Then the natural morphism

' : A/(f1 · · · fn) ! �
n
i=1

A/(fi)

is injective and its cokernel is of length
P

i<j lengthAA/(fi, fj).

Proposition 3.4. Let C be as in the definition and C  Xs. Let G be its dual graph. Then

(1) C is connected if and only if G is connected.

1
This proof is not as same as in Liu’s book (cf. [Liu02, Lemma 10.1.32]) since the author could not understand Liu’s proof. So any

explanation to the author to Liu’s proof is welcomed.
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(2) The Betti number of G is defined by

�(G) := #{edges of G}�#{vertices of G}+ 1.

Suppose C is reduced with irreducible components �1, ...,�n, then

�(G) = ga(C)�
nX

i=1

ga(�i),

where ga denote for the arithmetic genus.

Proof. The first part is obvious. Now since C is an e↵ective Cartier divisor in Xs, thus C can be viewed as a curve
over k(s). Therefore we have the exact sequence

0 ! OXs /OXs(�C) ! �
n
i=1

OXs /OXs(��i).

Denote F to be the sheaf of cokernel of this sequence, then Fx is non-zero if and only if x 2 �i \�j for some distinct
i, j. Then (by definition, cf. [Liu02, Exercise 2.2.9]) is a skyscraper sheaf with support in the intersection points of
C. The above lemma then implies dimk(s) F(Xs) = lengthk(s)F(Xs) =

P
i<j �i · �j . Then we have the following

relation of the Euler-Poicaré characteristics
nX

i=1

�k(s)(O�i) = �k(s)(OC) + �k(s)(F) = �k(s)(OC) +
X

i<j

�i · �j .

The last equation follows from that F has finite support, so its i-th cohomology is zero for all i � 1..
On the other hand, by the definition of G, one has

�(G) =
X

i<j

�i · �j � n+ 1.

Since the arithmetic genus ga is defined to be 1 minus the Euler-Poicaré characteristic, therefore

X

i<j

�i · �j � n+ 1 =
nX

i=1

�k(s)(O�i)� n+ �k(s)(OC) + 1 = ga(C)�
nX

i=1

ga(�i).

⇤

Proposition 3.5. Let C > 0 be a reduced connected vertical divisor on X. Suppose the irreducible components � of
C all verify KX/S · � = 0, and that C does not contain all of the irreducible components of Xs. Let G be the dual
graph of C, then G is of one of the following forms (the indices denote the number of the vertices):

Figure 4. Classification of dual graphs
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4. Weierstraß models of elliptic curves

Definition 4.1. Let S be a scheme.

(1) By a curve C over S, we mean C ! S is a smooth morphism of relative dimension 1 (all the non-empty
fibres are of dimension 1), which is separated and of finite presentation, i.e., locally of finite presentation,
pullback of quasi-compact sets are quasi-compact, and the pull-back of quasi-compact sets in C ⇥S C under
C ! C ⇥S C is quasi-compact.

(2) By an elliptic curve E over S, we mean E is a proper smooth curve over S with geometrically connected
fibres all of genus 1 and together with a fixed section 0.

E

⇡

✏✏

S

0

@@

In order to be coherent to our notation above, we will now assume S to be an a�ne Dedekind scheme of dimension
1 and K be its field of fraction. Now for any elliptic curve E over K, one can apply the Riemann-Roch theorem to
obtain a Weierstraß equation to E. We would like to generalise this notion to obtain a Weierstraß model for E over
S.

Lemma 4.2. Let ⇡ : E ! S be a fibred surface such that E⌘ = E. Let o be the point given by 0 : SpecK ! E and

O := {o} be its closure in E. Then

(1) For any n � 2, OE(nO) is generated by its global sections.
(2) The sheaf L := R1⇡⇤ OE is invertible on S. Suppose it is free, then for n � 2, there exists an exact sequence

0 ! ⇡⇤ OE((n� 1)O) ! ⇡⇤ OE(nO) ! L
⌦n

! 0,

⇡⇤ OE(nO) is free of rank n, and the canonical homomorphism

�2a+3bn(⇡⇤ OE(2O))⌦a
⌦ (⇡⇤ OE(3O)⌦b) ! ⇡⇤ OE(nO)

is surjective.

(cf. [Liu02, Lemma 9.4.29], see also [Ka&Ma, Theorem 2.1.2])

Proposition 4.3. Assumption as above. Let S = SpecA. Assume further that Es is integral for all s 2 S. Then

(1) E ! S is local complete intersection and ⇡⇤!E/S is an invertible sheaf.
(2) Suppose ⇡⇤!E/S is free over S. Then E ! S can be described by a integral Weierstraß equation. We then

call E the Weierstraß model of E.

(cf. [Liu02, Proposition 9.4.30], see also [Ka&Ma, (2.2)])

Idea of proof. We first assume the sheaf L in the previous Lemma is free on S and let L(nO) = H0(E ,OE(nO)).
Then the Lemma implies there exists x 2 L(2O) and y 2 L(3O) such that {1, x} is a basis of L(2O) over A and
{1, x, y} is a basis of L(3O) over A. Moreover, the images of x3 and y3 in L(6O)/L(5O) ' H1(E ,OE)⌦6 are both
bases, therefore there exists ai 2 A such that

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

This implies that the morphism ' : E ! P
2

A associated to the basis {1, x, y} of L(3O) sends E � {O} into E
0 defined

by the equation
Y 2Z + a1XY Z + a3Z

3Y = X3 + a2X
2Z + a4XZ2 + a6Z

3.

Now it remains to verify that ' is an isomorphism.
For the general case L is locally free. The above shows that E ! S is a local complete intersection. Then by

duality, one has ⇡⇤!E/S ' (R1⇡⇤ OE)_ = L
_, ans thus ⇡⇤!E/S is invertible, and if it is free, L is also free. ⇤

Proposition 4.4. Let ⇡ : E ! S be the Weierstraß model as above. Then it is a normal fibred surface and

(1) The morphism ⇡ is smooth at the points of O.
(2) For any s 2 S, Es is geometrically integral.
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(3) The morphism ⇡ is local complete intersection. Suppose the Weierstraß equation is given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let

! :=
dx

2y + a1x+ a3
2 ⌦1

K(E)/K .

Then !E/S = !OE . In particular, ⇡⇤!E/S = !OS is free on S.

(cf. [Liu02, Proposition 9.4.26], see also [Ka&Ma, (2.2)])

Remark. Now we have E ! S a fibred surface with the generic fibre isomorphic to E. Then there exists a relative
minimal model of E by [Liu02, Proposition 9.3.19]. Since the genus of E is 1, thus [Liu02, Corollary 9.3.24] yields
that such relative minimal model is minimal.

Theorem 4.5. With the same notation as above. Let � denote the discriminant of the Weierstraß equation of E.
We suppose that E is the Weierstraß model amoung all such models of E such that the valuation of its discriminant
at each point is the smallest among all Weierstraß models of E. Let ⇢ : Emin ! S be the minimal regular model.
Then

⌅ := {vertical prime divisors � of Emin : � \O = ;}

is finite and there exists a contraction morphism f : Emin ! E of the divisors belong to ⌅. Moreover, Emin ! S is
locally complete intersection and one has f⇤!Emin/S = !E/S and !Emin/S = f⇤!E/S. (cf. [Liu02, Theorem 9.4.35])

Remark. Recall that the canonical model are defined for fibred surfaces which has generic fibres with genus � 2.
The above Theorem however tells us that the minimal Weierstraß model plays a role of canonical model in the case
of genus-one curves, but instead of contracting �2-curves, we contract the prime divisors that do not intersect with
O.
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