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Lattice differential equations (LDE’s)

We are interested in infinite dimensional systems of differential equations,

ẋη = Fη({xλ}λ∈Λ), η ∈ Λ, (1)

for some lattice Λ, e.g. Z or Z2.

The numerical and experimental work of Leon Chua and Martin Hasler is a strong
motivation for the study of LDEs.

They are developing algorithms based on LDEs which identify various prescribed
patterns, for example edges, or corners, in a digitized image.
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Cellular Neural Networks
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Figure 1: Already in 1988 Leon O. Chua and Lin Yang developed the concept of
Cellular Neural Networks: large neural nets with local interactions.
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CNN Automata
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Figure 2: Overview of inputs and outputs
for the cell at (0, 0).

State equation

Cẋi,j(t) = − 1
Rx
xi,j(t)+∑

(k,l)∈N Ak,lf(xi+k,j+l) + Iext
(2)

Here N denotes the 3× 3 neighbourhood
{(i, j) | −1 ≤ i ≤ 1, − 1 ≤ j ≤ 1}.
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f(x) = 1
2(|x+ 1| − |x− 1|).
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CNN Pattern Recognition

• One CNN Cell represents one pixel.
• Original state and Iext correspond with input picture.
• Input picture is greyscale with values in range [−1, 1].
• Neural Network should converge to equilibrium state x(∞).
• Output should be black and white, i.e. f(x(∞)) ∈ {−1, 1}. This is equivalent

to |x(∞)| ≥ 1.

Theorem 1. Suppose that A0,0 > R−1
x . Then for inputs corresponding to

greyscale images, the limits

lim
t→∞

xi,j(t) = xi,j(∞) (3)

exist and satisfy |xi,j(∞)| ≥ 1.

This theorem guarantees that the final output f(xi,j(∞)) is a black and white
image.
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CNN Pattern Recognition - Line Detection

The coupling constants Ai,j should be chosen according to the task at hand.
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Horizontal
line detector
template.
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Vertical
line detector
template.

Original greyscale
image.

Horizontal line after.Vertical line after.
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CNN Noise Reduction

Goal is to eliminate random noise applied to image.
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Original Image.
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CNN Edge Recognition

Goal is to extract edges from an image.
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CNN Corner Recognition

Template the same as for edge recognition; Inputs Iext get extra biasterm.
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CNN Circuits

• Cellular Neural Networks can be implemented as electronic circuits.
• Couplings Ak,l can be set by changing impedances of circuit elements.
• Very fast parallel processing possible.

Figure 3: Circuit
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CNN Final Example

Large scale edge recognition using CNN’s is possible.
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LDE vs PDE

Typical example of LDE on the integer lattice Λ = Z
2,

u̇i,j = αLDui,j − f(ui,j), (i, j) ∈ Z2, (4)

LD is a discrete Laplacian, which could be given by

LDui,j = (∆+u)i,j ≡ ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j, or
LDui,j = (∆×u)i,j ≡ ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1 − 4ui,j.

(5)

Discrete Laplacian ∆+.

Discrete Laplacian ∆×.
–0.08
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Bistable nonlinearity, typically
fcub(u) = u(u− a)(u− 1). (6)
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LDE vs PDE - II

The system (4), i.e.

u̇i,j = α(∆+u)i,j − f(ui,j), (i, j) ∈ Z2, (7)

with α = h−2, arises from discretization of the reaction diffusion equation on R2,

u̇ = ∆u− f(u), (8)

to a rectangular lattice with spacing h.

• Large values of α correspond with the continuous limit h→ 0.
• One can also study (7) with small α and even α < 0.
• Away from the continuous limit, (7) has a much richer structure that (8), as we

shall see.
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LDE vs PDE - III - Anisotropy

We consider travelling wave solutions which propagate at an angle θ.

ui,j(t) = φ(i cos θ + j sin θ − ct). (9)

We require φ(−∞) = 0 and φ(∞) = 1. Substitution into (7) and (8) yields

−cφ′(ξ) = αLθ(φ)(ξ)− fcub(φ(ξ), a), (discrete),
−cφ′(ξ) = φ′′(ξ)− fcub(φ(ξ), a), (continuous),

(10)

where
Lθ(φ) = φ(ξ + cos θ) + φ(ξ − cos θ) + φ(ξ + sin θ) + φ(ξ − sin θ)− 4φ(ξ). (11)

θ
Notice the θ - dependence in the discrete case, which is
absent in continuous case.
In continuous case the medium looks the same from each
direction. No longer so in discrete case.
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Spatial anisotropy

The lattice anisotropy can be illustrated by studing the c(θ) relation. Example
LDE: u̇i,j = (∆+u)i,j − 10fcub(ui,j, a).
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Spatial anisotropy Continued

Another c(θ) plot for u̇i,j = 1
4

(
(∆+u)i,j + (∆×u)i,j

)
− 10fcub(ui,j, a).
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Nerve Conduction Theory

Nerve fibres carry signals over large distances (meter range).
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• Fiber has myeline coating with periodic gaps called nodes .
• Fast propagation in coated regions, but signal loses strength rapidly (mm-range)
• Slow propagation in gaps, but signal chemically reinforced.
• Nature combines best of both!
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Nerve Conduction Theory: The Model

One is interested in the potential at the node sites.
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Electro-chemical analysis leads to the 1 dimensional LDE

V̇j =
C

µj

(
Vj+1 + Vj−1 − 2Vj

)
− Iion(Vj), j ∈ Z. (12)

• Node j has potential Vj.
• Node j has length µj.
• Constant C describes electrical properties of the nerve.
• Ionic current Iion well described by our cubic fcub.
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Nerve Conduction Theory: Travelling Wave Solutions

Substituting Vj(t) = φ(j − ct) and taking the node lengths µj = µ constant, one
gets

−cφ′(ξ) = α
(
φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)

)
− fcub(φ(ξ), a). (13)

This is called a Differential Difference Equation (DDE). We require φ(0) = a and

impose the limits

limξ→−∞ φ(ξ) = 0, limξ→∞ φ(ξ) = 1. (14)

Note that finding wavespeed c is part of the problem.

• Algorithm was developed to solve (13) numerically.
• Enormous amount of literature on solving ODE’s without time-shifted terms.
• Large amount of literature on ODE’s with only time-delay terms.
• However, almost nothing known about DDE’s with time-delay and

time-advanced terms.
• New and exciting subject!
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Nerve Conduction Theory: Propagation failure
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Solutions to the problem

−cφ′(ξ) = 0.1
(
φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)

)
− fcub(φ(ξ), a).

• Note the nontrivial interval of a in which c = 0!
• Note the discontinuities in the wave profiles in this region.
• Propagation failure has been established both theoretically and numerically.
• Propagation failure is DEADLY: for owner of nerve and computational method.
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Dealing with propagation failure - Our contribution

Analysis of numerical method to solve class of DDEs including

−γφ′′(ξ)− cφ′(ξ) = α

N∑
j=1

(φ(ξ + rj)− φ(ξ))− fcub(φ(ξ), a) (15)

for γ > 0 and α > 0, under the condition φ(0) = a and the limits

limξ→−∞ φ(ξ) = 0,
limξ→∞ φ(ξ) = 1, (16)

A connecting solution to the DDE (15) is a pair (φ, c) ∈W 2,∞×R which satisfies
the DDE (15) and the above conditions (16).

• The extra second order term required to deal with propagation failure
discontinuities.
• Question: Do connecting solutions always exist?
• Question: Does the second order term prevent us from seeing the propagation

failure?
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Main result

Theorem 1. The differential difference equation

−γφ′′(ξ)− cφ′(ξ) = α

N∑
j=1

(
φ(ξ + rj)− φ(ξ)

)
− fcub(φ(ξ), a),

with γ > 0 and α > 0 has a unique connecting solution(
φ(a), c(a)

)
∈W 2,∞ × R for all 0 < a < 1. Moreover, this connecting solution(

φ(a), c(a)
)

depends C1-smoothly on the detuning parameter a. Finally, our
algorithm can find this connecting solution if supplied with an initial guess
(φ0, c0) sufficiently close to this solution.

• Solutions exist and are unique.
• Our algorithm can find them given a good enough guess.
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Limit γ → 0 in critical case a = 0.5
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−γφ′′(ξ)− cφ′(ξ) = 0.1

(
φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)

)
− fcub(φ(ξ), a). (17)

Tentative conclusion: second order term does not mess things up!
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Main Results continued

Theorem 2. Let (φn, cn) be a sequence of connecting solutions to the DDEs

−γnφ′′(ξ)− cφ′(ξ) = α

N∑
j=1

(
φ(ξ + rj)− φ(ξ)

)
− fcub(φ(ξ), a),

with γn → 0. Then, after passing to a subsequence, the pointwise limits

φ0(ξ) = limn→∞ φn(ξ),
c0 = limn→∞ cn

(18)

both exist and (φ0, c0) is a connecting solution to the limiting DDE

−cφ′(ξ) = α

N∑
j=1

(
φ(ξ + rj)− φ(ξ)

)
− fcub(φ(ξ), a).

We thus have practical and theoretical evidence that the rich behaviour at γ = 0
can be uncovered by choosing γ small enough.
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Higher Dimensional Systems

Suppose that the node lengths µj are periodic with period two.
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• Split all lattice points into two groups, even and odd.
• Two waveprofiles: φo and φe.
• Single wavespeed c.
• System becomes{

−cφ′e(ξ) = αe
(
φo(ξ + 1) + φo(ξ − 1)− 2φe(ξ)

)
− fcub(φe(ξ), a)

−cφ′o(ξ) = αo
(
φe(ξ + 1) + φe(ξ − 1)− 2φo(ξ)

)
− fcub(φo(ξ), a). (19)

• Limits: φo,e(−∞) = 0, φo,e(∞) = 1 and φe(0) = a.
• Complete analysis has been 1d in nature.
• Open Question: Existence + uniqueness of solution?
• Open Question: Will our algorithm always succeed?
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Nerve Conduction Theory: Periodic Node Lengths
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• Results with αo 6= αe.
• Notice propagation failure!
• Notice φo ≈ φe away from propagation failure.
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Higher Dimensional Systems

Now introduce two wavespeeds co and ce.{
−ceφ′e(ξ) = αe

(
φo(ξ + 1) + φo(ξ − 1)− 2φe(ξ)

)
− fcub(φe(ξ), a)

−coφ′o(ξ) = αo
(
φe(ξ + 1) + φe(ξ − 1)− 2φo(ξ)

)
− fcub(φo(ξ), a). (20)

The solutions were normalized to have φe(0) = a and φo(0) = a. If we choose
ce = co and φo(ξ) = φe(ξ), the system (20) reduces to a one dimensional problem
which has a unique solution.

However, solutions to (20) are NOT unique.
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Period Two Bifurcation - Solution Is No Longer Unique
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The End

The End
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