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Abstract

This paper studies the behavior of solitons in the Korteweg-de Vries equation
under the influence of multiplicative noise. We introduce stochastic processes
that track the amplitude and position of solitons based on a rescaled frame
formulation and stability properties of the soliton family. We furthermore
construct tractable approximations to the stochastic soliton amplitude and
position which reveal their leading-order drift. We find that the statistical
properties predicted by our method agree well with numerical evidence.
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1. Introduction

In recent years, stochastic traveling waves and more general stochastic
pattern dynamics have become major areas of interest in the field of SPDEs.
This paper employs modern stochastic phase-tracking techniques to study
traveling waves in stochastic Korteweg-de Vries (KdV) equations with mul-
tiplicative noise, such as

du = −(∂3
xu+ 2u∂xu) dt+ σu · dWQ

t . (1.1)

Here u is a real-valued process on (t, x) ∈ R+ ×R, and the scalar parameter
σ > 0 encodes the noise strength. The noise WQ

t is a cylindrical Q-Wiener
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process on a separable Hilbert space H, and · denotes a suitable product
between elements of H and L2(R). Both multiplicative space-time noise and
multiplicative scalar noise can be treated in this setting.

In the deterministic case (σ = 0), it is well-known that (1.1) admits
soliton solutions u(t, x) = ϕc(x− ct) of the form

ϕc(x) =
3c
2
sech2(

√
cx/2), c > 0. (1.2)

We describe the evolution u(t, x) of such a soliton under the influence of the
multiplicative stochastic forcing (σ > 0) by using the modulation Ansatz

u(t, x) = ϕc(t)(x− ξ(t)) + r(t, x). (1.3)

Here, c(t) and ξ(t) are stochastic processes that track the amplitude and
position of the modulated soliton, respectively, while the perturbation r re-
mains small in a suitable sense. Numerical evidence based on these phase
definitions strongly suggests that such solutions remain close to the soliton
family for exponentially long times. We furthermore construct tractable ap-
proximations to the modulation parameters which reveal their leading-order
drift.

Solitons in the Korteweg-de Vries equation. The family of solitons (1.2) has
been central to the analysis of the deterministic KdV equation (σ = 0). At
the time of its introduction by Boussinesq [1] and rediscovery by Korteweg
and de Vries [2] in the late nineteenth century, the KdV equation was pri-
marily used as a model for shallow water waves along a canal. The equation
has since appeared as an amplitude equation to describe a wide variety of
physical wave phenomena, such as internal waves in stratified oceans [3] and
acoustic waves in plasmas [4]. Let us specifically mention the Fermi-Pasta-
Ulam-Tsingou (FPUT) chain, whose dynamics in the continuum regime can
be described by the KdV equation [5, 6, 7].

As a dispersive system, the dynamics generated by the KdV equation
spread out localized initial conditions. Yet, due to nonlinear effects, (1.1)
with σ = 0 admits the family of traveling wave solutions (1.2) that can have
arbitrary amplitude, propagating at the proportional velocity. The relation
ϕc(x) = cϕ1(

√
cx) apparent in (1.2) is a direct consequence of the fact that

the KdV equation enjoys the scaling invariance

u(t, x) 7→ α2u(α3t, αx), (1.4)
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in addition to its translational symmetry.
Zabusky and Kruskal observed in numerical experiments [8] that, asymp-

totically, solutions to the KdV evolution decompose into several solitons of
the form (1.2) followed by a radiation component, which undergoes a dis-
persive evolution. See the work of Schuur [9] for rigorous results in this
direction. Another key property of the deterministic KdV equation is that it
is a completely integrable system, and consequently has an infinite number
of conserved quantities [10]. For example, the KdV evolution conserves the
energy

∫
R u

2(t, x)dx.

Deterministic stability. In the deterministic setting, the family of solitons in
(1.2) was shown to be orbitally stable by Bona, Souganidis and Strauss [11].
Their work asserts that a slightly perturbed soliton remains, upto trans-
lations, within an H1-neighborhood of the initial soliton. This result was
improved upon by Pego and Weinstein, who established asymptotic stability
of the soliton family [12]. More precisely, the authors show that if u(t, x) is
initially a small perturbation of the soliton ϕc∗(· − ξ∗), then there exists a
final velocity c > 0 and a final phase-shift ξ ∈ R such that

u(t, ·+ ξ + ct)− ϕc → 0 as t ↑ ∞,

in the weighted spaces

L2
a := L2(R, e2axdx), 0 < a <

√
c∗. (1.5)

Here, the final velocity c and phase-shift ξ contain small corrections to their
starting values c∗ and ξ∗. The exponential weight ensures that disturbances in
the wake of the soliton decay at an exponential rate. The result holds under
the assumption that the initial perturbation and its derivative lie in L2∩L2

a.
This assumption was later relaxed by Merle and Vega [13] to accommodate
general L2-perturbations, with convergence in L2

loc.
The proof of Pego and Weinstein relies on the spectral stability of the

linearization of the KdV evolution around a soliton ϕc, encoded by the op-
erator

Lc = −∂3
x + (c− 2ϕc)∂x − 2∂xϕc = −∂3

x + c∂x − 2∂x[ϕc·].

As a linear operator on the space L2(R), the operator Lc has spectrum
iR. Contained therein is a double eigenvalue at 0 with an associated two-
dimensional generalized kernel spanned by ∂xϕc and ∂cϕc. Considering the
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operator Lc on a weighted space L2
a with 0 < a <

√
c moves the essen-

tial spectrum to the left of the imaginary axis. Its (formal) adjoint L∗
c on

the space L2
−a has a generalized kernel spanned by the soliton ϕc and the

primitive

ζc(x) =

∫ x

−∞
∂cϕc(y)dy ∈ L2

−a.

This primitive ζc is not a localized function, which is evident from the fact
that ζc(x) tends to

∫
R ∂cϕcdx = 3c−1/2 as x → ∞. Pego and Weinstein

show that Lc generates an exponentially stable C0-semigroup {eLct}t≥0 on the
subspace of L2

a consisting of functions v ∈ L2
a which satisfy the orthogonality

conditions1

⟨v, ζc⟩L2 = ⟨v, ϕc⟩L2 = 0. (1.6)

Stochastic KdV equations. Several stochastic versions of the KdV equation
have been introduced in the literature, which incorporate random perturba-
tions that affect the propagation of solitons. In [14], Herman derives a KdV
equation perturbed by a single Brownian motion to model the propagation
of an ion-acoustic soliton in the presence of noise. Since the KdV equation
arises as an approximation for more involved models, such as for fluid dy-
namics or wave dynamics in the FPUT lattice, stochastic KdV equations also
serve as starting point for studying the effects of random perturbations in
such systems [15, 16].

In [17], de Bouard and Debussche establish the well-posedness of (1.1) in
the space H1(R), in the case that the covariance operator Q is a translation-
invariant and non-negative convolution operator on L2(R) given by

Qf(x) =

∫
R
q(x− y)f(y) dy, (1.7)

with a convolution kernel q in H1(R) ∩ L1(R). The same authors also prove
the existence of solutions to (1.1) in two cases that approximate a space-time
white noise on L2(R) [18, 19], corresponding to Q = IL2 .

The multiplicative forcing in (1.1) breaks the conservative nature of the
KdV equation, which can readily be seen in the scalar case where WQ

t is a

1In expression (1.6) we slightly abuse notation, as ζc /∈ L2. The product
∫
R vζc dx is,

however, a well-defined real number, since e−axζc ∈ L2 and eaxv ∈ L2.
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real-valued Brownian motion βt. Indeed, by formally applying Itô’s lemma
to the SPDE

du = −(∂3
xu+ 2u∂xu) dt+ σu dβt,

one finds

d⟨u, u⟩L2 =
[
−2⟨u, ∂3

xu+ 2u∂xu⟩L2 + σ2⟨u, u⟩L2

]
dt

+ 2σ⟨u, u⟩L2 dβt

=σ2⟨u, u⟩L2 dt+ 2σ⟨u, u⟩L2 dβt, (1.8)

which shows that the energy
∫
R u

2(t, x)dx undergoes a geometric Brownian
motion with positive drift. See [17, Proposition 3.1] for a similar result in
the case of space-time noise. As the stochastic forcing slightly perturbs the
soliton continually, its aggregated effect produces a stochastic phase-shift and
a substantially varying soliton parameter c(t).

The conservative nature of the equation is, however, not entirely lost.
One easily verifies that the average L2-norm of solutions to the stochastic
KdV equation is conserved:

E
[
∥u(t, ·)∥L2

]
= ∥u0∥L2 .

Due to its diffusion, the same does not hold for nonzero powers p ∈ R of
the L2-norm. In this context it is worthwhile to point out that the soliton
parameter c is related to the L2-energy as ∥ϕc∥2L2 = 6c3/2. This hints at a
relation between the stochastic soliton parameter c(t) and the process

∥u(t, ·)∥4/3L2 = ∥u0∥4/3L2 e
− 2

3
σ2t+ 4

3
σβt , (1.9)

a basic prediction that the results in this paper will reproduce and refine.

Stochastic traveling waves. The effect of noise on traveling waves has been
previously been analyzed in various settings, primarily for equations of reaction-
diffusion type. The subject has seen considerable activity in the physics
literature, see for instance the works by Garćıa-Ojalvo and Schimansky-
Geier[20, 21] which introduce stochastic corrections to traveling waves in
bistable RDEs. One well-known example of a noise-induced velocity cor-
rection is the Brunet-Derrida conjecture [22, 23], which describes a speed
correction for traveling fronts in randomly perturbed Fischer-KPP equations
and was proved by Mueller [24]. We also refer to the works [25, 26], which
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analyze numerical methods for the simulation of stochastic traveling waves
and provide numerous intriguing observations.

Various contributions have appeared in the mathematics literature to give
(further) rigorous meaning to such results. Krüger and Stannat introduced
a multiscale expansion of a stochastic phase for traveling waves in bistable
RDEs [27, 28]. This method was later applied to the FitzHugh-Nagumo equa-
tion in [29] and extended upon in [30]. Hamster and the second author have
developed a phase-tracking method in the setting of reaction-diffusion equa-
tions that tracks stochastic traveling waves over exponentially long timescales
[31, 32, 33]. We refer to the review by Kuehn [34] for a more detailed overview
of results on stochastic traveling waves in reaction-diffusion equations.

Stochastic KdV waves. The stochastic dynamics of solitons in a randomly
perturbed KdV equation was first considered by Wadati [35], who derived
statistical properties of solitons in the KdV equation with additive scalar
noise using a Galilean coordinate transformation. See also the works [36, 37],
which expand on this method.

De Bouard and Debussche analyzed the stochastic soliton dynamics pro-
duced by the KdV equation (1.1) with multiplicative space-time noise in [38].
Similar to the approach to the approach taken in this work, the authors con-
sider a decomposition of the form (1.3) and formulate modulation equations
for the soliton parameters. The authors, moreover, estimate the exit-time
of the solution from a neighborhood of the modulated soliton. See also the
works [39, 40], where the same authors study solitons in the KdV equation
with additive noise and a stochastic Gross-Pitaevskii equation.

While the method in [38] yields rigorous stability results, it only allows
for a small variation of the soliton parameter c(t). The resulting modula-
tion equations, therefore, do not incorporate the full dynamics of the soli-
ton amplitude and are valid only on timescales of order O(1/σ2), where the
parameter c(t) remains close to its starting value c∗. Our method allows
for large variations in the parameter c(t) by not only translating the solu-
tion, but also rescaling the solution in accordance with the natural scaling
u(t, ·) 7→ α2u(t, α·) of the soliton family (1.2).

In a more recent work by Cartwright and Gottwald [41], the authors ap-
ply a collective coordinate framework developed in [42] to (1.1) in the scalar
case, where WQ

t in (1.1) is a scalar Brownian motion βt. Their approach
modulates the amplitude and width of the soliton independently, instead
of requiring that the modulated soliton remains in the family (1.2). The
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authors develop an O(σ) modulation system which dictates that the ampli-
tude follows a geometric Brownian motion with zero drift. The modulation
system of [41] furthermore predicts to leading-order that the soliton-width
remains constant, which is not captured in numerical simulations of (1.1)
that naturally also include higher order effects.

Soliton tracking. In this paper, we introduce a soliton-tracking method that
adapts a phase-tracking method developed in [32] by Hamster and the second
author for traveling waves in reaction-diffusion equations. The method relies
on a transformation of (1.1) that translates and rescales a solution u(t, x) to
closely match a fixed soliton ϕc∗ at the origin. More precisely, we introduce
the process

v(t, x) = α2(t)u
(
t, α(t)x+ ξ(t)

)
− ϕc∗(x), (1.10)

which is the remaining difference between the translated and rescaled solu-
tion, and the fixed soliton ϕc∗ . From the scaling process α(t), we can recover
the effective soliton parameter c(t) of the solution u(t, x) as c(t) = c∗α

−2(t).
The translation process ξ(t) and scaling process α(t) are a-priori not

specified. Their drift and martingale components bring about four degrees of
freedom. We formulate an SPDE that governs the dynamics of the remainder
v produced by translation and rescaling as in (1.10) by noise-driven processes
ξ(t) and α(t). We use the four degrees of freedom brought about by ξ(t)
and α(t) to ensure that v satisfies the orthogonality conditions of (1.6) at
all times. Intuitively, this should mean that the remainder v continuously
experiences exponential damping, and will remain small. This argument has
been made rigorous by Hamster and the second author for traveling waves
in reaction-diffusion equations in [33], where the authors establish exit-times
on the remainder which are exponentially long with respect to the parameter
1/σ.

We restrict ourselves in this work to formal arguments to support the
construction of the soliton-tracking method, which yields a coupled SPDE
system that describes the evolution of v(t), c(t) and ξ(t). Although we antic-
ipate that a rigorous meta-stability result based on the methods presented in
this work is possible, one needs to control transformations of the perturba-
tion due to the rescaling. It seems that this requires spatial information on
the linearized frozen-frame evolution beyond the semigroup bounds obtained
in [12]. For the moment, we rely on numerical simulations to validate our
findings.

7



Stochastic soliton dynamics. In order to gain insight into the stochastic soli-
ton dynamics described by our method, we design an approximation proce-
dure for the processes α(t) and ξ(t). In contrast to the stochastic wave posi-
tion studied in [31] and [32], the evolution of the perturbation v(t) does not
decouple from the rescaling process α(t). This significantly complicates our
analysis, since α(t) develops significant fluctuations on short timescales. In
order to account for this, we first expand the perturbation v(t) in terms of the
small parameter σ, using α as an external input. Expanding the modulation
equation for α(t) in terms of v subsequently produces SDE approximations
for α(t) that have random coefficients. Solving these SDEs then provides
the desired final approximations, which can in principle be computed at any
desired order in σ.

We find that the soliton velocity primarily follows the amplitude process
c(t), with additional correction due to the noise. The amplitude process c(t)
experiences an almost linear positive drift which develops on the time-scale
O(σ2t). Numerical simulations of (1.1) show that this drift is captured quite
well by an approximation of c(t) that takes into account coupling terms that
are quadratic in σ.

The amplitude growth rate and velocity correction are determined by sta-
tistical properties of the perturbation with respect to the modulated soliton.
This further motivates the use of the frozen-frame formulation (1.10), which
keeps the stochastic traveling wave in a fixed reference frame and facilitates
analysis of the perturbation shape.

Outlook. This work extends the phase-tracking results of [31] and [32] to a
system where stochastic perturbations not only induce a translation, but also
a rescaling of the traveling wave. Numerical simulations indicate that our
method tracks the KdV soliton over exponentially long times. However, this
work does not provide a rigorous stability result to support this claim. We
hope that the decompositions and approximations obtained here will provide
a pathway towards such a result.

Outline. This paper is organized as follows. In §2.2, we derive an SPDE that
describes the dynamics of the remainder v defined in (1.10) via Itô’s lemma.
We proceed by constructing the Itô processes ξ(t) and α(t) that track the
soliton position and amplitude, respectively, in §2.3. In §3, we formulate an
expansion of the SPDE system that governs the dynamics of α(t) and v(t),
and from there derive the leading-order behavior of the mean and variance of
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the effective soliton parameter c(t) and position ξ(t). We verify these findings
via numerical simulations throughout §3.

Acknowledgements. The first author acknowledges support from the Nether-
lands Organization for Scientific Research (NWO) (grant 613.009.137).

2. Stochastic soliton tracking

In this section, we introduce a system of modulation equations to describe
the evolution of the solution u(t, x) to the stochastic KdV equation in a
stochastic co-moving frame. In particular, we consider the SPDE

du = −(∂3
xu+ 2u∂xu)dt+ σM(u)[dWQ

t ], (2.1)

with initial condition u(0, x) = ϕc∗(x), where ϕc∗ is the soliton defined in
(1.2). The noise term M(u) is of general multiplicative form and is driven
by a translation-invariant noise process WQ

t , which we both describe in more
detail in §2.1.

We introduce a position process ξ, which (roughly) keeps the stochasti-
cally evolving soliton centered at the origin, and a rescaling process α, which
neutralizes its amplitude fluctuations. More precisely, we introduce the re-
mainder

v(t, x) = α2(t)u
(
t, α(t)x+ ξ(t)

)
− ϕc∗(x), (2.2)

which describes the deviation from the soliton ϕc∗ in a frame where the
solution u(t, x) has been translated and rescaled according to the natural
scaling ϕc 7→ α2ϕc(α·) of the soliton family. The aim is to choose the processes
α and ξ in a fashion that keeps the perturbation v in the space characterized
by (1.6), where the linearized evolution is stable.

First, in §2.1, we describe the forms of multiplicative noise that can be
treated by our method. In §2.2, we derive an SPDE that describes the
evolution of the perturbation v in the co-moving frame, which we use in §2.3
to prescribe the dynamics of our processes ξ and α. Finally, we illustrate the
effectiveness of our decomposition in §2.4 and explore the resulting dynamics
via numerical simulations.
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2.1. Stochastic set-up

Let us outline the setting of (2.1) in more detail. We follow the approach
of [43] and [44], and consider noise from a separable Hilbert space H with
the inner product ⟨·, ·⟩H and an orthonormal basis {ek}∞k=0. We then pick a
covariance operator Q that satisfies the following properties:

Assumption 2.1. The operator Q : H → H is linear and bounded, and for
each h, g ∈ H we have

• ⟨Qh, h⟩H ≥ 0; (non-negativity)

• ⟨Qh, g⟩H = ⟨h,Qg⟩H. (symmetry)

With this assumption in place, we let WQ
t be a Q-cylindrical Wiener

process on H; cf. [43, §4.1.2] and [44, §2.5.1]. This H-valued Wiener process
has the property that for each h ∈ H, the process ⟨WQ

t , h⟩ defines a real-
valued Brownian motion, which satisfies the correlation identity

E
[
⟨WQ

t , h⟩⟨WQ
s , g⟩

]
= (t ∧ s)⟨Qh, g⟩,

for t, s ≥ 0 and h, g ∈ H.
In order to define a stochastic integral with respect to WQ

t , we follow
[43, 44] and introduce the space HQ := Q1/2(H). Equipped with the inner
product

⟨v, w⟩HQ
= ⟨Q−1/2v,Q−1/2w⟩H,

HQ is a separable Hilbert space for which {Q1/2ek}∞k=0 is an orthonormal
basis. Let us furthermore introduce the notation HS(HQ,H) for the space
of Hilbert-Schmidt operators between HQ and H. We recall that HS(HQ,H)
is a Hilbert space with the inner-product

⟨A,B⟩HS(HQ,H) =
∞∑
k=0

〈
A[Q1/2ek], B[Q1/2ek]

〉
H.

We refer to [43, §4.2.1] and [44, §2.5.2] for the construction of the stochas-
tic integral ∫ t

0

Φ(s) dWQ
s (2.3)
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with respect toWQ
t , which defines anH-valued stochastic process forHS(HQ,H)-

valued integrands Φ that satisfy the integrability condition

E
∫ t

0

∥Φ(s)∥2HS(HQ,H) ds < ∞.

For convenience, we also introduce a rescaling and translation transfor-
mation Tα,ξ, which acts on functions u ∈ L2(R) as

Tα,ξu = u(α ·+ξ). (2.4)

This allows us to write (2.2) as

v(t, x) = α2(t)Tα(t),ξ(t)u(t, x)− ϕc∗(x). (2.5)

With these preliminaries in place, we impose the following conditions on the
noise-term M(u) and its relation to the scaling operators Tα,ξ.

Assumption 2.2. For each u ∈ L2(R):

1. M(u) defines a Hilbert-Schmidt operator from HQ to L2(R). If further-
more u ∈ H1(R), then M(u) defines a bounded linear operator from H
to L2(R).

2. For each β ∈ R and h ∈ H we have the identity2

βM(u)[h] = M(βu)[h].

3. There exists a bounded linear operator T̂α,ξ on H, such that for each
α > 0 and ξ ∈ R we have

Tα,ξ

[
M(u)[h]

]
= M(Tα,ξu)[T̂α,ξh].

4. There exists a linear operator ∂̂x on HQ such that we have2

∂x
[
M(u)[h]

]
= M(ux)[h] +M(u)[∂̂xh],

for every h ∈ HQ and u ∈ H1(R).
5. The translation invariance identities

T̂α,ξQT̂ ∗
α,ξ = T̂αQT̂ ∗

α and T̂α,ξ∂̂xQT̂ ∗
α,ξ = T̂α∂̂xQT̂ ∗

α

hold for each α > 0 and ξ ∈ R, where T̂α is shorthand for T̂α,0 and T̂ ∗
α,ξ

denotes the H-adjoint of T̂α,ξ.
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The operator M takes on the role of multiplication between u and an
element of H. We remark that for each u ∈ H1(R) the operator M(u) has
an adjoint M∗(u) : L2(R) → H, which by definition satisfies〈

M(u)[h], f
〉
L2(R) =

〈
h,M∗(u)[f ]

〉
H (2.6)

for each h ∈ H and f ∈ L2(R).
With this assumption in place, we can assign a rigorous meaning to the

SPDE (2.1). Based on the flow S(t) = e−t∂3
x generated by the linear equation

ut = −∂3
xu, we call an H1-valued process u a mild solution to (2.1) with

initial condition u(0, ·) = u0 if the mild formula

u(t) = S(t)u0 −
∫ t

0

S(t− s)∂x
(
u2(s)

)
ds+ σ

∫ t

0

S(t− s)M
(
u(s)

)
[dWQ

s ]

(2.7)

holds for all t > 0. Alternatively, one can also consider weak solutions:
an H1-valued process u is a weak solution to (2.1) with initial condition
u(0, ·) = u0 if the identity

⟨u(t), ζ⟩L2 =⟨u0, ζ⟩L2 −
∫ t

0

⟨ux(s), ∂
2
xζ⟩L2 − 2⟨u(s)ux(s), ζ⟩L2 ds

+ σ

∫ t

0

⟨M(u(s))[dWQ
s ], ζ⟩L2 (2.8)

holds for all ζ ∈ H2(R) and t > 0. See for instance [45], which asserts the
existence of weak solutions for (2.1) posed on a bounded domain with scalar
noise. This solution type is, however, less common in the stochastic KdV
literature.

Let us illustrate the broad applicability of this abstract setting with three
examples, which we use throughout the paper to showcase our results.

2Items 2 and 4 of Assumption 2.2 restrict the setting to linear noise terms, in order to
keep our computations tractable. More general noise terms can be treated by applying a
function g : R → R point-wise and considering the noise term M

(
g(u)

)
. Items 2 and 4

then generalise to βM
(
g(u)

)
[h] = M

(
βg(u)

)
[h] and ∂x

[
M
(
g(u)

)
[h]
]
= M

(
g′(u)ux

)
[h] +

M
(
g(u)

)
[∂̂xh].
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2.1.1. Example I: Scalar multiplicative noise

As a first example, consider the KdV equation perturbed by a single
Brownian motion βt, which we write as

du = −(∂3
xu+ 2u∂xu) dt+ σu dβt. (2.9)

Here, the Brownian motion takes values in the Hilbert space H = R. Since
the perturbation is uniform in space, the covariance operator acts trivially
as Q = IR. In this case, we have HQ = R and the multiplication between the
noise and the function u is simply given by MI(u) : R → L2(R), which acts
on h ∈ R as

MI(u)[h] = hu.

By the defining identity (2.6), the formal adjoint M∗
I (u) must satisfy

⟨hu, f⟩L2 = hM∗
I (u)[f ],

which implies that M∗
I (u) : L

2(R) → R acts on f ∈ L2(R) as

M∗
I (u)[f ] = ⟨u, f⟩L2(R).

We furthermore compute

Tα,ξ

[
MI(u)[h]

]
=hTα,ξu = MI(Tα,ξu)[h],

∂x
[
MI(u)[h]

]
=hux = MI(ux)[h],

which shows that MI fits items 3 and 4 of Assumption 2.2 with T̂α,ξ = IR
and ∂̂x acting as ∂̂xh = 0 for all h ∈ R.

As pointed out in [41], we remark that (2.9) can be transformed into
a KdV equation with a random coefficient on the nonlinearity. Indeed, by
factoring out the geometric Brownian motion

g(t) = e−
σ2

2
t+σβt

as v = g−1u, we find

dv = −(∂3
xv + 2g(t)v∂xv) dt.

This reduces matters of well-posedness to the well-posedness of a KdV equa-
tion with varying coefficient on the nonlinearity. We are, however, unaware
of results that establish the well-posedness of such an equation with a non-
smooth coefficient.
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2.1.2. Example II: Translation-invariant colored noise

Our setting also allows for space-time noise from the Hilbert space H =
L2(R), with the usual inner product. We consider translation-invariant noise,
with a spatial correlation structure given by an even function q ∈ H1(R) ∩
L1(R) that has a non-negative Fourier transform q̂. We then introduce the
covariance operator Q that acts on f ∈ L2(R) as the convolution

Qf(x) =

∫
R
q(x− y)f(y) dy (2.10)

with respect to the kernel q. The integrability of q ensures that Q is a
bounded operator on L2(R), and the non-negativity of the Fourier transform
q̂ provides the remaining properties of Q in Assumption 2.1.

Well-posedness in this setting is asserted in [17], where the authors con-
struct mild solutions as per (2.7). We have the formal covariance identity

E
[
dWQ(x, t)dWQ(y, s)

]
= δ(t− s)q(x− y),

which quantifies how q determines the spatial correlation of the noise, de-
pending only on the distance between two points.

Using the kernel q, it is possible to provide an explicit formulation of the
operator Q1/2. To this end, note that Q acts as a Fourier multiplier with
symbol q̂. It follows from the assumption q ∈ H1(R)∩L1(R) and elementary
properties of the Fourier transform that q̂ lies in L1(R) and is bounded.
As a consequence, the function ξ 7→

√
q̂(ξ) is also bounded, and defines a

Fourier multiplier which is bounded on L2(R). Denoting the inverse Fourier
transform of

√
q̂ by q1/2 allows us to characterize Q1/2 as

Q1/2f(x) =

∫
R
q1/2(x− y)f(y) dy.

For future reference, it is convenient to introduce here a rescaled family
{Qα}α>0 of the convolution operator Q, which rescales correlation lengths of
the kernel q as

Qαf = αq(α·) ∗ f. (2.11)

Similarly, we set
(Q1/2)αf = αq1/2(α·) ∗ f.

14



In applications, one often encounters the Gaussian kernel

q(x) =
1

2ζ
e

−πx2

4ζ2 , (2.12)

where the parameter ζ > 0 is a measure for the correlation length. In this
case, q̂ is given by

q̂(ξ) =
1√
2πζ2

e
−ζ2ξ2

π .

We note that, with the kernel (2.12), Qα acts as

Qαf =
α

2ζ
e

−πα2x2

4ζ2 ∗ f,

so that the correlation length ζ of the Guassian kernel is effectively rescaled
to ζ/α.

In the setting of this example, the space-time noise enters the KdV equa-
tion via the operator MII (u) : L

2(R) → L2(R) that acts on h ∈ L2(R) as the
point-wise multiplication(

MII (u)[h]
)
(x) = h(x)u(x).

In order to verify that MII (u) is in the class HS(L2
Q, L

2) for each u ∈ L2(R),
we compute

∥MII (u)∥2HS(L2
Q,L2) =

∞∑
k=0

⟨uQ1/2ek, uQ
1/2ek⟩L2

=
∞∑
k=0

∫
R
u(x)2

〈
q1/2(x− ·), ek

〉2
L2dx

=

∫
R
u(x)2

〈
q1/2(x− ·), q1/2(x− ·)

〉
L2dx = ∥q1/2∥2L2∥u∥2L2 .

We then note that
∥q1/2∥2L2 = ∥

√
q̂∥2L2 = ∥q̂∥L1 ,

via Parseval’s theorem, and we conclude that the operator MII (u) is indeed
Hilbert-Schmidt.

Applying the adjoint identity (2.6) to the multiplication operator MII

yields
⟨hu, f⟩L2 =

〈
h,M∗

II (u)[f ]
〉
L2 ,
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which reveals that MII (u) is self-adjoint:

M∗
II (u)[f ] = uf = MII (u)[f ].

We can furthermore compute

Tα,ξ

[
MII (u)[h]

]
= Tα,ξuTα,ξh = MII (Tα,ξu)[Tα,ξh],

∂x
[
MII (u)[h]

]
= uxh+ uhx = MII (ux)[h] +MII (u)[hx],

which shows that MII satisfies items 3 and 4 of Assumption 2.2 with T̂α,ξ =

Tα,ξ and ∂̂x = ∂x. Lemma B.1 then shows that we have the identities

T̂α,ξQT̂ ∗
α,ξ = α−1Qα and T̂α,ξ∂̂xQT̂ ∗

α,ξ = α−2Qα∂x, (2.13)

where we recall that the operator Qα is defined in (2.11). Consequently, item
5 of Assumption 2.2 is met.

2.1.3. Example III: Space-time white noise

The setting described above formalizes translation-invariant space-time
noise with arbitrary correlation length. It is inviting to consider the limiting
case where the correlation length ζ in (2.12) tends to zero. This leads to
a space-time white noise Wt, which is completely uncorrelated in space and
time as specified by the formal identity

E[dW (x, t)dW (y, s)] = δ(t− s)δ(x− y).

Upon doing so, the regularising effect of the convolution with respect to the
kernel q is lost. As a consequence, it is unclear how to interpret the noise
termMII (u)dWt, sinceMII (u) is not in the class HS(L2, L2) and violates item
1 of Assumption 2.2. Indeed, to our knowledge, no well-posedness theory is
currently available for the KdV equation with multiplicative space-time white
noise.

Despite these limitations, we can proceed formally by considering the
covariance operator Q = IL2 , since convolution with respect to the Dirac
distribution acts as the identity operator IL2 . We stress that this procedure
only amounts to a formal computation, but as we shall see in the sequel the
results are very insightful. In this case, the translational invariance identities
simplify to

T̂αQT̂ ∗
α = α−1 and T̂α∂̂xQT̂ ∗

α = α−2∂x.
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2.2. Frozen-frame transformation

In this section, we formulate an SPDE that governs the evolution of the
remainder v in the co-moving frame introduced in (2.5). We postulate that
the rescaling and translation processes α and ξ satisfy the system

dα = γσ
d (v, α) dt+ γσ

s (v, α, ξ) dW
Q
t , (2.14)

dξ = µσ
d(v, α) dt+ µσ

s (v, α, ξ) dW
Q
t , (2.15)

where γσ
d , µ

σ
d are real-valued and γσ

s , µ
σ
s are linear operators fromH to R. The

drift components γσ
d , µ

σ
d and martingale components γσ

s , µ
σ
s will be explicitly

provided in §2.3. For now we note that γσ
s and µσ

s can be written as

γσ
s (v, α, ξ)[h] = −σα⟨T̂α,ξh, γs(v)⟩H, (2.16)

µσ
s (v, α, ξ)[h] = −σα⟨T̂α,ξh, µs(v)⟩H, (2.17)

where γs and µs are H-valued, depending only on v. In addition, the drift
components γσ

d and µσ
d are of the form

γσ
d (v, α) = α−2γ0

d(v) + σ2γd(v, α), (2.18)

µσ
d(v, α) = c∗α

−2 − α−2µ0
d(v) + σ2µd(v, α) (2.19)

where γ0
d, µ

0
d, γd and µd are real-valued.

In Appendix A we apply Itô’s lemma3 to show that the remainder v
defined in (2.2) with ξ and α as in (2.14)-(2.15) satisfies the SPDE

dv =α−3Lc∗v dt+Rσ(v, α) dt+ σS(v)[T̂α,ξdW
Q
t ], (2.20)

where the drift term Rσ(v, α) is of the form

Rσ(v, α) = α−3[N(v) +R0(v)] + σ2

6∑
i=1

Ri(v, α). (2.21)

Here N(v) is the KdV nonlinearity

N(v) = −∂x(v
2) = −2v∂xv,

3There are several Itô-type formulas available in the literature, tailored to different
solution types. In Appendix A, we apply the regular Itô formula [43, Theorem 4.32] to
the weak formulation (2.8). Applying the mild Itô formula [46, Theorem 1] to the mild
formulation (2.7) gives, after tedious computations, an equivalent result.
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while R0 through R6 are given by

R0(v) =− γ0
d(v)(2 + x∂x)[ϕc∗ + v]− µ0

d(v)∂x[ϕc∗ + v],

R1(v, α) =
1
2

∥∥Q1/2T̂ ∗
αµs(v)

∥∥2
H∂

2
x[ϕc∗ + v],

R2(v, α) =
∥∥Q1/2T̂ ∗

αγs(v)
∥∥2
H(

1
2
x2∂2

x + 2x∂x + 1)[ϕc∗ + v],

R3(v, α) =
〈
Q1/2T̂ ∗

αγs(v), Q
1/2T̂ ∗

αµs(v)
〉
H(x∂

2
x + 2∂x)[ϕc∗ + v],

R4(v, α) =− 2M(ϕc∗ + v)
[
T̂αQT̂ ∗

αγs(v)
]
− xM(∂xϕc∗ + vx)

[
T̂αQT̂ ∗

αγs(v)
]

− αxM(ϕc∗ + v)
[
T̂α∂̂xQT̂ ∗

αγs(v)
]
,

R5(v, α) =−M(∂xϕc∗ + vx)
[
T̂αQT̂ ∗

αµs(v)
]
− αM(ϕc∗ + v)

[
T̂α∂̂xQT̂ ∗

αµs(v)
]
,

R6(v, α) = α−1
(
γd(v, α)(2 + x∂x)[ϕc∗ + v] + µd(v, α)∂x[ϕc∗ + v]

)
. (2.22)

In addition, the operator S in (2.20) acts on h ∈ H as

S(v)[h] =M(ϕc∗ + v)[h]− (x∂x + 2)[ϕc∗ + v]⟨h, γs(v)⟩H
− ∂x[ϕc∗ + v]⟨h, µs(v)⟩H. (2.23)

Note that the noise term in (2.20) has been transformed via T̂α,ξ. The

translation invariance of T̂α,ξQT̂ ∗
α,ξ (see item 5 of Assumption 2.2) implies that

the transformed noise process T̂α,ξW
Q
t does, in distribution, not depend on ξ.

In what follows, we therefore omit the dependence of the noise transformation
on ξ. We do stress that it should be taken into account during numerical
simulations if a pathwise correspondence is desired.

2.3. Modulation equations

The SPDE (2.20) describes the evolution of the remainder (2.5) where
the shift ξ(t) and rescaling by α(t) are of the form (2.16)-(2.19). This leaves
the freedom to make an informed choice for the drift components γσ

d , µ
σ
d and

the martingale components γs, µs of α(t) and ξ(t). The objective underlying
this choice is to ensure that the remainder v remains small in the weighted
spaces L2

a defined in (1.5), with 0 < a <
√
c∗.

We note that (2.20) is a non-autonomous semi-linear equation on ac-
count of the fact that the linear operator Lc∗ carries a (t, ω)-dependent fac-
tor α−3(t, ω). This comes at no surprise in view of the scaling symmetry
(1.4), where the time-variable receives a factor α3. By transforming the
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time-variable t path-wise as (t, ω) 7→
∫ t

0
α−3(s, ω) ds, we can scale out the

(t, ω)-dependent factor in (2.20) as

dṽ = Lc∗ ṽ dτ + α̃3Rσ(ṽ, α̃) dτ + α̃3/2σS(ṽ)[T̂α̃dW
Q
τ ], (2.24)

where ṽ, α̃ and ξ̃ are time-transformed versions of v, α and ξ. For details,
we refer to [31, Lemma 6.2], where the same argument is carried out in the
setting of reaction-diffusion equations. After this transformation, (2.24) is
semi-linear, and we can recast it into the mild form

ṽ(τ) =

∫ τ

0

α̃3eLc∗ (τ−τ ′)Rσ(ṽ, α̃) dτ ′ +

∫ τ

0

α̃3/2eLc∗ (τ−τ ′)σS(ṽ)[T̂α̃dW
Q
τ ′ ].

(2.25)

In order to control the drift and martingale components of ṽ, and equivalently
v, we demand that the drift component Rσ(v, α) only takes values in the
subspace of L2

a characterized by (1.6), where the semigroup generated by
Lc∗ is contractive. Similarly, we demand that the stochastic integrand S(v)
defined in (2.23) maps H into this stable subspace.

Martingale components. Let us determine what form the martingale compo-
nents of α and ξ must have to ensure that S, as defined in (2.23), maps into
the stable subspace. More precisely, we require that〈

S(v)[h], ζc∗
〉
L2 =

〈
S(v)[h], ϕc∗

〉
L2 = 0,

for each v ∈ L2(R) and h ∈ H. This is achieved if γs, µs are chosen in such
a way that

K(v)

[〈
h, γs(v)

〉
H〈

h, µs(v)
〉
H

]
=

[〈
M(v + ϕc∗)[h], ϕc∗

〉
L2〈

M(v + ϕc∗)[h], ζc∗
〉
L2

]
holds for all v ∈ L2(R) and h ∈ H, where K(v) is the matrix

K(v) =

[〈
(x∂x + 2)[ϕc∗ + v], ϕc∗

〉
L2

〈
∂xv, ϕc∗

〉
L2〈

(x∂x + 2)[ϕc∗ + v], ζc∗
〉
L2

〈
∂x[ϕc∗ + v], ζc∗

〉
L2

]
. (2.26)

The matrix K(v) is invertible in case ∥v∥L2 < δ for some δ > 0, since K(v)
is invertible at v = 0 and the mapping v 7→ detK(v) is continuous from L2

to R. We then set [
γs(v)
µs(v)

]
= K−1(v)

[
M∗(v + ϕc∗)[ϕc∗ ]
M∗(v + ϕc∗)[ζc∗ ]

]
. (2.27)
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Drift components. Applying the orthogonality conditions (1.6) to the drift
component Rσ(v, α) also gives rises to a system of two linear equations

⟨Rσ(v, α), ζc∗⟩L2 = ⟨Rσ(v, α), ϕc∗⟩L2 = 0,

which is solved by setting[
γ0
d(v)

µ0
d(v)

]
= K(v)−1

[
⟨N(v), ϕc∗⟩L2

⟨N(v), ζc∗⟩L2

]
, (2.28)

together with [
γd(v, α)
µd(v, α)

]
= −αK−1(v)

5∑
i=1

[
⟨Ri(v, α), ϕc∗⟩L2

⟨Ri(v, α), ζc∗⟩L2

]
. (2.29)

We collect that the position and scaling processes ξ and α are governed
by the modulation system

dv = α−3Lc∗v dt+Rσ(v, α) dt+ σS(v)[T̂αdW
Q
t ], (2.30)

dα =
[
−α−2γ0

d(v) + σ2γd(v, α)
]
dt− σα

〈
T̂αdW

Q
t , γs(v)

〉
H, (2.31)

dξ =
[
c∗α

−2 − α−2µ0
d(v) + σ2µd(v, α)

]
dt− σα

〈
T̂αdW

Q
t , µs(v)

〉
H, (2.32)

and remark that the v-dependence on the right-hand side of (2.30) can be
summarised as

dv = α−3
[
Lc∗v +O(v2)

]
dt+ σ2O(1) dt+ σO(1) T̂αdW

Q
t .

We now return to the examples presented in Sections 2.1.1-2.1.3, which allows
various terms in the modulation system (2.30)-(2.32) to be simplified.

2.3.1. Example I: Scalar noise

In the setting of §2.1.1, the modulation system takes the form

dv = α−3Lc∗v dt+Rσ
I (v, α) dt+ σSI(v) dβt, (2.33)

dα =
[
−α−2γ0

d(v) + σ2αγd;I(v)
]
dt− σαγs;I(v) dβt, (2.34)

dξ =
[
c∗α

−2 − α−2µ0
d(v) + σ2αµd;I(v)

]
dt− σαµs;I(v) dβt. (2.35)

Here the drift component is given by

Rσ
I (v, α) = α−3

[
N(v) +R0(v)

]
+ σ2

6∑
i=1

Ri;I(v),
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where

R1;I(v) =
1
2
µs;I(v)

2∂2
x[ϕc∗ + v], (2.36)

R2;I(v) = γs;I(v)
2(1

2
x2∂2

x + 2x∂x + 1)[ϕc∗ + v], (2.37)

R3;I(v) = γs;I(v)µs;I(v)(x∂
2
x + 2∂x)[ϕc∗ + v], (2.38)

R4;I(v) =−
(
2γs;I(v)(ϕc∗ + v) + xγs;I(v)(∂xϕc∗ + vx)

)
, (2.39)

R5;I(v) =− µs;I(v)(∂xϕc∗ + vx), (2.40)

R6;I(v) = γd;I(v)(2 + x∂x)[ϕc∗ + v] + µd;I(v)∂x[ϕc∗ + v], (2.41)

while the martingale component is given by

SI(v) = ϕc∗ + v − 2γs;I(v)[ϕc∗ + v]− γs;I(v)x∂x[ϕc∗ + v]− µs;I(v)∂x[ϕc∗ + v].

The martingale components γs;I and µs;I are real-valued and take the form[
γs;I(v)
µs;I(v)

]
= K−1(v)

[
⟨v + ϕc∗ , ϕc∗⟩L2

⟨v + ϕc∗ , ζc∗⟩L2

]
, (2.42)

where we recall that the matrix K(v) is defined in (2.26). The drift compo-
nents γd;I and µd;I are given by[

γd;I(v)
µd;I(v)

]
=− µs;I(v)

2

[
γ1
d(v)

µ1
d(v)

]
− γs;I(v)

2

[
γ2
d(v)

µ2
d(v)

]
− γs;I(v)µs;I(v)

[
γ3
d(v)

µ3
d(v)

]
(2.43)

+ γs;I(v)K(v)−1

[〈
(x∂x + 2)[ϕc∗ + v], ϕc∗

〉
L2〈

(x∂x + 2)[ϕc∗ + v], ζc∗
〉
L2

]
+ µs;I(v)K(v)−1

[〈
∂x[ϕc∗ + v], ϕc∗

〉
L2〈

∂x[ϕc∗ + v], ζc∗
〉
L2

]
, (2.44)

where the terms γ1
d, . . . , γ

3
d and µ1

d, . . . , µ
3
d are defined by the expressions[

γ1
d(v)

µ1
d(v)

]
= K(v)−1

[
1
2

〈
∂2
x[ϕc∗ + v], ϕc∗

〉
L2

1
2

〈
∂2
x[ϕc∗ + v], ζc∗

〉
L2

]
, (2.45)[

γ2
d(v)

µ2
d(v)

]
= K(v)−1

[〈
(1
2
x2∂2

x + 2x∂x + 1)[ϕc∗ + v], ϕc∗

〉
L2〈

(1
2
x2∂2

x + 2x∂x + 1)[ϕc∗ + v], ζc∗
〉
L2

]
, (2.46)[

γ3
d(v)

µ3
d(v)

]
= K(v)−1

[〈
(x∂2

x + 2∂x)[ϕc∗ + v], ϕc∗

〉
L2〈

(x∂2
x + 2∂x)[ϕc∗ + v], ζc∗

〉
L2

]
. (2.47)

We remark that γd;I and µd;I induce an O(σ2) drift on α and ξ.
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2.3.2. Example II: Translation-invariant colored noise

In the setting of translation-invariant colored noise of §2.1.2, the modu-
lation equations for v, α and ξ take the form

dv = α−3Lc∗v dt+Rσ
II (v, α) dt+ σS⋄(v)[TαdW

Q
t ],

dα =
[
−α−2γ0

d(v) + σ2γd;II (v, α)
]
dt− σα

〈
TαdW

Q
t , γ⋄(v)

〉
L2 ,

dξ =
[
c∗α

−2 − α−2µ0
d(v) + σ2µd;II (v, α)

]
dt− σα

〈
TαdW

Q
t , µ⋄(v)

〉
L2 .

Here, the martingale component S⋄(v) acts on h ∈ L2(R) as
S⋄(v)[h] = (ϕc∗ + v)h− (x∂x + 2)[ϕc∗ + v]

〈
h, γ⋄(v)

〉
L2

− ∂x[ϕc∗ + v]
〈
h, µ⋄(v)

〉
L2 . (2.48)

The functions γ⋄ and µ⋄ are L2-valued and given by[
γ⋄(v)
µ⋄(v)

]
= K−1(v)

[
(v + ϕc∗)ϕc∗

(v + ϕc∗)ζc∗

]
. (2.49)

The drift component Rσ
II (v, α) follows from the general formulation (2.21),

where one evaluates the terms R4 and R5 using (2.13). These identities
also show that the inner products in R1, R2 and R3 can be computed for
f, g ∈ L2(R) as

⟨Q1/2T̂ ∗
αf,Q

1/2T̂ ∗
αg⟩L2 = ⟨T̂αQT̂ ∗

αf, g⟩L2 = α−1⟨Q1/2
α f,Q1/2

α g⟩L2 ,

where Qα is a rescaled version of the covariance operator Q as introduced in
(2.11). The drift components γd;II and µd;II are given by the expression[

γd;II (v, α)
µd;II (v, α)

]
=−

∥∥Q1/2
α µ⋄(v)

∥∥2
L2

[
γ1
d(v)

µ1
d(v)

]
−
∥∥Q1/2

α γ⋄(v)
∥∥2
L2

[
γ2
d(v)

µ2
d(v)

]
−
〈
Q1/2

α γ⋄(v), Q
1/2
α µ⋄(v)

〉
L2

[
γ3
d(v)

µ3
d(v)

]
+K(v)−1

[〈
(x∂x + 2)[ϕc∗ + v]Qαγ⋄(v), ϕc∗

〉
L2〈

(x∂x + 2)[ϕc∗ + v]Qαγ⋄(v), ζc∗
〉
L2

]
+K(v)−1

[〈
∂x[ϕc∗ + v]Qαµ⋄(v), ϕc∗

〉
L2〈

∂x[ϕc∗ + v]Qαµ⋄(v), ζc∗
〉
L2

]
+K(v)−1

[〈
(xQα∂xγ⋄(v) +Qα∂xµ⋄(v))(ϕc∗ + v), ϕc∗

〉
L2〈

(xQα∂xγ⋄(v) +Qα∂xµ⋄(v))(ϕc∗ + v), ζc∗
〉
L2

]
,

(2.50)

where we recall that the terms γ0
d, . . . , γ

3
d and µ0

d, . . . , µ
3
d are defined in (2.28)

and (2.45)-(2.47).
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2.3.3. Example III: Space-time white noise

In the setting of space-time noise of §2.1.3, the modulation system takes
a slightly simpler form, in the sense that the dependence on the rescaling
process α is more straightforward:

dv = α−3Lc∗v dt+Rσ
III (v, α) dt+ σS⋄(v)[TαdWt], (2.51)

dα =
[
−α−2γ0

d(v) + σ2γd;III (v)
]
dt− σα

〈
TαdWt, γ⋄(v)

〉
L2 , (2.52)

dξ =
[
c∗α

−2 − α−2µ0
d(v) + σ2µd;III (v)

]
dt− σα

〈
TαdWt, µ⋄(v)

〉
L2 , (2.53)

where

Rσ
III (v, α) = α−3

[
N(v) +R0(v)

]
+ σ2α−1

6∑
i=1

Ri;III (v),

and

R1;III (v) =
1
2

∥∥µ⋄(v)
∥∥2
H∂

2
x[ϕc∗ + v]

R2;III (v) =
∥∥γ⋄(v)

∥∥2
H(

1
2
x2∂2

x + 2x∂x + 1)[ϕc∗ + v]

R3;III (v) =
〈
γ⋄(v), µ⋄(v)

〉
H(x∂

2
x + 2∂x)[ϕc∗ + v]

R4;III (v) =− 2(ϕc∗ + v)γ⋄(v)− x(∂xϕc∗ + vx)γ⋄(v)

− x(ϕc∗ + v)∂xγ⋄(v)

R5;III (v) =− (∂xϕc∗ + vx)µ⋄(v)− (ϕc∗ + v)∂xµ⋄(v)

R6;III (v) = γd;III (v)(2 + x∂x)[ϕc∗ + v] + µd;III (v)∂x[ϕc∗ + v].

The martingale components S⋄, γ⋄ and µ⋄ are as in (2.49) and the drift com-
ponents of α and ξ take the form[

γd;III (v)
µd;III (v)

]
=−

∥∥µ⋄(v)
∥∥2
L2

[
γ1
d(v)

µ1
d(v)

]
−
∥∥γ⋄(v)

∥∥2
L2

[
γ2
d(v)

µ2
d(v)

]
−
〈
γ⋄(v), µ⋄(v)

〉
L2

[
γ3
d(v)

µ3
d(v)

]
+K(v)−1

[〈
(x∂x + 2)[ϕc∗ + v]γ⋄(v), ϕc∗

〉
L2〈

(x∂x + 2)[ϕc∗ + v]γ⋄(v), ζc∗
〉
L2

]
+K(v)−1

[〈
∂x[ϕc∗ + v]µ⋄(v), ϕc∗

〉
L2〈

∂x[ϕc∗ + v]µ⋄(v), ζc∗
〉
L2

]
+K(v)−1

[〈
(x∂xγ⋄(v) + ∂xµ⋄(v))(ϕc∗ + v), ϕc∗

〉
L2〈

(x∂xγ⋄(v) + ∂xµ⋄(v))(ϕc∗ + v), ζc∗
〉
L2

]
. (2.54)
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We recall again that the terms γ0
d, . . . , γ

3
d and µ0

d, . . . , µ
3
d are defined in (2.28)

and (2.45)-(2.47).

2.4. Numerical simulations

Having fully laid out the modulation systems in the stochastic co-moving
frame for our three example setups, we now explore the dynamics that the
systems produce via numerical simulations. We restrict ourselves to simula-
tions of scalar noise (Example I) and space-time white noise (Example III),
as the modulation systems for these examples are the most tractable. See
Appendix D for the numerical schemes that were employed to simulate the
stochastic KdV equation (1.1) and the modulation systems (2.33)-(2.35) and
(2.52)-(2.53).

Pathwise simulation. Figure 1 shows one realization obtained from a simu-
lation of the KdV equation (2.9) with multiplicative scalar noise in both the
original frame and co-moving frame.

In Figure 1a, we observe that the soliton propagates approximately at
a constant velocity, and at times slightly speeds up or slows down when it
increases or decreases in amplitude, respectively. The transformation from
the stochastic KdV equation (2.9) to the modulation system (2.33)-(2.35)
allows us to ‘freeze’ the stochastic soliton. In Figure 1b, the soliton remains
centered and roughly has constant amplitude. To the left of the soliton we
observe slight perturbations due to the noise. These can be observed more
clearly upon removing the soliton in Figure 1c, which reveals the ‘wake’
of the stochastic soliton. The stochastic perturbations encountered by the
soliton result in a radiation field to the left of the soliton. In Figure 1d, we
furthermore observe that the radiation field has undergone a rescaling in the
x-direction, as is evident from the distortion of the radiation waves. The
effect of the stochastic frozen-frame transformation can also be visualised in
the case of space-time white noise, see Figure E.11 in Appendix E.

For comparison purposes, we define ‘fitted’ versions of the position ξfit(t)
and amplitude cfit(t) of a solution u(t, x) to (2.1) implicitly via the identities〈

u
(
t, ·+ ξfit(t)

)
− ϕcfit(t), ζcfit(t)

〉
L2 = 0, (2.55)〈

u
(
t, ·+ ξfit(t)

)
− ϕcfit(t), ϕcfit(t)

〉
L2 = 0,

which we solve numerically. This allows us to compare the evolution of
soliton parameters obtained by direct simulation of (2.1) and the modulation
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(a) Original frame. (b) Stochastic co-moving frame.

(c) Original frame, soliton removed. (d) Stochastic co-moving frame, soliton removed.

Figure 1: Simulation of the KdV equation with scalar noise of strength σ = 0.25. Panel
(a) shows the original frame realization u(t, x), from a simulation of (2.9). Panel (b)
shows ϕc∗(x) + v(t, x), from simulation in the frozen frame of (2.33)-(2.35) with the same
realization of the noise. Panels (c) and (d) show the perturbation with respect to the
soliton, that is u(t, x)− ϕc(t)(x− ξ(t)) with the phase-definitions (2.55) in panel (c), and
v(t, x) in panel (d).

system (2.30)-(2.32). Recall therefore that the amplitude process c(t) can
be recovered from the rescaling process α(t) as c(t) = c∗α

−2(t). We also
introduce the phase shift processes

Ω(t) = ξ(t)−
∫ t

0

c(s) ds and Ωfit(t) = ξfit(t)−
∫ t

0

cfit(s) ds, (2.56)
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which track the deviation of the soliton position from the integrated stochas-
tic velocities c(t) and cfit(t) and isolate the noise-induced effects.
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Figure 2: Path-wise comparison of soliton amplitudes c(t) to cfit(t) (left) and phase shifts
Ω(t) to Ωfit(t) (right) at noise strength σ = 0.25 and initial amplitude c∗ = 3. The param-
eters cfit(t) and Ωfit(t), defined in (2.55) and (2.56), are obtained from direct simulation in
the original frame of (2.9). The soliton amplitude c(t) and phase shift Ω(t) are obtained
from simulation of the frozen frame system (2.33)-(2.35).

Figure 2 shows the correspondence between the evolution of the soliton
amplitude and phase shift in both frames. Note that the soliton amplitude
in this realization attains almost twice its original value at t = 2. The phase
shifts Ω and Ωfit develop a small discrepancy over time, which we attribute
mainly to truncation effects and the fact that errors in cfit are compounded
through the integral in (2.56).

Stability. The construction of the modulation system in §2.3 should ensure
that the perturbation v remains small in the exponentially weighted spaces
L2
a defined in (1.5). Figure 3 shows the average growth of the in L2

a-norm
of the perturbation v with respect to the soliton. The spatial norm of the
perturbation appears to grows logarithmically, as indicated by Figure 3b,
where we observe a linear growth of the perturbation size on logarithmic
scale. For the case of space-time white noise we refer to Figure E.12.

The logarithmic growth strongly suggests that our soliton-tracking method
is valid over exponentially long timescales. A logarithmic growth of the re-
maining perturbation is also observed in [32, Figure 3.8], where the spirit
of our approach is applied to traveling waves in reaction-diffusion equations.
Using this fact, Hamster and the second author rigorously prove in [33] that
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(a) Perturbation size over time.
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(b) Perturbation size over time, log-scale.

Figure 3: Sample mean of the process sups≤t ∥v(s)∥L2
a([−50,20]) for scalar noise, see (2.33),

computed over 500 realisations for σ ∈ {0.05, 0.075, 0.1, 0.125} and c∗ = 3. The expo-
nential weight eax in the L2

a-norm strongly amplifies numerical effects entering from the
right boundary of the computational domain [−50, 50]. We take care to avoid these by
computing the L2

a-norm on [−50, 20], with a = 0.5. For the initial soliton-parameter used
in this simulation, the relevant dynamics occur well within [−50, 20] (see Figure 1).

the exit-time from the soliton family is exponentially long with respect to
the parameter 1/σ.

3. Soliton dynamics

In this section, we set out to derive explicit, tractable expansions to un-
cover the effects of the multiplicative noise on the soliton amplitude c and
position ξ. In §2, we have seen that the dynamics of the soliton parameters
c and ξ are governed by the rescaling process α and the infinite dimensional
perturbation v, which follow the coupled equations

v(t) = Iσv (v, α, t),

α(t) = Iσα(v, α, t). (3.1)

For v, we choose to work with the mild formulation

Iσv (v, α, t) =

∫ t

0

e
∫ t
s α−3(t′)dt′Lc∗Rσ(v, α) ds (3.2)

+ σ

∫ t

0

e
∫ t
s α−3(t′)dt′Lc∗S(v)[T̂αdW

Q
s ],
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which follows from (2.25) by undoing the time transformation. This has the
advantage of being suitable for constructing explicit approximations. For Iσα
we use the strong form

Iσα(v, α, t) = 1 +

∫ t

0

[
−α−2γ0

d(v) + σ2γd(v, α)
]
ds

− σ

∫ t

0

α⟨T̂αdW
Q
s , γs(v)⟩H, (3.3)

which corresponds to (2.34).
To develop our approximation procedure, it is relevant to note that the

process α exhibits significant fluctuations, while the perturbation v remains
relatively small due to the damping of the semigroup. Indeed, we observe
that α grows as O(σ

√
t), which can be anticipated by noting that Iσα contains

no damping terms. On the other hand, Figure 3 indicates that v grows
at a slower rate, namely O(σ ln t). To construct approximations of α that
account for the influence of the perturbation v, we introduce SDEs based on
an expansion of the v-dependent coupling terms. In broad terms, we will
expand the α dynamics in terms of v, while expanding the v dynamics in
terms of σ, treating α as an external input.

Below, in §3.1, we describe the approximations to the coupled system
(3.1) in more detail and discuss how they lead to approximations for the
soliton amplitude c and phase shift Ω defined in (2.56). We proceed by eval-
uating the first few approximations for the cases of Example I (scalar noise)
and Example III (space-time white noise) in §3.3 and §3.4, respectively. These
explicit approximations are used to compute leading-order statistical proper-
ties, which we compare with sample statistics of the numerical observations
cfit and Ωfit defined in (2.55) and (2.56).

3.1. Expansion of the rescaling process

In order to unravel how the rescaling process α is influenced by the per-
turbation v, we introduce an expansion of α in terms of v. As a first step,
consider the situation where the perturbation v is set to zero in (3.1). That
is, we introduce a process A0 which satisfies

A0(t) = Iσα(0, A0, t) (3.4)

and we supply this SDE with the initial condition A0(0) = 1. The process
A0 then constitutes a relatively crude first approximation to α, which we
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subsequently refine by increasing the order of the perturbation v that we
take into account.

In particular, let us now include terms in the Itô form Iσα(v, α, t) that de-
pend linearly on v. We assume that there is an approximation of v available,
for which we introduce the variable ṽ1. This variable should be thought of as
approximating v with an error of O(σ2). The next approximation A1, given
the process ṽ1, is defined through the SDE

A1(ṽ1, t) = Iσα(0, A1, t) + [Iσα ]
(1)(ṽ1;A1, t).

Here, [Iσα ]
(1) is defined as

[Iσα ]
(1)(v;α, t) = σ2

∫ t

0

[γd]
(1)(v;α) ds− σ

∫ t

0

α
〈
T̂αdW

Q
s , [γs]

(1)(v)
〉
H,

with [γd]
(1) and [γs]

(1) denoting the linear parts of the mappings v 7→ γd(v, α)
and v 7→ γs(v). We remark that the functional γ0

d(v) in (3.3) contains no
linear part, and is therefore not included in the definition of [Iσα ]

(1).
In general, if f is a map from a Banach space X into a Banach space Y

that is N + 1 times differentiable at v = 0, we write

f(v) =
N∑
k=0

[f ](k)(v) +O
(
∥v∥N+1

X

)
where [f ](k)(v) ∼ vk is the symmetric k-linear map that collects the order
k powers of v in f(v). Alternatively, one can say that [f ](k)(v) denotes the
order k term in the Taylor expansion of v 7→ f(v) around zero.

This expansion procedure extends naturally to higher orders. For the
next approximation, we also include quadratic terms. Furthermore, we base
this approximation on an additional variable ṽ2, which should be thought of
as an approximation to v with error O(σ3). Given two processes ṽ1, ṽ2, we
define A2 as the solution to

A2(ṽ1, ṽ2, t) = Iσα(0, A2, t) + [Iσα ]
(1)(ṽ2;A2, t) + [Iσα ]

(2)(ṽ1;A2, t).

In general, Ak is defined implicitly in terms of the processes ṽ1, . . . , ṽk via
the SDE

Ak(ṽ1, . . . , ṽk, t) =Iσα(0, Ak, t) +
k∑

i=1

[Iσα ]
(i)(ṽ⌊ k

i
⌋;Ak, t) (3.5)
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with

[Iσα ]
(k)(v;α, t) =

∫ t

0

[
−α−2[γ0

d]
(k)(v) + σ2[γ]

(k)
d (v;α)

]
ds

− σ

∫ t

0

α
〈
T̂αdW

Q
s , [γs]

(k)(v)
〉
H.

3.2. Expansion of the perturbation

We now turn to the complementary problem and examine how the per-
turbation v depends on the rescaling process α. Treating α as an input, we
expand the perturbation v in terms of the small parameter σ as

Vk(α, t) = σV (1)(α, t) + . . .+ σkV (k)(α, t) (3.6)

based on the integral form (3.1). Here, V (k) collects all terms of O(σk) in the
Itô form (3.1). Collecting all O(σ) terms in Iσv , gives

V (1)(α, t) = σ−1Iσv (0, α, t) =

∫ t

0

e
∫ t
s α−3(t′)dt′Lc∗S(0)[T̂αdW

Q
s ].

In order to find the subsequent term V (2) in the expansion (3.6), we
note first that the drift component in the Itô form (3.2) satisfies Rσ(v, α) =
O(v2 + σ2). Consequently, we can explicitly define V (2) in (3.6) using V (1).
Indeed, collecting the O(σ2) terms in Iσv , we arrive at

V (2)(α, t) =

∫ t

0

α−3e
∫ t
s α−3(t′)dt′Lc∗

[
N
(
V (1)(α, s)

)
+ [R0]

(2)
(
V (1)(α, s)

)]
ds

+

∫ t

0

e
∫ t
s α−3(t′)dt′Lc∗

6∑
i=1

Ri(0, α) ds

+

∫ t

0

e
∫ t
s α−3(t′)dt′Lc∗ [S](1)

(
V (1)(α, s)

)
[T̂αdW

Q
s ].

Any subsequent term V (k) in (3.6) can now be found by continuing sys-
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tematically. In general, we have

V (k)(α, t) =

∫ t

0

α−3e
∫ t
s α−3(t′)dt′Lc∗

[
χ(k)N

(
V ( k

2
)(α, s)

)
+
∑
i|k

[R0]
(i)
(
V ( k

i
)(α, s)

)]
ds

+

∫ t

0

e
∫ t
s α−3(t′)dt′Lc∗

6∑
i=1

∑
j|(k−2)

[Ri]
(j)
(
V ( k−2

j
)(α, s);α

)
ds

+

∫ t

0

e
∫ t
s α−3(t′)dt′Lc∗

∑
i|(k−1)

[S](i)
(
V ( k−1

i
)(α, s)

)
[T̂αdW

Q
s ],

where χ(k) = 1 if k is even and χ(k) = 0 otherwise.

The combined system approximation. We now combine the expansion of α
in v and the expansion of v in σ to construct our full approximations to the
coupled system (3.1). We define for k ≥ 0 approximations αk to α as

αk(t) = Ak

(
V1(αk−1, ·), . . . , Vk(αk−1, ·), t

)
,

and introduce for k ≥ 1 the approximations

vk(t) = Vk(αk−1, t),

to v.

Soliton parameters. The soliton amplitude directly follows from the rescaling
process α via the relation c(t) = c∗α

−2(t). We can therefore define approxi-
mations c0, c1, c2, . . . to c by directly writing

ck = c∗α
−2
k for k ≥ 0.

On the other hand, ξ depends less straightforwardly on v and α. In §2
we have seen that ξ can be recovered from the identity

ξ(t) =

∫ t

0

c(s) ds+ IσΩ(v, α, t),

where

IσΩ(v, α, t) =−
∫ t

0

α−2µ0
d(v) ds+ σ2

∫ t

0

µd(v, α) ds− σ

∫ t

0

α
〈
T̂αdW

Q
s , µs(v)

〉
H.
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Note that the position primarily follows the velocity c(t), with additional
noise-induced corrections resulting in the phase shift

Ω(t) = ξ(t)−
∫ t

0

c(s) ds = IσΩ(v, α, t). (3.7)

Analogously to (3.4) and (3.5), we define approximations to the phase shift
Ω(t) as

Ω0(t) = IσΩ(0, α0, t),

and for k ≥ 1

Ωk(t) = IσΩ(0, αk, t) +
k∑

i=1

[IσΩ]
(i)
(
V⌊ k

i
⌋(αk, t);αk, t

)
.

We now examine what these approximation constructions produce for the
examples discussed in §2.

3.3. Example I: Scalar noise

We first turn to the setting of Example I outlined in §2.1.1. Here, v, α
and ξ follow the modulation system (2.33)-(2.35). We observe that the fully
decoupled approximation in this setting satisfies the SDE

dα0 = γd;I(0)σ
2α0 dt− γs;I(0)σα0 dβt

= ( 74
135

+ 4π2

405
)σ2α0 dt− 2

3
σα0 dβt

with α0(0) = 1. Here we have used Table C.1 to evaluate the constants. This
SDE admits the explicit solution

α0(t) = e(γd;I(0)− 1
2
γ2
s;I(0))σ

2t−γs;I(0)σβt = e(
44
135

+ 4π2

405
)σ2t− 2

3
σβt ,

which is a geometric Brownian motion.
At first order, the perturbation is given by

v1(t) = σ

∫ t

0

e
∫ t
s α−3

0 (t′)dt′Lc∗SI(0) dβs

where we remark that

SI(0) = −1
3
ϕc∗ − 2

3
x∂xϕc∗ +

2
3
c−1/2
∗ ∂xϕc∗ .
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The subsequent approximation α1 to the rescaling process is the geometric
Brownian motion

dα1 = σ2K1,1
I (t)α1 dt− σK2,1

I (t)α1 dβt,

with random coefficients K1,1
I (t), K2,1

I (t) that are given explicitly by

K1,1
I (t) =γd;I(0) + [γd;I ]

(1)
(
v1(t)

)
,

K2,1
I (t) =γs;I(0) + [γs;I ]

(1)
(
v1(t)

)
.

The second order approximation for the perturbation is given explicitly
by

v2(t) = σV (1)(α1, t) + σ2V (2)(α1, t),

using

V (1)(α, t) =

∫ t

0

e
∫ t
s α−3(t′)dt′Lc∗SI(0) dβs

and

V (2)(α, t) =

∫ t

0

α−3(s)e
∫ t
s α−3(t′)dt′Lc∗

[
N
(
V (1)(α, s)

)
+ [R0]

(2)
(
V (1)(α, s)

)]
ds

+

∫ t

0

e
∫ t
s α−3(t′)dt′Lc∗

6∑
i=1

Ri;I(0) ds

+

∫ t

0

e
∫ t
s α−3(t′)dt′Lc∗ [SI ]

(1)
(
V (1)(α, s)

)
dβs.

This approximation collects the leading-order drift effects in the perturbation
v. The sample mean of v and v2 are displayed in Figure 4, which shows the
development of an average radiation field induced by the noise. These sample
means are computed by first subtracting the process v1, which has mean zero.
This eliminates the leading-order fluctuations and speeds up convergence to
the mean. In contrast to wave profiles in the stochastic (FitzHugh)-Nagumo
equations analysed in [32], the average perturbation does not localise around
the wave profile and does not seem to converge in time. Rather, the noise
leads to an average pattern of radiation waves that expands far behind the
soliton.

Using v2, the approximation α2 is defined through the scalar SDE

dα2 = [−K0,2
I (t)α−2

2 + σ2K1,2
I (t)α2] dt− σK2,2

I (t)α2 dβt
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Figure 4: Sample mean of v (dashed) and the approximation v2 (solid) as the perturbation
develops between t = 0.5 and t = 2. Computed over 3000 realisations for σ = 0.03.

with random coefficients

K0,2
I (t) = [γ0

d]
(2)
(
σV (1)(α1, t)

)
,

K1,2
I (t) = γd;I(0) + [γd;I ]

(1)
(
v2(t)

)
+ [γd;I ]

(2)
(
σV (1)(α1, t)

)
,

K2,2
I (t) = γs;I(0) + [γs;I ]

(1)
(
v2(t)

)
+ [γs;I ]

(2)
(
σV (1)(α1, t)

)
.

Amplitude. The first approximation for the soliton amplitude c(t) is the ge-
ometric Brownian motion

c0(t) = c∗α
−2
0 (t) = c∗e

−( 88
135

+ 8π2

405
)σ2t+ 4

3
σβt .

We remark that for small noise strengths σ, the dynamics of c0(t) are largely

determined by the factor e
4
3
σβt . Note that this factor is also present in (1.9),

which heuristically explains how the leading-order stochastic dynamics of c(t)
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arise. Using the exact expression

Var[c0(t)] = c2∗e
( 64
135

− 16π2

405
)σ2t(e

16
9
σ2t − 1), (3.8)

we compare the variance of c0(t) to the sample variance of cfit(t) in Figure 5a.
Although the approximation c0 is fully decoupled from the perturbation v,
we see that its variance already agrees quite well with that of c(t).
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(a) Scalar noise.
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(b) Space-time white noise.

Figure 5: Sample variance of the process cfit(t)/c∗ for scalar noise and space-time white
noise at various noise strengths σ. Solid lines indicate the sample variance, dashed lines
indicate the variance of c0(t) as in (3.8) and (3.15), respectively. The sample variance is
computed over 204 · 104 and 8 · 104 realizations, respectively.

Figure 6 compares the mean of cfit(t) with that of the increasingly refined
approximations c0(t), c1(t) and c2(t), using

E[c0(t)] = c∗e
( 32
135

− 8π2

405
)σ2t (3.9)

for c0(t). The means of c1(t) and c2(t) are not as easily computed analytically
due to the dependence on α and v in the random coefficients K0,2

I (t), K1,2
I (t)

and K2,2
I (t). We therefore consider their sample means. We see in Figure 6

that the mean of cfit(t) is not well-approximated by that of c0(t) or c1(t).
The sample mean of c2(t), however, agrees well with that of cfit(t), indicating
that the quadratic terms of v contribute significantly to the evolution of the
mean amplitude.
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(a) Mean of cfit(t)/c∗ at various noise strengths.
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(b) Means of cfit(t)/c∗ and approximations c0(t) and
c2(t).

Figure 6: Sample mean of the process cfit(t)/c∗ computed over 2 ·104 realisations for scalar
noise. The mean of c2(t) (dashed) agrees well with that of cfit(t) at the simulated noise
strength values σ ∈ {0.1, 0.15, 0.2}, whereas the mean of c0(t) (dash dot) as in (3.9) fails
to capture the correct amplitude drift. The mean of c1(t) provides no improvement, it can
not be distinguished from that of c0(t) at these simulation values.

Phase shift. The first approximation to the phase shift process Ω(t) defined
in (2.56) is given by

Ω0(t) = µd;I(0)σ
2

∫ t

0

α0(s) ds+
2
3
c−1/2
∗ σ

∫ t

0

α0(s) dβs.

We remark that numerical computations of Ωfit(t) are unsuitable for ensemble
simulations, due to a large truncation error (see Figure 2). We therefore
consider ensemble simulations of the more robust process Ω(t). Figure 7
shows that the soliton position, on average, develops a phase lag from the
velocity c(t) which appears to grow almost linearly in time. The mean of the
lowest approximation Ω0(t) is evaluated as

E[Ω0(t)] = µd;I(0)σ
2

∫ t

0

E
[
α0(s)

]
ds

=
(16π

2

405
− 34

45
)c

−1/2
0

74
135

+ 4π2

405

(
e(

74
135

+ 4π2

405
)σ2t − 1

)
. (3.10)
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For the variance, we write

Var[Ω0(t)] =
4
9
c−1
∗ σ2Var

[∫ t

0

α0(s) dβs

]
+ 4

3
c−1/2
∗ µd;I(0)σ

3Cov
(∫ t

0

α0(s) ds,

∫ t

0

α0(s) dβs

)
+ µd;I(0)

2σ4Var
[∫ t

0

α0(s) ds
]
,

and explicitly compute the leading-order term

σ2Var
[∫ t

0

α0(s) dβs

]
= 4

9
c−1
∗ σ2E

(∫ t

0

α0(s) dβs

)2

= 4
9
c−1
∗ σ2

∫ t

0

E
[
α2
0(s)

]
ds

= 45
2c∗(78+π2)

(
e(

208
135

+ 8π2

405
)σ2t − 1

)
. (3.11)

In Figure 7 we compare these statistics of Ω0(t) to sample statistics of Ω(t).
The sample variance agrees well with the prediction (3.11). The sample
mean, however, differs slightly from the prediction (3.10). We observe that
the approximation is significantly improved upon considering the sample
mean of Ω2(t).

Remainders. In order to confirm that our approximation procedure only
neglects higher-order noise effects, we numerically investigate the result-
ing error. Figure 8 shows the growth of the remainders ∥v(t) − v1(t)∥L2

a

and |c(t) − c2(t)|. Indeed, the size of the remainders ∥v(t) − v1(t)∥L2
a
and

|c(t) − c2(t)| decreases significantly with decreasing values of σ. An estima-
tion of the order β at which these remainders depend on σ (see Figure E.13
in Appendix E) reveals that the remainders ∥v(t)−v1(t)∥L2

a
and |c−c2| scale

with a power of σ higher than 2 and 3, respectively. This indicates that c2
indeed captures all effects of O(σ2).

3.4. Example III: Space-time white noise

We now turn to the setting of space-time white noise, introduced in §2.1.3,
where α and ξ follow the modulation equations (2.52)-(2.53). A key differ-
ence in this example is that the noise is space-dependent. The modulation
equations are formulated in the stochastic co-moving frame, where the noise
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(a) Sample mean of Ω(t).
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Figure 7: Sample statistics of the process Ω(t) for scalar noise. Computed over 3 · 103
realizations for σ ∈ {0.1, 0.15, 0.2}. Dash-dotted lines indicate the theoretical mean and
(leading-order) variance of Ω0(t) as in (3.10) and (3.11), respectively. Panel (a) also shows
the sample mean of Ω2(t) (dotted), which gives significant improvement over the mean of
Ω0(t).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(a) Sample mean of sups≤t ∥v(s)− v1(s)∥L2
a
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(b) Sample mean of sups≤t |c(s)− c2(s)|.

Figure 8: The error made by approximating v with the first order expansion v1 and c
with the second order expansion c2, for scalar noise. Computed over 200 simulations, for
σ ∈ {0.05, 0.075, 0.1, 0.125}.

undergoes a spatial rescaling by Tα. We discuss this noise transformation
in Appendix B, where we show that the process W̃t := α1/2TαWt generates
the same statistics as the white noise Wt. In what follows, we formulate the
modulation equations (2.52)-(2.53) using the space-time white noise W̃t.

The first approximation to the rescaling process α is then defined as the

38



process α0 which satisfies the SDE

dα0 = γd;III (0)σ
2 dt− σα

1/2
0

〈
dW̃t, γ⋄(0)

〉
L2 , (3.12)

with α0(0) = 1. Note that, in distribution, the Brownian motion driving this
SDE equals

−σ
〈
W̃t, γ⋄(0)

〉
L2

d
=
∥∥γ⋄(0)

∥∥
L2σβt =

√
4
35
c1/4∗ σβt,

so that (3.12) is of the form

dX(t) = δ dt+ sX1/2(t) dβt. (3.13)

The solution to (3.13) with δ ≥ 0 is known as a squared Bessel process
[47]. The squared Bessel process X(t) remains strictly positive for δ ≥ 1

2
s2,

and therefore the drift component γd;III (0) ≈ 0.093c
1/2
∗ ≥ 2

35
c
1/2
∗ in (3.12) is

large enough to ensure that α0(t) remains strictly positive. The mean of the
approximation α0 is easily computed as4

E
[
α0(t)

]
= 1 + γd;III (0)σ

2t ≈ 1 + 0.093c1/2∗ σ2t.

At first order, the perturbation is given by

v1(t) = σ

∫ t

0

α−1/2(s)e
∫ t
s α−3

0 (t′)dt′Lc∗S⋄(0)[dWs],

where

S⋄(0)[h] = ϕc∗h− 1
9
c−3/2
∗ (x∂x + 2)ϕc∗⟨h, ϕ2

c∗⟩L2

− 2
9
∂xϕc∗⟨h, c−2

∗ ϕ2
c∗ − c−1/2

∗ ϕc∗ζc∗⟩L2 . (3.14)

The second order approximation for the perturbation is given explicitly as

v2(t) = σV (1)(α1, t) + σ2V (2)(α1, t),

4Higher order and negative moments can in principle be computed explicitly by using
that a Bessel process X(t) as defined by (3.13) has the noncentral Chi-square distribution
4
s2tX(t) ∼ χ2

4δ/s2

(
4
s2tX(0)

)
.
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using

V (1)(α, t) =

∫ t

0

α−1/2(s)e
∫ t
s α−3(t′)dt′Lc∗S⋄(0)[dWs]

and

V (2)(α, t) =

∫ t

0

α−3(s)e
∫ t
s α−3(t′)dt′Lc∗

[
N
(
V (1)(α, s)

)
+ [R0]

(2)
(
V (1)(α, s)

)]
ds

+

∫ t

0

α−1(s)e
∫ t
s α−3(t′)dt′Lc∗

6∑
i=1

Ri;III (0) ds

+

∫ t

0

α−1/2(s)e
∫ t
s α−3(t′)dt′Lc∗ [S⋄]

(1)
(
V (1)(α, s)

)
[dWs].

The subsequent approximation α1 to the rescaling process satisfies the square
root SDE

dα1 = σ2K1,1
III (t) dt− σα

1/2
1

〈
dW̃t, K

2,1
III (t)

〉
L2 ,

with random coefficient

K1,1
III (t) = γd;III (0) + [γd;III ]

(1)
(
v1(t)

)
,

where K2,1
III is the process

K2,1
III (t) = γ⋄(0) + [γ⋄]

(1)
(
v1(t)

)
.

Subsequently, the approximation α2 is given by the SDE

dα2 = [−K0,2
III (t)α

−2
2 + σ2K1,2

III (t)] dt− σα
1/2
2

〈
dW̃t, K

2,2
III (t)

〉
L2

with random coefficients

K0,2
III (t) = [γ0

d]
(2)
(
σV (1)(α1, t)

)
,

K1,2
III (t) = γd;III (0) + [γd;III ]

(1)
(
v2(t)

)
+ [γd;III ]

(2)
(
σV (1)(α1, t)

)
,

where K2,2
III (t) is the process

K2,2
III (t) = γ⋄(0) + [γ⋄]

(1)
(
v2(t)

)
+ [γ⋄]

(2)
(
σV (1)(α1, t)

)
.
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Amplitude. Using Itô’s lemma and (3.12), we find that the first approxima-
tion c0(t) = c∗α

−2
0 (t) for the amplitude process c(t) has the Itô form

c0(t) = c∗ + 2c∗σ

∫ t

0

α
−5/2
0

〈
dW̃s, γ⋄(0)

〉
L2

+ c∗σ
2
[
−2γd;III (0) + 3∥γ⋄(0)∥2L2

] ∫ t

0

α−3
0 ds.

We compute the leading-order variance

Var[c0(t)] = 4σ2c2∗E
[(∫ t

0

α
−5/2
0

〈
dWs, γ⋄(0)

〉
L2

)2]
+O(σ3)

= 4σ2c2∗
∥∥γ⋄(0)

∥∥2
L2

∫ t

0

E
[
α−5
0

]
ds+O(σ3)

= 16
35
σ2c5/2∗

∫ t

0

E
[
α−5
0

]
ds+O(σ3) (3.15)

and compare this expression to the sample variance of cfit(t) in Figure 5b.
Figure 9 compares the mean of cfit(t) with that of the increasingly refined

approximations c0(t), c1(t) and c2(t). Here we use

E[c0(t)] = c∗ + c∗σ
2
[
−2γd;III (0) + 3

∥∥γ⋄(0)
∥∥2
L2

] ∫ t

0

E
[
α−3
0 (s)

]
ds (3.16)

≈ c∗ + 0.16c3/2∗ σ2

∫ t

0

E
[
α−3
0 (s)

]
ds, (3.17)

and numerically compute the negative moment E[α−3
0 (t)]5. For the means of

c1(t) and c2(t) we, once more, resort to the sample mean. As is the case for
scalar noise, the quadratic terms of v contribute significantly to the mean
amplitude, and the mean of cfit(t) is not well-approximated by that of c0(t).
We see in Figure 9 that the amplitude drift is well-approximated by the mean
of c2(t).

5We remark that, alternatively, this moment can be evaluated numerically by repeated
integration of the moment generating function of α0(t), which has a noncentral Chi-square
distribution.
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(a) Mean of cfit(t)/c∗ at various noise strengths.
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Figure 9: Sample mean of the process cfit(t)/c∗ computed over 36 · 103 realisations for
space-time white noise. The mean of c2(t) (dashed) agrees well with that of cfit(t) at the
simulated noise strength values σ ∈ {0.07, 0.11, 0.15}, whereas the mean of c0(t) (dash
dot) as in (3.9) fails to capture the correct amplitude drift. The mean of c1(t) provides no
improvement, it can not be distinguished from that of c0(t) at these simulation values.

Phase shift. The first approximation Ω0(t) to the phase shift process Ω(t)
defined in (2.56) is given by

Ω0(t) = σ2µd;III (0)t− σ

∫ t

0

α
1/2
0

〈
dW̃s, µ⋄(0)

〉
L2 . (3.18)

We can explicitly compute the variance of the phase shift approximation
Ω0(t):

Var[Ω0(t)] = σ2E
(∫ t

0

α
1/2
0 ⟨dW̃s, µ⋄(0)⟩L2

)2

= σ2
∥∥⟨·, µ⋄(0)⟩L2

∥∥2
HS(L2,R)

∫ t

0

E
[
α0(s)

]
ds

= σ2
∥∥µ⋄(0)

∥∥2
L2(t+

1
2
γd;III (0)σ

2t2)

≈ 0.435c−1/2
∗ σ2t+ 0.02σ4t2. (3.19)

This expression agrees well with the sample variance of Ω(t), as shown in
Figure 10a.

The mean phase shift from the primary velocity c(t) is influenced by
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(b) Sample mean of Ω(t).
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(c) Means of Ωfit(t) and approxi-
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Figure 10: Sample statistics (solid) of the process Ω(t) for space-time white noise, at noise
strengths σ ∈ {0.07, 0.11, 0.15}. Dashed lines indicate the theoretical variance of Ω0(t)
as in (3.19) and the sample mean of Ω2(t), respectively. The dash-dotted line in panel
(c) shows the mean of Ω0(t), see (3.18), which fails to capture the correct phase drift.
The sample variance is computed over 2500 realizations and the sample mean over 104

realizations.

quadratic terms of the perturbation v. We thus consider the process

Ω2(t) =−
∫ t

0

M0,2
III (s)α−2

2 (s) ds+ σ2

∫ t

0

M1,2
III (s) ds

− σ

∫ t

0

α
1/2
2

〈
dW̃s,M

2,2
III (s)

〉
L2

with random coefficients

M0,2
III (t) = [µ0

d]
(2)
(
V1(α2, t)

)
,

M1,2
III (t) = µd;III (0) + [µd;III ]

(1)
(
V2(α2, t)

)
+ [µd;III ]

(2)
(
V1(α2, t)

)
and where M2,2

III is the process

M2,2
III (t) = µ⋄(0) + [µ⋄]

(1)
(
V2(α2, t)

)
+ [µ⋄]

(2)
(
V1(α2, t)

)
.

We compare a numerical evaluation of the mean

E[Ω2(t)] =−
∫ t

0

E
[
M0,2

III (s)α−2
2 (s)

]
ds+ σ2

∫ t

0

E
[
M1,2

III (s)
]
ds

to the sample mean of Ω(t) in Figure 10b and observe that they agree quite
well.
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Appendix A. Frozen-frame transformation

Our goal here is to derive the SPDE (2.20) for the remainder v = α2Tα,ξu−
ϕc∗ , where we recall that the processes α and ξ satisfy (2.14) and (2.15),
respectively. We define Φα,ξu = α2Tα,ξu so that v = Φα,ξu − ϕc∗ . For an
arbitrary test-function ζ, we now characterize the evolution of the real-valued
process

⟨v, ζ⟩L2 = ⟨Φα,ξu− ϕc∗ , ζ⟩L2 .

To this end, we collect the first and second-order (Fréchet) derivatives of the
mapping (u, α, ξ) 7→ ⟨Φα,ξu, ζ⟩L2 . For the derivatives with respect to u, α
and ξ we can write

∂u⟨Φα,ξu, ζ⟩L2 [v] = α2⟨Tα,ξv, ζ⟩L2

∂α⟨Φα,ξu, ζ⟩L2 = 2α⟨Tα,ξu, ζ⟩L2 + α2⟨xTα,ξux, ζ⟩L2

∂ξ⟨Φα,ξu, ζ⟩L2 = α2⟨Tα,ξux, ζ⟩L2 ,

and for the second derivatives we find

∂2
u⟨Φα,ξu, ζ⟩L2 [v, w] = 0,

∂2
α⟨Φα,ξu, ζ⟩L2 = 2⟨Tα,ξu, ζ⟩L2 + 4α⟨xTα,ξux, ζ⟩L2 + α2⟨x2Tα,ξuxx, ζ⟩L2 ,

∂2
ξ ⟨Φα,ξu, ζ⟩L2 = α2⟨Tα,ξuxx, ζ⟩L2 ,

∂αξ⟨Φα,ξu, ζ⟩L2 = 2α⟨Tα,ξux, ζ⟩L2 + α2⟨xTα,ξuxx, ζ⟩L2 ,

∂uα⟨Φα,ξu, ζ⟩L2 [v] = 2α⟨Tα,ξv, ζ⟩L2 + α2⟨xTα,ξvx, ζ⟩L2 ,

∂uξ⟨Φα,ξu, ζ⟩L2 [v] = α2⟨Tα,ξvx, ζ⟩L2 .

Upon choosing an orthonormal basis {ek}∞k=0 of H, Itô’s lemma [43, Theorem
4.32] now gives

d⟨v, ζ⟩L2 =
6∑

i=0

R
σ

i (u, α, ξ, ζ) dt+ S
σ
(u, α, ξ, ζ)[dWQ

t ],
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where

R
σ

0 (u, α, ξ, ζ) = ∂u⟨Φα,ξu, ζ⟩L2 [−uxxx − 2uux],

R
σ

1 (u, α, ξ, ζ) =
1
2

∞∑
k=0

γσ
s [Q

1/2ek]
2∂2

α⟨Φα,ξu, ζ⟩L2 ,

R
σ

2 (u, α, ξ, ζ) =
1
2

∞∑
k=0

µσ
s [Q

1/2ek]
2∂2

ξ ⟨Φα,ξu, ζ⟩L2 ,

R
σ

3 (u, α, ξ, ζ) =
∞∑
k=0

γσ
s [Q

1/2ek]µ
σ
s [Q

1/2ek]∂αξ⟨Φα,ξu, ζ⟩L2 ,

R
σ

4 (u, α, ξ, ζ) = σ
∞∑
k=0

γσ
s [Q

1/2ek]∂uα⟨Φα,ξu, ζ⟩L2

[
M(u)[Q1/2ek]

]
,

R
σ

5 (u, α, ξ, ζ) = σ
∞∑
k=0

µσ
s [Q

1/2ek]∂uξ⟨Φα,ξu, ζ⟩L2

[
M(u)[Q1/2ek]

]
,

R
σ

6 (u, α, ξ, ζ) = γσ
d ∂α⟨Φα,ξu, ζ⟩L2 + µσ

d∂ξ⟨Φα,ξu, ζ⟩L2 ,

and

S
σ
(u, α, ξ, ζ)[h] = σ∂u⟨Φα,ξu, ζ⟩L2

[
M(u)[h]

]
+ ∂α⟨Φα,ξu, ζ⟩L2γσ

s [h]

+ ∂ξ⟨Φα,ξu, ζ⟩L2µσ
s [h].

In the term R
σ

3 (u, α, ξ, ζ), we simplify the summation as

∞∑
k=0

γσ
s [Q

1/2ek]µ
σ
s [Q

1/2ek] = σ2α2

∞∑
k=0

⟨T̂α,ξQ
1/2ek, γs⟩H⟨T̂α,ξQ

1/2ek, µs⟩H

= σ2α2⟨Q1/2T̂ ∗
α,ξγs, Q

1/2T̂ ∗
α,ξµs⟩H,

where we have used that γσ
s is of the form (2.16). In the mixed derivative

∂αξ⟨Φα,ξu, ζ⟩L2 = 2α⟨Tα,ξux, ζ⟩L2 + α2⟨xTα,ξuxx, ζ⟩L2

we substitute

Tα,ξ[∂
j
xu] = α−(j+2)∂j

x[ϕc∗ + v], (A.1)

for j = 1, 2 and find

R
σ

3 (u, α, ξ, ζ) = 2σ2⟨Q1/2T̂ ∗
α,ξγs, Q

1/2T̂ ∗
α,ξµs⟩H⟨∂x[ϕc∗ + v], ζ⟩L2

+ σ2⟨Q1/2T̂ ∗
α,ξγs, Q

1/2T̂ ∗
α,ξµs⟩H⟨x∂2

x[ϕc∗ + v], ζ⟩L2 .
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An analogous computation shows that

R
σ

1 (u, α, ξ, ζ) = σ2∥Q1/2T̂ ∗
α,ξγs∥2H

(
2⟨ϕc∗ + v, ζ⟩L2

+ 4⟨x∂x[ϕc∗ + v], ζ⟩L2 + ⟨x2∂2
x[ϕc∗ + v], ζ⟩L2

)
and

R
σ

2 (u, α, ξ, ζ) = σ2∥Q1/2T̂ ∗
α,ξµs∥2H⟨∂x[ϕc∗ + v], ζ⟩L2 .

In order to simplify the term R
σ

5 (u, α, ξ, ζ), we rewrite the summands as

µσ
s [Q

1/2ek]∂
2
uξ⟨Φα,ξu, ζ⟩L2

[
M(u)[Q1/2ek]

]
= −σα3⟨T̂α,ξQ

1/2ek, µs⟩H⟨Tα,ξ∂xM(u)[Q1/2ek], ζ⟩L2

= σα3⟨ek, Q1/2T̂ ∗
α,ξµs⟩H

〈
ek, Q

1/2M∗(u)[∂xT
∗
α,ξζ]

〉
H,

so that

R
σ

5 (u, α, ξ, ζ) = σ2α3
〈
Q1/2T̂ ∗

α,ξµs, Q
1/2M∗(u)[∂xT

∗
α,ξζ]

〉
H

=− σ2α3⟨Tα,ξ∂xM(u)[QT̂ ∗
α,ξµs], ζ⟩L2

=− σ2α3⟨M(Tα,ξux)[T̂α,ξQT̂ ∗
α,ξµs], ζ⟩L2

− σ2α3⟨M(Tα,ξu)[T̂α,ξ∂̂xQT̂ ∗
α,ξµs], ζ⟩L2 .

After substituting (A.1) for j = 0, 1 we find

R
σ

5 (u, α, ξ, ζ) =− σ2
〈
M
(
∂x[ϕc∗ + v]

)
[T̂α,ξQT̂ ∗

α,ξµs], ζ
〉
L2

− σ2α⟨M(ϕc∗ + v)[T̂α,ξ∂̂xQT̂ ∗
α,ξµs], ζ⟩L2 .

An analogous computation shows that

R
σ

4 (u, α, ξ, ζ) =− 2σ2⟨M(ϕc∗ + v)[T̂α,ξQT̂ ∗
α,ξγs], ζ⟩L2

− σ2
〈
xM

(
∂x[ϕc∗ + v]

)
[T̂α,ξQT̂ ∗

α,ξγs], ζ
〉
L2

− σ2α⟨xM(ϕc∗ + v)[T̂α,ξ∂̂xQT̂ ∗
α,ξγs], ζ⟩L2 .

In the term R
σ

0 (u, α, ξ, ζ) we substitute (A.1) for j = 0, 1, 3 and

−∂3
x[ϕc∗ + v]− 2[ϕc∗ + v]∂x[ϕc∗ + v] = Lc∗v +N(v)− c∗∂x[ϕc∗ + v]
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to obtain

R
σ

0 (u, α, ξ, ζ) = α−3⟨Lc∗v +N(v)− c∗∂x[ϕc∗ + v], ζ⟩L2 .

In the martingale component S
σ
, we substitute the derivatives and (2.16)-

(2.17), which gives

S
σ
(u, α, ξ, ζ)[h] = σα2⟨M(Tα,ξu)[T̂α,ξh], ζ⟩L2

− σ(2α2⟨Tα,ξu, ζ⟩L2 + α3⟨xTα,ξux, ζ⟩L2)⟨T̂α,ξh, γs⟩H
− σα3⟨Tα,ξux, ζ⟩L2⟨T̂α,ξh, µs⟩H.

Substituting (A.1) then yields

S
σ
(u, α, ξ, ζ)[h] = ⟨σS(v)[T̂α,ξh], ζ⟩L2 ,

where S is defined in (2.23). We collect also that

R
σ

0 (u, α, ξ, ζ) = ⟨α−3Lc∗v, ζ⟩L2 + ⟨Rσ
0 (v, α, ξ), ζ⟩L2

and
R

σ

i (u, α, ξ, ζ) = ⟨Rσ
i (v, α, ξ), ζ⟩L2 ,

for i = 1, . . . , 6, where Rσ
0 , . . . , R

σ
6 are defined in (2.22). Since the test func-

tion ζ was arbitrary, we conclude that (2.20) follows.

Appendix B. Noise rescaling

In this appendix we collect several useful properties of the family {Qα}α>0

defined in (2.11) in relation to the transformation operators Tα,ξ defined in
(2.4).

Lemma B.1. Let α, β > 0 and ξ ∈ R. Denote by T ∗
α,ξ the L2(R)-adjoint of

Tα,ξ. Then we have the identities

1. (Qα)
1/2 = (Q1/2)α;

2. Tα,ξQβ = QβαTα,ξ;

3. T ∗
α,ξ = α−1Tα−1,−α−1ξ.

Proof. Recall that q̂ denotes the Fourier transform of the convolution kernel
q, and q1/2 := F−1{

√
q̂}, where F−1 denotes the inverse Fourier transform.

Let f ∈ L2(R).
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1. We compute

α2q1/2(α·) ∗ q1/2(α·) ∗ f = F−1
{√

q̂(α−1·)
√
q̂(α−1·)f̂

}
= F−1

{
q̂(α−1·)f̂

}
= αq(α·) ∗ f = Qαf.

2. Substituting y = αz + ξ, we have

Tα,ξ[Qβf ] = β

∫
R
q(β(αx+ ξ − y))f(y) dy

= βα

∫
R
q(βα(x− z))f(αz + ξ) dz

= βαq(βα·) ∗ Tα,ξ[f ] = QβαTα,ξ[f ].

3. Substituting y = αx+ ξ, we have

⟨Tα,ξ[f ], g⟩L2 =

∫
R
f(αx+ ξ)g(x) dx

= α−1

∫
R
f(y)g(α−1(y − ξ)) dy

= ⟨f, α−1Tα−1,−α−1ξ[g]⟩L2 .

We now discuss the effect of the transformation Tα on the space-time
white noise Wt. A defining property of the space-time white noise Wt is the
isometry

E
[∫ t1

0

⟨dWs, w1⟩L2

∫ t2

0

⟨dWs, w2⟩L2

]
= (t1 ∧ t2)⟨w1, w2⟩L2 , (B.1)

which holds for t1, t2 > 0 and w1, w2 ∈ L2(R). From the isometry (B.1) one
obtains, upon differentiating with respect to t1 and t2 and choosing w1 = δx
and w2 = δy, the formal covariance identity

E
[dWt1(x)

dt

dWt2(y)

dt

]
= δ(t1 − t2)δ(x− y).

Let us consider the covariance structure that results from rescaling the space-
time white noise Wt via Tα. Picking an orthonormal basis {ek}∞k=0 of L2(R),
we compute

⟨Tαek, Tαej⟩L2 =

∫
R
ek(αx)ej(αx) dx = α−1

∫
R
ek(y)ej(y) dy,
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which shows that {α1/2Tαek}∞k=0 is also an orthonormal basis of L2(R). We
then find via Itô’s isometry that,

E
[∫ t1

0

⟨α1/2Tα[dWs], w1⟩L2

∫ t2

0

⟨α1/2Tα[dWs], w2⟩L2

]
= E

∫ t1∧t2

0

∞∑
k=0

⟨α1/2Tαek, w1⟩L2⟨α1/2Tαek, w2⟩L2 ds,

which via (B.1) gives the covariance identity

E
[∫ t1

0

⟨α1/2TαdWs, w1⟩L2

∫ t2

0

⟨α1/2TαdWs, w2⟩L2

]
= (t1 ∧ t2)⟨w1, w2⟩L2 .

(B.2)

Here we have used that {α1/2Tαek}∞k=0 is an orthonormal basis of L2(R). We
thus observe that the process W̃t := α1/2TαWt generates the same statistics
as the white noise Wt.

Appendix C. Expansions

Table C.1 collects evaluations the various constants that appear in the
expansion of the modulation system in §3. The evaluations denoted with
the symbol ‘≈’ have been computed numerically. For the exact evaluations,
we have used that the defining equations consist of inner products between
ϕc∗ , ζc∗ and derivatives thereof. These can be written as integrals over hy-
perbolic functions, for which exact evaluations are available.

We proceed by outlining how the expansions of the functionals γ0
d, µ

0
d, γd, µd

and mappings γs, µs, R0 and S that appear in §3 can be computed. Since
these mappings are defined as products with the matrix K−1(v), we first
derive an expansion

K−1(v) = K−1(0) + [K−1](1)(v) + [K−1](2)(v) +O(v3).

We therefore write

K(v) =

[
9c

3/2
∗ 0

9 −9
2
c
1/2
∗

]
+

[
b1 b2
b3 b4

]
,
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Constant/Function Defining equation Value

γd;I(0) (2.44) 74
135

+ 4π2

405

µd;I(0) (2.44) (16π
2

405
− 34

45
)c

−1/2
∗

γd;III (0) (2.54) ≈ 0.093c
1/2
∗

µd;III (0) (2.54) ≈ −0.1
γs;I(0) (2.42) 2

3

µs;I(0) (2.42) −2
3
c
−1/2
∗

γ⋄(0) (2.49) 1
9
c
−3/2
∗ ϕ2

c∗

∥γ⋄(0)∥2L2 (2.49) 4
35
c
1/2
∗

µ⋄(0) (2.49) 2
9
c−2
∗ ϕ2

c∗ −
2
9
c
−1/2
∗ ϕc∗ζc∗

∥µ⋄(0)∥2L2 (2.49) ≈ 0.435c
−1/2
∗

Table C.1: Values of various constants that appear in §3.

where b1, b2, b3 and b4 denote the functionals

b1 =
〈
(x∂x + 2)v, ϕc∗

〉
L2 ,

b2 =
〈
∂xv, ϕc∗

〉
L2 ,

b3 =
〈
(x∂x + 2)v, ζc∗

〉
L2 ,

b4 =
〈
∂xv, ζc∗

〉
L2 .

We furthermore write

K−1 =
1

detK

(
9

[
−1

2
c
1/2
∗ 0

−1 c
3/2
∗

]
+

[
b4 −b2
−b3 b1

])
.

and compute

detK =− 81
2
c2∗ + 9c3/2∗ b4 − 9

2
c1/2∗ b1 − 9b2 + b1b4 − b3b2.

Using 1
a+x

= 1
a
− x

a2
+ x2

a3
+O(x3), we expand 1

detK(v)
as

K−1(0) =
1

9

[
c
−3/2
∗ 0

2c−2
∗ −2c

−1/2
∗

]
,

[K−1](1) =
2

81

[
c−2
∗ b1 + 2c

−5/2
∗ b2 c−2

∗ b2
c−2
∗ b3 + 2c

−5/2
∗ b4 − c

−7/2
∗ b1 − 2c−4

∗ b2 −2c−1
∗ b4 + 2c

−5/2
∗ b2

]
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and

[K−1](2) = 2
729

(−2c−5/2
∗ b4 + c−7/2

∗ b1 + 2c−4
∗ b2)

[
b4 −b2
−b3 b1

]
+ 2

729

(
−4c−3

∗ b24 − c−5
∗ b21 − 4c−6

∗ b22 + 2c−4
∗ b1b4

+ 8c−9/2
∗ b2b4 − 4c−11/2

∗ b1b2 + 2c−4
0 b3b2

)[−1
2
c
1/2
∗ 0

−1 c
3/2
∗

]
.

We then collect that[
[γ0

d]
(2)(v)

[µ0
d]

(2)(v)

]
= K−1(0)

[
⟨N(v), ϕc∗⟩L2

⟨N(v), ζc∗⟩L2

]
=

[
1
9
c
−3/2
∗ ⟨v, v∂xϕc∗⟩L2

2
9

〈
v, v(c−2

∗ ∂xϕc∗ − c
−1/2
∗ ∂cϕc∗)

〉] ,
and

[R0]
(2)(v) = −[γ0

d]
(2)(v)(2 + x∂x)ϕc∗ − [µ0

d]
(2)(v)∂xϕc∗ .

For the functionals γs and µs we obtain[
[γs]

(1)(v)
[µs]

(1)(v)

]
= K−1(0)

[
M∗(v)[ϕc∗ ]
M∗(v)[ζc∗ ]

]
+ [K−1](1)(v)

[
M∗(ϕc∗)[ϕc∗ ]
M∗(ϕc∗)[ζc∗ ]

]
and[

[γs]
(2)(v)

[µs]
(2)(v)

]
= [K−1](1)(v)

[
M∗(v)[ϕc∗ ]
M∗(v)[ζc∗ ]

]
+ [K−1](2)(v)

[
M∗(ϕc∗)[ϕc∗ ]
M∗(ϕc∗)[ζc∗ ]

]
.

Using these expressions, we have

[S](1)(v)[h] =M(v)[h]− (x∂x + 2)ϕc∗

〈
h, [γs]

(1)(v)
〉
H

− (x∂x + 2)v
〈
h, γs(0)

〉
H − ∂xϕc∗

〈
h, [µs]

(1)(v)⟩H − ∂xv⟨h, µs(0)
〉
H.

Lastly, we have[
[γd]

(1)(v, α)
[µd]

(1)(v, α)

]
=− αK−1(0)

5∑
i=1

[〈
[Ri]

(1)(v, α), ϕc∗

〉
L2〈

[Ri]
(1)(v, α), ζc∗

〉
L2

]

− α[K−1](1)(v)
5∑

i=1

[
⟨Ri(0, α), ϕc∗⟩L2

⟨Ri(0, α), ζc∗⟩L2

]
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and [
[γd]

(2)(v, α)
[µd]

(2)(v, α)

]
=− αK−1(0)

5∑
i=1

[〈
[Ri]

(2)(v, α), ϕc∗

〉
L2〈

[Ri]
(2)(v, α), ζc∗

〉
L2

]

− α[K−1](1)(v)
5∑

i=1

[〈
[Ri]

(1)(v, α), ϕc∗

〉
L2〈

[Ri]
(1)(v, α), ζc∗

〉
L2

]

− α[K−1](2)(v)
5∑

i=1

[
⟨Ri(0, α), ϕc∗⟩L2

⟨Ri(0, α), ζc∗⟩L2

]
.

Appendix D. Numerical schemes

Here, we describe the numerical schemes that were employed to simulate
the stochastic KdV equation (2.1) and the modulation system (2.30)-(2.32),
in the cases of scalar noise and space-time white noise. We employ a semi-
implicit finite-difference scheme from [26], as was also used in [41].

In space, we use N + 1 grid points xn = n∆x − L for n = 1, . . . , N + 1,
where ∆x = 2L

N
and L > 0 is the right-boundary of the computational

domain [−L,L]. We denote the numerical solution to (2.1) at time j∆t
by U j = [U j

1 , U
j
2 , . . . , U

j
n, . . . , U

j
N+1]

T , and denote by D1, D2 and D3 the
(N + 1) × (N + 1) centered finite difference matrices of second order for
the differential operators ∂x, ∂

2
x and ∂3

x, respectively. We initialize by using
an Euler-Maruyama step as

U1 = U0 −∆t(D3 ∗ U0 + 2U0(D1 ∗ U0)) + σU0∆W,

where the noise is discretized as ∆W ∼
√
∆tN(0, 1) in the case of scalar

noise, and as ∆W = [W1,W2, . . . ,Wn, . . . ,WN+1]
T with Wn

i.i.d.∼
√

∆t
∆x

N(0, 1)

for n = 1, . . . , N + 1 in the case of space-time white noise. Thereafter, for
j ≥ 1, the scheme continues with a semi-implicit step and a two-step Adam-
Bashforth discretization for the nonlinear term as

U j+1 =

(
I +

∆t

2
D3

)−1[(
I − ∆t

2
D3

)
∗ U j + σU j∆W

− 3∆tU j(D1 ∗ U j) + ∆tU j−1(D1 ∗ U j−1)

]
.

To simulate (2.30), we also employ a semi-implicit method. Denote by
V j = [V j

1 , V
j
2 , . . . , V

j
n , . . . , V

j
N+1]

T and Aj = [Aj
1, A

j
2, . . . , A

j
n, . . . , A

j
N+1]

T the
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numerical solutions to (2.30) and (2.31), respectively. For j ≥ 0, the numer-
ical solution V j+1 to (2.30) at time j∆t is computed as

V j+1 =

(
I − ∆t

2
L0

)−1[(
I +

∆t

2
L0

)
∗ V j − 2∆t(Aj)−3V j(D1 ∗ V j)

+ ∆t
2∑

i=0

Rσ
i (V

j, Aj) + σS(V j)∆W

]
,

where
L0 = −D3 + c∗D1 − 2D1 ∗Diag(Φ0)

and Diag(Φ0) is a diagonal matrix with entries

ϕc∗(−L), ϕc∗(−L+∆x), . . . , ϕc∗(−L+ n∆x), . . . , ϕc∗(L)

on the diagonal.
The numerical solutions Aj+1 and Xj+1 = [Xj

1 , X
j
2 , . . . , X

j
n, . . . , X

j
N+1]

T

to (2.31) and (2.32) at time j∆t , are respectively given for j ≥ 0 by

Aj+1 = Aj + [−(Aj)−2γ0
d(V

j) + σ2Ajγd;I(V
j)]∆t− σAjγs;I(V

j)∆W,

Xj+1 = Xj + [−(Aj)−2µ0
d(V

j) + σ2Ajµd;I(V
j)]∆t− σAjµs;I(V

j)∆W,

in the case of scalar noise, and as

Aj+1 = Aj + [−(Aj)−2γ0
d(V

j) + σ2γd;III (V
j)]∆t− σAj⟨∆W, γ⋄(V

j)⟩,
Xj+1 = Xj + [−(Aj)−2µ0

d(V
j) + σ2µd;III (V

j)]∆t− σAj⟨∆W,µ⋄(V
j)⟩,

in the case of space-time white noise. We remark that, to obtain path-wise
correspondence in this latter case between numerical solutions to (2.1) and
the modulation system (2.30)-(2.32), realizations of the noise ∆W should be
shifted and rescaled via the map Tα,ξ.
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Appendix E. Supplementary figures

(a) Original frame. (b) Stochastic co-moving frame.

(c) Original frame, soliton removed. (d) Stochastic co-moving frame, soliton removed.

Figure E.11: Simulation of the KdV equation with space-time white noise of strength
σ = 0.05. The original frame realization shows u(t, x), from a simulation of (2.1). The
frozen frame simulation shows ϕc∗(x) + v(t, x), from simulation of (2.30)-(2.32) with the
same realization of the noise. Figure E.11c and Figure E.11d show the perturbation with
respect to the soliton. The original frame realization shows u(t, x) − ϕc(t)(x − ξ(t)) with
the phase-definitions (2.55), and the frozen frame simulation shows v(t, x).
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(a) Perturbation size over time.
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(b) Perturbation size over time, log-scale.

Figure E.12: Sample mean of the process sups≤t ∥v(s)∥L2
a([−40,10]) for space-time white

noise, computed over 200 realisations for σ ∈ {0.05, 0.075, 0.1, 0.125}. This simulation was
computed on the computational domain [−40, 40], with values c∗ = 3 and a = 0.15.
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Figure E.13: Estimation of the orders β1 and β2 at which the remainders |c − c2| and
∥v(t) − v1(t)∥L2

a
depend on the noise strength σ. Here, β1(t) is obtained from a least

squares fit of E sups≤t |c(s)− c2(s)| (as in Figure 8) to k1(t)σ
β1(t). Similarly, the exponent

β2(t) is obtained from a least squares fit of E sups≤t ∥v(s)− v1(s)∥L2
a
to k2(t)σ

β2(t).
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