Read chapter 2.1, in particular
- the row-column rule for matrix multiplication;
- powers of a matrix
- the final part on the transpose of a matrix.
Answer the following questions, ready for the test on Friday.

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\[
A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & -5 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix},
\]

\[
C = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 5 \\ -1 & 4 \end{bmatrix}, \quad E = \begin{bmatrix} -5 \\ 3 \end{bmatrix}
\]

1. \(-2A, B - 2A, AC, CD\)

2. \(A + 3B, 2C - 3E, DB, EC\)

In Exercises 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(Ab_1\) and \(Ab_2\) are computed separately, and (b) by the row-column rule for computing \(AB\).

5. \(A = \begin{bmatrix} -1 & 3 \\ 2 & 4 \\ 5 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix}\)

7. If a matrix \(A\) is \(5 \times 3\) and the product \(AB\) is \(5 \times 7\), what is the size of \(B\)?

8. How many rows does \(B\) have if \(BC\) is a \(5 \times 4\) matrix?

9. Let \(A = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}\) and \(B = \begin{bmatrix} 1 & 9 \\ -3 & k \end{bmatrix}\). What value(s) of \(k\), if any, will make \(AB = BA\)?
11. Let \(A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} \) and \(D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix} \). Compute \(AD \) and \(DA \). Explain how the columns or rows of \(A \) change when \(A \) is multiplied by \(D \) on the right or on the left. Find a \(3 \times 3 \) matrix \(B \), not the identity matrix or the zero matrix, such that \(AB = BA \).

12. Let \(A = \begin{bmatrix} 3 & -6 \\ -2 & 4 \end{bmatrix} \). Construct a \(2 \times 2 \) matrix \(B \) such that \(AB \) is the zero matrix. Use two different nonzero columns for \(B \).

Exercises 15 and 16 concern arbitrary matrices \(A \), \(B \), and \(C \) for which the indicated sums and products are defined. Mark each statement True or False. Justify each answer.

15. a. If \(A \) and \(B \) are \(2 \times 2 \) matrices with columns \(\mathbf{a}_1 \), \(\mathbf{a}_2 \), and \(\mathbf{b}_1 \), \(\mathbf{b}_2 \), respectively, then \(AB = [\mathbf{a}_1 \mathbf{b}_1 \quad \mathbf{a}_2 \mathbf{b}_2] \).

b. Each column of \(AB \) is a linear combination of the columns of \(B \) using weights from the corresponding column of \(A \).

c. \(AB + AC = A(B + C) \)

d. \(A^T + B^T = (A + B)^T \)

e. The transpose of a product of matrices equals the product of their transposes in the same order.
31. Show that $I_mA = A$ where A is an $m \times n$ matrix. Assume $I_mx = x$ for all x in \mathbb{R}^m.

32. Show that $AI_n = A$ when A is an $m \times n$ matrix. [Hint: Use the (column) definition of AI_n.]
Define a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 5x_2 + 4x_3 \\ x_2 - 6x_3 \end{bmatrix}.$$

a) Write down the standard matrix for T.
b) Is T injective?
c) Is T surjective?