
1 Plan

We define local complete intersections, which will form a nice class of morphisms that we
will find to be a suitable class to look at. To define it, we need the notion of a regular immersion,
which may be thought of as being the closed embeddings obtained from iteratively cutting out
codimension-one subspaces. We then take a detour to linear algebra and define the quasi-
coherent analogue of the linear-algebraic exterior algebra of a module. We use this notion to
spice up our differentials from degree 1 to degree k, as well as to define the canonical sheaf, a
fundamentally important line bundle obtained from the cotangent bundle.

With these definitions in place, we may state the Grothendieck Duality Theorem, a general-
ization of the classical Serre Duality, which essentially says that for local complete intersections
the canonical sheaf is the unique sheaf inducing a certain perfect pairing on cohomology. We
will not aim to prove this result; instead, it’s perhaps more useful to take a look at a histori-
cal motivation behind this result, which is mostly absent in Liu’s book. To do this, we revisit
the old Serre Duality from the perspective of derived categories, where the generalization to
Grothendieck Duality becomes more transparent — in a relative sense at least.

General remark. For simplicity, all our schemes are assumed to be locally Noetherian!

2 Regular Immersions

Definition 6.3.1. Let A be a ring. A sequence a1, . . . , an of elements of A is called a
regregregregregregregregregregregular sequencequencequencequencequencequencequencequencequencequencequence if a1 is not a zero-divisor of A, and if for all i > 1, ai is not a zero-divisor of
A/(a1, . . . , ai−1). If A is a Noetherian local ring (which is the only case we will care about) then
regularity is independent of the order — see Exercise 6.3.1.

Definition 6.3.4. Now let π : X ↪→ Y be an immersion, and let x be a point in X.
We say that π is a regregregregregregregregregregregular immersion of codimension n at x if the kernel of the natural map
OY,π(x) → OX,x is generated by a regular sequence of n elements in OY,π(x). We say π is a regregregregregregregregregregregular
immersion if the property holds at every point of X.

Remark. Liu defines an immersion to be an open immersion followed by a closed immersion,
and not the other way around, though if your world is locally Noetherian, the two notions are
equivalent.

Remark. The geometric way to think about this notion is as follows. If X ↪→ Y is a closed
immersion, then the associated ideal sheaf may be thought of as being the functions which cut
out X from the bigger scheme Y . If the ideal sheaf is locally generated by a non-zero-divisor, we
call the closed subscheme an effective Cartier divisor, which we’ll see again in the next lecture.
Intuitively, you should think of them as being the codimension-one subspaces in the way that
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your intuition actually thinks of ‘codimension-one stuff’. (So for instance, the closed subscheme
k[x, y]/(x) cut out from k[x, y]/(x2) is formally of codimension one, but intuitively you don’t lose
a dimension, so it’s not a Cartier divisor.) A regular subscheme X ↪→ Y can then be thought
of as being obtained from Y by taking an effective Cartier divisor on Y , then taking another
effective Cartier divisor on that, and so on.

Example. Let’s connect the algebraic definition with the geometric one. Say we have a
closed immersion SpecA/I ↪→ SpecA. If the closed immersion is regular, then I is obtained
from a regular sequence in A, and conversely, if I is obtained from such a regular sequence, then
the immersion is regular.

Proof: Suppose I is obtained from a regular sequence. Now pick a point [p] in SpecA/I

with image [q] in SpecA. The natural map Aq → (A/I)p = Aq/Iq should be obtained from a
regular sequence. This should be clear; Iq is obtained the same regular sequence that I is, and
this sequence is stll regular in Aq.

Conversely, suppose that SpecA/I ↪→ SpecA is a regular immersion. Then the map Aq →
Aq/Iq is obtained from a regular sequence in Aq, say (a1/d1, . . . , an/dn), with di /∈ q. Clearly
the regular sequence (a1, . . . , an) still generates Iq, and we easily see that, as elements of A, they
generate I as well.

Example. Let A be a Noetherian local ring with maximal ideal m and residue field k.
Recall that by Krull’s Hauptidealsatz, dimA ≤ dimk m/m

2, and that we call A a regregregregregregregregregregregular ringringringringringringringringringringring
if equality holds. A regregregregregregregregregregregular scheme is then a (locally Noetherian) scheme whose local rings are
regular. This notion is not unrelated to the one we introduced above. We claim that a closed
immersion of regular schemes is a regular immersion.

Proof: The condition we want to prove is local so we may reduce to the case where we have
an immersion of the form SpecA/I ↪→ SpecA, and where both SpecA and SpecA/I are regular
schemes. Now take a point [p] in SpecA/I and its image [q] in SpecA. Our goal is basically to
show that the natural map Aq → (A/I)p = Aq/Iq is obtained from a regular sequence. Since
our schemes are regular, we may assume that Aq and Aq/Iq are regular rings.

Denote by m the maximal ideal of Aq. Then m/m2 is a k-vector space (k being the residue
field of Aq); give it a basis a1, . . . , an. It’s easy to see that Iq/(Iq ∩ m2) is a k-vector subspace
of m/m2, so we may assume it has a subbasis a1, . . . , ar with r ≤ n. A reasonable guess would
then be to say that Aq/Iq is obtained as Aq/(a1, . . . , ar), which would prove our result. We
have a natural quotient map A/(a1, . . . , ar) → A/I which we claim to be injective. The proof
of this claim uses regularity of Aq and Aq/Iq. By regularity, Aq has Krull dimension n, and
so Aq/(a1, . . . , ar) has dimension n − r; on the other hand, Aq/Iq has dimension n − r as well,
because its residue field has basis ar+1, . . . , an. Since regular local rings are integral domains
(Proposition 4.2.11), it now suffices to show the following:
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Lemma. A surjective ring homomorphism between two integral domains of the same Krull
dimension is necessarily injective as well.

Proof of Lemma: A surjective ring homomorphism f : B → A is precisely a closed immersion
Spec f : SpecA ↪→ SpecB. The scheme-theoretic image of this map is V (Ker f). On the other
hand, since the dimensions coincide, the scheme-theoretic image of Spec f must be all of SpecB.
Hence V (Ker f) = SpecB and so Ker f = (0) = {0}.

Example. Take the closed subscheme of C[x, y]/(xy) cut out by only the y-axis. Both
intuitively and algebraically this does not give a regular immersion: on the one hand the y-axis
is not intuitively codimension-one in the union of the x- and the y-axis; on the other hand, x is
clearly a zero-divisor of C[x, y]/(xy).

Example. Here’s a similar but more complicated example: take the closed subscheme of
SpecC[x, y, z] cut out by the equations xy, xz, and yz (i.e., the three coordinate axes of your
original 3-space). Intuition tells us that this does not give a regular immersion: imagine cutting
out xy from SpecC[x, y, z], and then cutting out say yz from that. Clearly you don’t lose a
dimension everywhere! And indeed, when we look at it algebraically we run into problems,
because (yz) is a zero-divisor in C[x, y, z]/(xy). (Rigorously proving this subscheme is not
regular would be more difficult, because you’d have to verify that there are no other regular
sequence from which the three coordinate axes can be obtained. This example is still sufficiently
simple that it can be proved from the definitions without too much effort, but it certainly calls
for a different characterization of regular immersions that is more useful for proving something
is not regular.)

Definition 6.3.7. Let π : X ↪→ Y be an immersion. Decompose it into a closed immersion
i : X → V followed by an open immersion j : V → Y . Denote by I the ideal sheaf associated
with the closed immersion. The conormal sheaf CX/Y of X in Y is then defined to be i∗(I /I 2);
its dual C∨X/Y = Hom(CX/Y ,OX) is the normal sheaf. Of course, we’d like this definition to
be independent of the choice of decomposition of π. Take another decomposition π = j′ ◦ i′,
with i′ : X → V ′ a closed immersion and j′ : V ′ → Y an open immersion. Both V and V ′ are
basically just open subsets of Y . Clearly X would still be mapped into V ∩V ′ so we may assume
that V ⊆ V ′ and that i and i′ are practically the same map. In this situation equality of the
two sheaves is locally trivial to prove.

Remark. How should we think of these objects? We should think of them as being
analogous to the (co-)normal bundle you’d define in differential geometry. To motivate this
analogy, consider the following situation:

X

i

Y
Z
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Imagine a point x in X. Its tangent space in X injects into its tangent space in Y ; the cokernel
of this injection is precisely the normal bundle at x in Y . Intuitively, we thus have an exact
sequence of the form

0 TX i∗TY NX/Y 0.

Now dualize this sequence and fill in CX/Y = i∗(I /I 2) to get

0 i∗(I /I 2) i∗Ω1
Y/Z Ω1

X/Z 0. (1)

This is precisely the long exact sequence we obtained in the previous lecture, except now we have
a ‘0 →’ term on the left, which has to do with our intuition being smooth — see Proposition
6.3.13, which we’ll treat in a moment. (N.B. This motivation is from Vakil’s Foundations of
Algebraic Geometry, paragraph 21.2.13.)

With this notion now more-or-less justified, we now verify that in the regular world, the
conormal bundle is as nice as we’d expect it to be. This fact will be important in our construction
of the so-called canonical sheaf.

Corollary 6.3.8. Let π : X → Y be a regular immersion of codimension n between (locally
Noetherian) schemes. Then CX/Y is a locally free sheaf on X of rank n.

Proof: The book refers to the following algebraic lemma.

Lemma 6.3.6. Let A be a ring, and I an ideal generated by a regular sequence (a1, . . . , an).
The image of the ai in I/I2 form a basis of I/I2 over A/I. In particular, I/I2 is a free A/I-
module of rank n.

Its proof is not particularly interesting, so we’ll omit it. Instead, let’s look at why we can
reduce to this lemma. Decompose π into a closed immersion i : X → V followed by an open
immersion V → Y . The map i is again regular by Exercise 6.3.3. Pick an affine open SpecA

of V , and write its pre-image in X as SpecA/I. Our goal is basically to show that I/I2 is
a free A/I-module. We proved somewhere above that regularity of an immersion of the form
SpecA/I → SpecA implies that I is obtained from a regular sequence. Thus the hypothesis of
the lemma is satisfied and the result follows.

Proposition 6.3.11 (d). The property of being a regular immersion is stable under flat
base change. That is, if f : X → Y be a regular immersion of codimension n, and Y ′ → Y is a
flat morphism, then the map X ×Y Y ′ → Y ′ is also a regular immersion of codimension n.
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Proof: We may reduce to the local situation, and as such we may consider the situation
where we have a Cartesian diagram

SpecB/I SpecB

SpecA/I SpecA,

ϕ

with SpecB → SpecA a flat morphism. Let’s say I is obtained from A by a regular sequence
(a1, . . . , an). Then its image in B is obtained from B by a sequence

(
ϕ#(a1), . . . , ϕ

#(an)
)
,

with ϕ# the (flat) ring homomorphism corresponding to the morphism ϕ in the diagram above.
It remains to be shown that this sequence is flat. This is Lemma 6.3.10 in the book, which
relies on induction on n. Let me explain why the induction is justified. The inductive basis
amounts to showing that, given a flat ring map f : A → B, and a not a zero-divisor in A,
f(a) is not a zero-divisor in B. Suppose that

(
ϕ#(a1), . . . , ϕ

#(ak)
)
is known to be a regular

sequence for some k. The next step would be to show that ϕ#(ak+1) is not a zero-divisor
in B/

(
ϕ#(a1), . . . , ϕ

#(ak)
)
. Now ϕ#(ak+1) is also the image of ak+1 + (a1, . . . , ak) under the

induced map A/(a1, . . . , ak)→ B/
(
ϕ#(a1), . . . , ϕ

#(ak)
)
. Thus if we show that the induced map

is flat, this is the exact same situation as that in the inductive basis.

Claim. If f : A → B is a flat ring map, and I is an ideal of A, then the induced map
A/I → B/(f(I)) is flat as well.

Proof of claim: By Theorem 1.2.4, for every ideal J of A, the map J ⊗A B → JB is an
isomorphism. We wish to show something similar for the induced map. Pick an ideal J ′ of A/I,
and write it as J/I for some ideal J of A. Note that

J ′ ⊗A/I B/IB ∼= J/I ⊗A/I B/IB
∼= J ⊗A/I A/I ⊗A B
∼= J/I ⊗A B
∼= (J/I)B ∼= J ′(B/IB),

as desired.

Remark. Exercise 6.3.2 provides us with a partial converse, provided Y ′ → Y is not just flat
but faithfully flat. You shouldn’t expect this converse to hold when dropping faithfulness. Any
non-trivial localization morphism R → S−1R is flat but not faithfully flat, so pick a morphism
X → SpecR which looks like a regular immersion near the localization SpecS−1R, but not
globally, and you have your counterexample.

Proposition 6.3.11 (a). If f : X → Y and g : Y → Z are regular immersions, then so is
g ◦ f , and we have a canonical exact sequence

0 f∗CY/Z CX/Z CX/Y 0.α
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Proof sketch: We prove the first part in Exercise 6.3.3. As for the exact sequence, we need
only show left-exactness, because the rest of the sequence exists by construction of conormal
sheaves. The proof in the book uses the fact that sheaves are locally free and coherent, and
refers to several statements in previous chapters that we did not treat.

Finally, we mention without proof the following proposition. It generalizes the earlier exam-
ple where we showed that closed immersions of regular schemes are regular, and it also formalizes
Equation (1) which we based on intuition alone.

Proposition 6.3.13. Let X and Y be smooth schemes over a scheme S. Any immersion
π : X → Y of S-schemes is a regular immersion, and we have a canonical exact sequence

0 CX/Y π∗Ω1
Y/S Ω1

X/S 0.

3 Local Complete Intersections

We have seen several beautiful characterizations of smooth morphisms; perhaps regrettably,
smoothness is a rather exceptional property, and most morphisms encountered in the wild will
not be this nice. It is therefore desirable to study a more general class of morphisms than that
of the smooth morphisms. The class of morphisms that we will consider is that of the local
complete intersection morphisms, which will over time prove itself to be a suitable class to look
at, in part because it ends up in the statement of the main theorem that we are working towards.

Definition 6.3.17. Let f : X → Y be a finite-type morphism, and let x be a point of X.
We say f is a local completepletepletepletepletepletepletepletepletepleteplete intersection at x if there exists a neighbourhood U of x such that
f |U factors as a composition of i : U ↪→ Z and g : Z → Y , where i is a regular immersion,
and g is a smooth morphism. We say f is a local completepletepletepletepletepletepletepletepletepleteplete intersection if it is a local complete
intersection at all of its points.

Proposition 6.3.20 (b) and (c). Local complete intersections are stable under composi-
tion and flat base change.

Proof: First note that being of finite type is known to be stable under composition and base
change, so we need not worry about that. Let’s start with the first claim.

Let f : X → Y and g : Y → Z be two local complete intersections. We may locally write
g ◦ f = g1 ◦ g2 ◦ f1 ◦ f2 with f2, g2 regular immersions and f1, g1 smooth morphisms. If we
manage to show that h = g2 ◦ f1 is a local complete intersection, then locally we may write it
has g1 ◦h1 ◦h2 ◦g2 with h1 a regular immersion, and h2 a smooth morphism. Since compositions
of smooth morphisms and regular immersions are again smooth resp. regular, it would follow
that g ◦ f is indeed a local complete intersection.
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Thus it suffices to show the following. If f : X → Y is a smooth morphism, and g : Y → Z

is a regular immersion, then g ◦ f is a local complete intersection. From this point on, it is more
feasible to use the following property of smoothness.

Lemma (Remark 6.3.19). Let π : X → Y be a smooth morphism. Then π locally
decomposes into a regular immersion into AnY followed by the projection AnY → Y .

Proof of Lemma: The difficult part is knowing that “AnY ” means the fibred product of
the morphisms Y → SpecZ and AnZ → SpecZ. The map π looks locally like a morphism
SpecB → SpecA. Since f is smooth, it is in particular of finite type, so we may assume B is
a finitely generated A-algebra, hence we may write B = A[x1, . . . , xn]/I for some ideal I. Thus
there exists a canonical map SpecB → SpecZ[x1, . . . , xn] and the resulting diagram

SpecB Y

SpecZ[x1, . . . , xn] SpecZ

commutes, inducing a map from SpecB to the fibred product AnY . It remains to be shown that
this resulting map SpecB → AnY is in fact a regular immersion. Practically by construction
the map SpecB → AnY is a closed immersion. Proposition 6.3.13 then immediatelly tells us the
immersion is regular: both SpecB and AnY can be regarded as a smooth Y -scheme, and the map
SpecB → AnY is then a morphism of Y -schemes.

The second part of the claim is immediate: smoothness is stable under base change, and
regular immersions are stable under base change as well by Proposition 6.3.11 (d), which we
proved earlier.

Corollary 6.3.22. Let f : X → Y be a local complete intersection, and let’s say f

decomposes (globally!) as an immersion i : X → Z followed by a smooth morphism g : Z → Y .
Then i is a regular immersion. Moreover, if f is a regular immersion, then we have a canonical
exact sequence

0 CX/Y CX/Z i∗Ω1
Z/Y 0.

Proof: We may assume that i is a closed immersion. Define W = X ×Y Z, so that we have
the diagram

W Z

X Y,

pZ

pX g
i

f

π

where π is the map induced by the universal property of W . By Exercise 3.3.6, π is a closed
immersion, and in fact it’s an immersion of smooth X-schemes because pX : W → X and
Id : X → X are both smooth, hence by Proposition 6.3.13, π is a regular immersion. The
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map i is thus a local complete intersection (being locally decomposed by the map π followed by
the smooth map pZ). As said in the previous proof, smooth maps U → V locally decompose
into a regular immersion U → AnV followed by the projection AnV → V . Regular immersions
being closed under composition, i locally decomposes into a regular immersion X → AnZ followed
by the usual projection AnZ → Z. By Exercise 6.3.2 (c), it follows that i is in fact a regular
immersion.

Now for the second claim. By Proposition 6.3.11 (a) we have an exact sequence

0 π∗CW/Z CX/Z CX/W 0.

We need only show that π∗CW/Z ∼= CX/Y and CX/W ∼= i∗Ω1
Z/Y . The first isomorphism follows

by noting that CW/Z ∼= p∗CX/Y because we have a pullback diagram (see Proposition 6.1.24),
and that p ◦ π = Id; as for the second isomorphism, apply Lemma 6.3.13 to the morphism
π : X → W viewed as a morphism of X-schemes to obtain CX/W ∼= π∗Ω1

W/X , then note that
Ω1
W/X

∼= q∗Ω1
Z/Y , again because we live in a pullback diagram, and conclude by noting that

q ◦ π = i.

4 The Determinant Bundle

Definition. Recall the following notions of linear algebra. If M is a module over a ring A,
we define the tensor algegegegegegegegegegegebra T (M) to be the direct sum

T (M) = A⊕M ⊕ (M ⊗M)⊕ (M ⊗M ⊗M)⊕ · · · =
∞⊕
n=0

Tn(M).

Its additive structure is as one would expect; multiplication is defined by the canonical isomor-
phism T k(M) ⊗ T `(M) → T k+`(M), which is then extended by linearity to all of T (M). Note
that it is non-commutative. The exterior algegegegegegegegegegegebra

Λ(M) =
∞⊕
n=0

Λn(M)

is then defined to be the quotient of T (M) by the ideal generated by all elements of the form
x⊗ x for all x ∈M . Expanding (a+ b)⊗ (a+ b), we see that a⊗ b = −b⊗ a in Λ2(M), hence
the exterior algebra is a skew-commutative A-algebra.

Example. LetM be a free module of rank n, say with basis e1, . . . , en. Then T k(M) is free
of rank kn, and the simple tensors ei1⊗· · ·⊗eik form a basis of T k(M). The tensor algebra T (M)

is isomorphic to the free non-commutative algebra R〈x1, . . . , xn〉— in other words, the algebra of
polynomials with non-commuting variables. The isomorphism R〈x1, . . . , xn〉 → T (M) is found
by sending the monomial xi1 · · ·xik to ei1⊗· · ·⊗eik , and linearly extending. The exterior algebra
Λ(M) is then R〈x1, . . . , xn〉/I where I is the ideal generated by all x2i and all xixj + xjxi. We
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may thus write Λ(M) = {e1, . . . , en : ei ∧ ei = 0 and ei ∧ ej = −ej ∧ ei}. It follows that Λk(M)

is free of rank
(
n
k

)
; in particular, Λn(M) is a free of rank 1 over A; it is called the determinant

of M , and is denoted detM .

Remark. Here’s the reason for calling it this way. A morphism f : M → N of A-modules
induces a morphism Λk(M) → Λk(N) by sending m1 ⊗ · · · ⊗ mk to ϕ(m1) ⊗ · · · ⊗ ϕ(mk).
Taking A a field, M an n-dimensional A-vector space, and N = M , the induced linear map
Λn(M) → Λn(M) is just a map A → A defined by multiplication by some scalar; this scalar is
precisely the determinant of the transformation f .

Definition. The above concepts are instantly carried over to quasi-coherent sheaves over a
scheme; indeed, quasi-coherent sheaves have natural notions of direct sums and tensor products,
hence if F is a quasi-coherent sheaf, we may define the quasi-coherent sheaves T k(F ) and
Λk(F ); if F is locally free of rank n, then by the above discussion T k(F ) and Λk(F ) are
locally free of some rank as well; in particular, Λn(F ) is locally free of rank 1, and as such may
be thought of as a line bundle; we will henceforth refer to it as the determinant bundle, and
denote it by det F .

Corollary 6.4.2 (a) and (b). Given a morphism of schemes π : X → Y , if F is a finite-
rank locally free sheaf on Y , then detπ∗F ∼= π∗ det F . Next let 0 → E → F → G → 0 be an
exact sequence of finite-rank locally free sheaves then det F ∼= det E ⊗OX

det G .

Proof: As the second claim is proved in the book, we prove the first one. We may cover X
with affine opens SpecAi and Y with affine opens SpecBi such that π(SpecAi) ⊆ SpecBi. Since
F is locally free, we may furthermore assume that F |SpecBi

∼= Ñi for some free finite-rank Bi-
module Ni. Now remember that on affine opens, the pullback has an easy description: we have
π∗F |SpecAi

∼= (Ni ⊗Bi Ai)
∼. We introduce an algebraic lemma to construct our isomorphism

locally.

Lemma 6.4.1 (a). Let B be an A-algebra, and M a free A-module of finite rank. We have
an isomorphism (detM)⊗A B

∼−→ det(M ⊗A B).

Proof of Lemma: Pick a basis (e1, . . . , er) of M over A, let e′i = e1 ⊗ 1 ∈ M ⊗A B. The
homomorphism is then defined by (e1 ∧ · · · ∧ er) ⊗ b 7→ (e′1 ∧ · · · ∧ e′r)b. Since the inverse map
(simply defined by taking the arrow in the other direction) is clearly a module homomorphism
as well, we have an isomorphism.

Proof of Corollary 6.4.2, continued: We apply the above lemma to our situation to find the
desired isomorphism locally. It remains to be checked whether this isomorphism ‘patches to-
gether’ on overlaps. Take affine opens SpecAi and SpecAj in X such that π(SpecAi) ⊆ SpecBi,
π(SpecAj) ⊆ SpecBj . If they have non-trivial overlap, we should check that the restricted lo-
cal isomorphisms coincide. The only non-trivial choice that we made in the construction of
the lemma was a choice of basis, so if we show that the isomorphism is the same if we pick a
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different basis we are done. But this is really not that hard to see: had we picked some other
basis (f1, . . . , fr) of M over A, we would’ve sent (f1 ∧ · · · ∧ fr) ⊗ b to (f ′1 ∧ · · · ∧ f ′r)b with
f ′i = fi ⊗ 1. Then e1 ∧ · · · ∧ er would’ve been λ(f1 ∧ · · · ∧ fr) for some λ. By linearity, this is
sent to λ(f ′1 ∧ · · · ∧ f ′r)b, which is precisely (e′1 ∧ · · · ∧ e′r)b.

5 The Canonical Sheaf

Definition 6.4.3. If π : X → Y is a smooth morphism of finite type between locally
Noetherian schemes, then by Proposition 6.2.5 the sheaf Ω1

X/Y is locally free; hence we have
a natural notion of a determinant bundle det Ω1

X/Y in this situation. There are two ways to
generalize this to a larger class of morphisms. Here’s the first way. If π : X → Y is an arbitrary
morphism of schemes, then Ω1

X/Y is quasi-coherent, so we can still define the sheaf ΛkΩ1
X/Y for

k > 1; we call it the sheaf of relative differentials of degreegreegreegreegreegreegreegreegreegreegree k and denote it (of course) by Ωk
X/Y .

Definition 6.4.7. The other generalization is more subtle. Let π : X → Y be a quasi-
projective local complete intersection. Recall that quasi-projectivity means that we can factor
our map π into a finite-type open immersion X → W and a projective morphism W → Y

(Definition 3.3.35). The projective morphism can in turn by definition be factored into a closed
immersion W → PnY followed by the canonical projection PnY → Y , where PnY is just the fibred
product of PnZ and Y over SpecZ. Put in other words, we may (not necessarily uniquely)
decompose π into an immersion i : X → Z followed by a smooth map Z → Y . We define the
canonical sheaf of π to be the invertible sheaf

ωX/Y = det C ∨X/Z ⊗OX
i∗
(
det Ω1

Z/Y

)
.

Remark. You can interpret ‘det C ∨X/Z ’ as both det
(
C ∨X/Z

)
or (det CX/Z)∨; they are canon-

ically isomorphic.

Lemma 6.4.5. The above definition is independent of the choice of the decomposition of
π up to isomorphism.

Proof: Decompose π into two different ways, say

X

Z Z ′,

Y

i′i

π

g
g′

with i, i′ immersions and g, g′ smooth morphisms. Because π is assumed to be a local complete
intersection, Corollary 6.3.22 tells us that i, i′ are in fact regular immersions. Let W = Z×Y Z ′,
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so that we get a diagram
X

Z W Z ′,

Y

i′i
h

g

p′p

g′

By Corollary 6.3.22 again, we have the canonical exact sequences

0 CX/Z CX/W h∗Ω1
W/Z 0

as well as
0 CX/Z′ CX/W h∗Ω1

W/Z′ 0.

Apply Corollary 6.4.2 (a) and (b) to the above exact sequences to find that

det CX/W ∼= det CX/Z ⊗ h∗ det Ω1
W/Z

∼= det CX/Z′ ⊗ deth∗Ω1
W/Z′ . (2)

Now, Proposition 6.1.24 characterized the behaviour of sheaves of relative differentials under
base change; applying it to our situation gives us Ω1

W/Z
∼= (p′)∗Ω1

Z′/Y , and applying it once more
gives us h∗Ω1

W/Z
∼= (i′)∗Ω1

Z′/Y . By symmetry, we also have h∗Ω1
W/Z

∼= i∗Ω1
Z/Y . Plugging these

isomorphisms into Equation (2) gives us the isomorphism

det CX/Z ⊗ i∗ det Ω1
Z/Y
∼= det CX/Z′ ⊗ (i′)∗ det Ω1

Z′/Y ,

hence also
det C ∨X/Z ⊗ i

∗ det Ω1
Z/Y
∼= det C ∨X/Z′ ⊗ (i′)∗ det Ω1

Z′/Y .

Notice that if π : X → Y is smooth, then the canonical sheaf ωX/Y simply becomes det Ω1
Z/Y

as we can take the required decomposition of π to be π ◦ Id. Our goal will be to try and compare
the two sheaves ωX/Y and ΛkΩ1

X/Y for k > 1 if π is a more general kind of morphism.

6 Grothendieck Duality I — Introduction

Warning. This section is rather sketchy, so if you like your results precise and accurate,
some statements presented here might make you vomit.

In principle, we are now ready for the statement of Grothendieck Duality. Unfortunately,
the result is rather abstract, and Liu gives little motivation or intuition leading up to the result.
So before giving the actual statement we make a detour into the world of derived categories;
we will see that from a derived perspective, Grothendieck Duality is a natural generalization
of a result that we are already familiar with, namely Serre Duality. The following statement is
Theorem 18.5.1 in Vakil’s Foundations of Algebraic Geometry:
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Theorem (Serre Duality). Let X be a nice (smooth, projective, other things) variety
over a field k of topological dimension n. Then there exists an invertible sheaf ω (a dualizinginginginginginginginginginging
sheaf) on X such that we have a functorial isomorphism

H i(X,F ) ∼= Hn−i(X,F∨ ⊗ ω)∨,

for all i, and all finite-rank locally free sheaves F . (By ‘functorial’, we mean that we have a
natural isomorphism of covariant functors H i(X, · ) ∼−→ Hn−i(X, · ∨ ⊗ ω)∨.)

The above statement has a number of horribly severe restrictions, and anyone who even
remotely cares about general statements (which presumably includes everyone who is reading
this) should wonder whether we can do similar things for (i) more general schemes over (ii)
more general base schemes for (iii) more general sheaves. That’s exactly what we will concern
ourselves with.

We start out by (informally) introducing derived categories. They are basically just a fancy
construction used to make working with derived functors more natural. The idea is as follows.
Start with an abelian category A, and denote by D(A) the (as of yet mysterious) derived
category. Given a left-exact functor F : A → B, we want to capture all right-derived functors
RiF into a single functor RF : D(A)→ D(B). Since derived functors are obtained via injective
or projective resolutions, it makes sense that we want the objects of D(A) to be the (co-)chain
complexes of A, and indeed that’s the case.

What about the morphisms? The choice of morphisms in D(A) is based on the observation
that calculation of (co-)homology of (co-)chain complexes over A is invariant under homotopy
of chain complexes. Since things up to (co-)homology are more relevant right now, we want any
two homotopy-equivalent morphisms in Ch(A) identified in D(A). One more thing we want
is the following. Recall that quasi-isomorphisms are morphisms which induce isomorphisms on
cohomology. In the derived world we would like such morphisms to be isomorphisms, because
we only care about things up to homotopy-equivalence right now. Thus it makes sense that we
want to add formal inverses of quasi-isomorphisms to D(A).

To summarize, the derived categorygorygorygorygorygorygorygorygorygorygory D(A) of A has as its objects the chain complexes over
A, and has as its morphisms the morphisms of chain complexes modulo homotopy-equivalence,
together with formal inverses of quasi-isomorphisms. Here’s a first glimpse of their power:

Proposition. We have inclusions of A into D(A): given an object B in A, denote by B[i]

the cochain complex in D(A) with a B on the i-th spot. We then have

HomD(A)(A[0], B[i]) ∼= Exti(A,B),

the right-hand side being the usual Ext functor that you are familiar with.

Pseudo-proof: The object B[i] is the shift of an injective resolution in D(A), hence the Hom

in D(A) is just a way of computing derived functors of Hom.
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That’s all we need to take a second look at Serre Duality! Recall that if X is a nice scheme,
then we have a line bundle ω such that we have isomorphism

H i(X,F ) ∼= Hn−i(X,F∨ ⊗ ω)∨.

An alternative (and on first sight less attractive) way to state the result would be to say that

Homk

(
H i(X,F ), k

) ∼= Hn−i(X,Hom(F , ω)
)
,

for all locally free sheaves F . A slightly more general statement would be to say that, for all
k-vector spaces V ,

Homk

(
H i(X,F ), V

) ∼= Hn−i(X,Hom(F , V ⊗ ω)
) ∼= Extn−i(F , V ⊗ ω),

where Ext is the Ext-functor in the (abelian) category of quasi-coherent sheaves on X. To get
to the statement we want, we make three observations about the above isomorphism.

• The generalization from k to V may not appear to be interesting, but from a relative
point of view it gives us a big clue. Indeed remember that X is a k-scheme, i.e. equipped
with a morphism f : X → Spec k, and note that the V are actually the finite-rank
sheaves on Spec k. The line bundle ω which appears on the right-hand side may as well
be thought of as some kind of functor sending a finite-rank sheaf V on Spec k to the
sheaf V ⊗ ω.

• Remember that the cohomology groups H i(X,F ) are really just defined as the right-
derived functors of the pushforward functor f∗. Hence in the derived world, they are
represented by a single functor Rf∗(F ).

• By the proposition we just ‘proved’, the Ext’s are represented by the Hom in the derived
world.

We can now give the derived version of Serre Duality. If X is a scheme, denote by D(X) =

D(QCohX) the derived category of quasi-coherent sheaves on X. Then we find:

Theorem (Serre Duality revisited). LetX be a nice k-scheme with structural morphism
f , and let D(X) be the derived category of quasi-coherent sheaves on X. Then there exists a
functor f ! : D(Spec k)→ D(X) such that

HomD(Spec k)(Rf∗(F ), V ) ∼= HomD(X)

(
F , f !(V )

)
.

The functor f ! : D(Spec k)→ D(X) in the above notation is the excepcepcepcepcepcepcepcepcepcepceptional inverse imageageageageageageageageageageage
functor, and it arises from the functor V 7→ V ⊗ ω which we saw in the previous isomorphism.
Put in other words, Serre Duality is nothing but the existence of an adjunction Rf∗ a f !.

The idea that led to Grothendieck Duality is now the simple observation that suddenly,
both sides of the equation still make sense if we replace the morphism X → Spec k, on which
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many restrictions rested, by much more general morphisms of schemes X → Y . Grothendieck
Duality, in its general form, essentially tells us what the functor f ! should be like in more general
situations. Unfortunately, this description is a lot more complicated than what is described here.
In fact in certain general cases the functor f !, which lives in the derived world, cannot even be
translated back into a functor in the non-derived world. In the next section we will look at what
the functor looks like in the case we have a flat projective local complete intersection between
locally Noetherian sheaves. We will see that we need not worry about derived formalisms in this
case.

7 Grothendieck Duality II — Formal Statement

Let π : X → Y be a separated and quasi-compact morphism between (locally Noetherian)
schemes. Let F and G be quasi-coherent sheaves on X. For any affine open subset V of Y , each
homomorphism φ : F |π−1(V ) → G |π−1(V ) induces a homomorphism Hr

(
π−1(V ),F |π−1(V )

)
→

Hr
(
π−1(V ),G |π−1(V )

)
on the level of cohomology. This gives rise to a canonical bilinear map

π∗HomOX
(F ,G )×Rrπ∗F → Rrπ∗G ,

where Rrπ∗ is the r-th right derived functor of the pushforward functor π∗. In fact, Liu practi-
cally takes this fact as the definition of Rrπ∗:

Proposition 5.2.28. Let π : X → Y be a separated and quasi-compact morphism of
schemes. Let F be a quasi-coherent sheaf on X. For every r ≥ 0 there exists a unique
quasi-coherent sheaf Rrπ∗F on Y such that for every affine open subset V of Y , we have
Rrπ∗F (V ) = Hr

(
π−1(V ),F |π−1(V )

)
.

Definition 6.4.18. The canonical bilinear map induces in turn a homomorphism

π∗HomOX
(F ,G )→ HomOY

(Rrf∗F , Rrf∗G ).

We define the r-dualizinginginginginginginginginginging sheaf of π to be a quasi-coherent sheaf ω on X, together with a
homomorphism of OY -modules tr : Rrπ∗ω → OY (called the trace mapmapmapmapmapmapmapmapmapmapmap), such that for any quasi-
coherent sheaf F on X, the natural bilinear map π∗HomOX

(F , ω) × Rrπ∗F → Rrπ∗ω
tr−→ OY

induces an isomorphism

π∗HomOX
(F , ω)

∼−→ HomOY
(Rrπ∗F ,OY ).

Example. In Exercise 6.4.8, we treat a very special case: if f : SpecA → SpecB is a
morphism of integral scehemes, such that the ring map f# : B → A is a finite extension of
integral domains, and such that the extension L | K (Frac(A) = L and Frac(B) = K) is a finite
separable extension, then the r-dualizing sheaf for r = 0 is given by the quasi-coherent sheaf W̃
on SpecA, where W is the codifferent {x ∈ L : TrL|K(xA) ⊆ B}.
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Theorem 6.4.32 (Grothendieck Duality). Let π : X → Y be a flat projective local
complete intersection of relative dimension r — that is, such that dimxXπ(x) = r for all x in
X. Then the r-dualizing sheaf ω exists and is unique, and it is isomorphic to the canonical
sheaf ωX/Y .

In particular, if π happens to be a smooth morphism, then ωX/Y is, essentially by definition,
just det Ω1

X/Y , and so ω ∼= det Ω1
X/Y = Ωr

X/Y . This means that even in the smooth case, the
theorem gives more information than the original Serre Duality, as we now have an explicit
description of the dualizing sheaf in terms of the sheaf of differentials.

8 Some exercises

6.3.1. Let (A,m) be a Noetherian local ring, and let (a1, . . . , an) be a regular sequence of m.
Then

(
aσ(1), . . . , aσ(n)

)
is again a regular sequence for any permutation σ.

Solution: Since the symmetric group Sn is generated by all transpositions, it suffices to
check that the result holds for transpositions. In other words, if we have a sequence of the
form (a1, . . . , ai, ai+1, . . . , an) which is regular, it suffices to check that (a1, . . . , ai+1, ai, . . . , an)

is again regular. It suffices to verify that (ai+1, ai, ai+2, . . . , an) is regular in A/(a1, . . . , ai−1),
since the first part of the sequence is already known to be regular. Similarly, (ai+2, . . . , an) is
already known to be regular on A/(a1, . . . , ai+1) by assumption, so all we need to do is show that
(ai+1, ai) is regular on A/(a1, . . . , ai−1). To summarize, we have thus far reduced the exercise
to the following:

Claim. Let R be a Noetherian ring, and let a, b be two elements of R such that a is not a
zero-divisor of R, and b is not a zero-divisor of R/(a). Then b is not a zero-divisor on R, and a
is not a zero-divisor on R/(b).

Proof of claim: Start with the first statement. Suppose that bx = 0 for some x ∈ R. Since
b is a non-zero-divisor of R/(a), we have x ∈ (a), say x = ax1, hence bax1 = 0. Now a is a
non-zero-divisor of R hence bx1 = 0. Rinse and repeat. x = ax1, x1 = ax2, and so on. It follows
that x ∈ mi for each i ≥ 1, where m is the unique maximal ideal of R. By the Krull Intersection
Theorem, x must be 0, as desired.

Now for the second statement. Suppose to the contrary that a is a zero-divisor on R/(b).
Write ax = bx′ for some x, x′ ∈ R with x /∈ (b). Since b is assumed to be a non-zero-divisor on
R/(a), the fact that bx′ ∈ (a) implies that x′ ∈ (a), say x′ = ax′′, so that we have ax = bax′′.
By assumption, a is a non-zero-divisor of R, so we have x = bx′′, hence x ∈ (b), which is a
contradiction.

Remark. Vakil’s Foundations of Algebraic Geometry proves the same result in Theorem
8.4.6 in a different way, by an unnecessary but attractive application of spectral sequences.
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6.3.2. (c) Let the notation be as in Exercise 6.3.1. Let T be a variable, andB the localization
of A[T ] at the maximal ideal (m, T ). If an ideal J of A is such that (J, T ) ⊆ B is generated by a
regular sequence, then J is generated by a regular sequence in A. Show the same result in more
than one variable.

Remark. I will only explain how this result is used in the proof of Corollary 6.3.22. We
had an immersion i : X → Z which decomposes as a regular immersion π : X →W , followed by
a smooth map pZ : W → Z. Smooth maps in turn locally decompose into a regular immersion
U → AnZ followed by the usual projection AnZ → Z (with U an open subscheme of W ). Thus
we can locally decompose i into a regular immersion i : X → AnZ followed by the projection
AnZ → Z. Locally, we get the following situation:

X ⊇ SpecB SpecA[x1, . . . , xn] SpecA ⊆ Z

SpecZ[x1, . . . , xn] SpecZ.

regular

We want to show the composition SpecB → SpecA is also regular. Pick a point [p] ∈ SpecB and
their images [q] ∈ SpecA and [(q, f1, . . . , fk)] ∈ SpecA[x1, . . . , xn]. We have maps of Noethe-
rian local rings Aq → A[x1, . . . , xn](q,f1,...,fk)

∼= Aq[x1, . . . , xn](f1,...,fk) → Bq. Since SpecB →
SpecA[x1, . . . , xn] is regular, it means that we can find an ideal I of Aq[x1, . . . , xn](f1,...,fk) gen-
erated by a regular sequence such that B = Aq[x1, . . . , xn](f1,...,fk)/I. We now apply Exercise
6.3.2 (c) (in the case of more than one variable) to this situation to conclude that I ∩ Aq is
generated by a regular sequence in Aq, as desired.

6.3.3. Let f : X → Y and g : Y → Z be immersions of locally Noetherian schemes. If f
and g ◦ f are regular immersions, then so is g. Give an example where g ◦ f and g are regular
immersions, without f being one.

Solution: We start with the counterexample. Our intuition comes in handy here. Let Z be
affine two-space, Y the union of the x- and the y-axis, and X just the x-axis. Clearly, X does not
lie in Y as a codimension-one subspace, yet bothX and Y lie in Z as a codimension-one subspace.
Algebraically, this gives us the morphisms k[x, y]→ k[x, y]/(xy) and k[x, y]/(xy)→ k[x, y]/(x).

We now treat the first part. Due to time constraints, I did not end up completing it — what
follows is a suggestion. Since the condition is local, we may consider the following algebraic
statement. Let A, B, and C be local Noetherian rings, say with maximal ideals mA,mB,mC ,
and let g : C → B and f : B → A be local ring homomorphisms such that f ◦ g and f are
surjective morphisms obtained from a regular sequence in C and in B, respectively. We want
to show g is obtained in the same way. First note that A,B,C have the same residue fields,
because the induced maps B/mB → A/mA and C/mC → A/mA are surjective maps of fields.
Next note that g and f induce surjective maps of k-vector spaces mC/m

2
C

gk−→ mB/m
2
B

fk−→
mA/m

2
A. Give mC/m

2
C a basis (b1, . . . , bn), mB/m

2
B a basis (gk(b1), . . . , gk(bm)), and mA/m

2
A a
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basis (fkgk(b1), . . . , fkgk(b`)), with ` ≤ m ≤ n. Choose representing elements (c1, . . . , cn) ∈ mC ,
(g(c1), . . . , g(cm)) ∈ mB, and (fg(c1), . . . , fg(c`)) ∈ mA. I expect that the map C → A is then
obtained by modding out the sequence (c`+1, . . . , cn), and that the sequence B → A is obtained
by modding out the sequence (g(c`+1), . . . , g(cm)). It would then hopefully follow that the map
C → B is obtained by modding out the sequence (cm+1, . . . , cn), which is a regular sequence,
essentially by construction.

Remark. It is also true that the composition of two regular immersions is again regular.
This is stated in Proposition 6.3.11 (a), but not proved, as Liu deems it too trivial a result
to bother with. Here’s a proof. Let f : X → Y and g : Y → Z be regular immersions of
locally Noetherian schemes. Pick a point x ∈ X. Then we know that OZ,gf(x) → OY,f(x)

and OY,f(x) → OX,x are both obtained from regular sequences — say, the former is obtained
from a sequence (c1, . . . , cr) in OZ,gf(x), and the latter from (br+1, . . . , br+s) in OY,f(x). Choose
pre-images ci of bi (which exist because the morphisms are surjective). Then the composition
OZ,gf(x) → OX,x is obtained from modding out the ideal generated by the sequence (c1, . . . , cr+s).
It remains to be shown that this sequence is regular. Clearly for i ≤ r, ci is a non-zero-divisor in
OZ,gf(x)/(c1, . . . , ci−1). Similarly if r > i then ci is a non-zero-divisor in OY,f(x)/(cr+1, . . . , ci).
But since OY,f(x) is essentially just OZ,gf(x)/(c1, . . . , cr), it follows that ci is a non-zero-divisor
in OZ,gf(x)/(c1, . . . , ci−1), as desired.

(A variant of) 6.4.8. Let f : SpecA → SpecB be a morphism of affine schemes such
that the corresponding map of rings f# : B → A is a finite extension of integral domains,
with fraction fields L = Frac(A) and K = Frac(B), such that that L | K is a finite separable
extension. The codifferent is the A-module WB/A = {x ∈ L : TrL|K(xA) ⊆ B}, where TrL|K is
the field trace.1 On SpecA, we may define the quasi-coherent sheaf W̃B/A, which we claim is
the r-dualizing sheaf for r = 0.

Proof: We first need a trace map R0f∗W̃B/A = f∗W̃B/A → B̃, in other words, we need a
map of B-modules WB/A → B. There’s an obvious choice here — just take the field trace map
TrL|K . (I presume this is where the name ‘trace map’ comes from.) Now take any quasi-coherent
sheaf Ñ on SpecA; that is, take any A-module N . The natural bilinear map we’re interested in
is now given by

HomA(N,WA/B)×N →WA/B

TrL|K−−−−→ B,

which induces a B-module morphism

HomA(N,WA/B)→ HomB(N,B).

By definition of the dualizing sheaf, we want this map to be an isomorphism. We start with
injectivity. Suppose f ∈ HomA(N,WA/B) is a map such that its image in HomN/B is the zero

1Let L | K be a finite field extension. Then L may be viewed as a vector space over K. multiplication by an
element α ∈ L is a K-linear transformation, which may be represented by a matrix. The trace TrL|K(α) is then
the trace of this matrix.
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map; that is, suppose that TrL|K(f(x)) = 0 for all x ∈ N . Then we show that f is the zero
map. Fix some x ∈ N , and let a be an element of A. Since f is A-linear, we have

TrL|K(f(ax)) = TrL|K(af(x)) = 0 for all a ∈ A.

Since L | K is separable, the trace form is non-degenerate (see, for instance, Proposition 1.2.8
in Jürgen Neukirch’s Algebraic Number Theory), hence f(x) = 0. Since x was an arbitrary
element of N , if follows that f = 0, as desired. As for surjectivity, let g : N → B be a B-module
homomorphism, then just note that we can write g as g = TrL|K ◦f# ◦ g; the map f# ◦ g is then
the desired A-module homomorphism in the pre-image.
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