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1. Introduction.

Let E be an elliptic curve over a finite field Fq. Then E is a smooth cubic in P2. It can
be given by a Weierstrass equation, an affine version of which is

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, with a1, a2, a3, a4, a6 ∈ Fq.

The unique point at infinity is the neutral element of the group law. It is denoted by ∞.
We denote the affine curve itself by E0. The zeta-function ZE(T ) of E is the power series
defined by

ZE(T ) =
∑
D≥0

T degD in Z[[T ]].

Here D runs over the effective divisors of E that are defined over Fq. In this note we prove
two theorems concerning ZE(T ).

Theorem 1.1. Let E be an elliptic curve over Fq. Then the power series ZE(T ) is equal
to the rational function

ZE(T ) =
1− τT + qT 2

(1− T )(1− qT )
,

where τ is given by the formula #E(Fq) = q + 1− τ .

And we prove Hasse’s Theorem:

Theorem 1.2. Let E be an elliptic curve over Fq. Then the complex zeroes of the
reciprocal T 2 − τT + q of the numerator of its zeta function have absolute value

√
q.

This means that the function ζE(s) = ZE(q−s) of the complex variable s admits a meromor-
phic continuation to C and that its zeroes have real part equal to 1

2 . Therefore Theorem 1.2
is the analogue of the Riemann Hypothesis for the curve E. Since #E(Fq) = q + 1− τ , it
implies |τ | ≤ 2

√
q and hence the inequalities

q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q.

Theorem 1.2 was proved by H. Hasse in 1933. Our approach is elementary and follows
a method invented by S.A. Stepanov around 1969. We only make use of the Weierstrass
equation and the group law.
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2. Rationality of the zeta function.

In this section we prove Theorem 1.1. First we review some properties of elliptic curves.
Let E be an elliptic curve given by a Weierstrass equation as in the introduction. The ring
R of functions on E without poles outside ∞ is the Fq-algebra generated by the functions
X and Y . So we have

R = Fq[X,Y ]/(Y 2 + a1XY + a3Y −X3 − a2X2 − a4X − a6).

Every element f ∈ R has the form g(X)+Y h(X) for unique polynomials g, h ∈ Fq[X]. For
every non-zero f ∈ R, let deg f denote the order of the pole of f at∞. We have degX = 2
and deg Y = 3. In general, for f = g(X)+Y h(X) with g, h ∈ Fq[X] polynomials of degrees
d, e respectively, one has deg f = max(2d, 3 + 2e). In particular, R contains no functions
f with deg f = 1. We call f ∈ R monic if the coefficient of its highest degree term is
equal to 1. Any f ∈ R has, counting multiplicities, precisely deg f zeroes on E0. Indeed, if
f = g(X)+Y h(X) as above, then the equation obtained by substituting Y = −g(X)/h(X)
in the Weierstrass equation has degree deg f in X.

A divisor is a formal sum of points of E that have coordinates in a fixed algebraic
closure Fq. It is said to be defined over Fq, if it is fixed by the Galois group of Fq over Fq.
The principal divisor associated to an element g of the function field Fq(E) is denoted
by (g). If the divisor (g) is defined over Fq, then there exists a function g′ ∈ Fq(E)
with (g′) = (g). For two divisors D,D′ of E we write D ∼ D′ if D−D′ is principal, i.e. if
D −D′ = (g) for some function g on E.

Lemma 2.1. Let E be an elliptic curve and let P,Q be two points on E. Then

P +Q ∼ (P +Q) +∞.

Here the leftmost and rightmost plus signs indicate addition of divisors, while the one in
the middle refers to the group law on E.

Proof. The quotient of the equations of the chords or tangents used to add the points P
and Q is a function g on E whose divisor is precisely P +Q− (P +Q)−∞. Moreover, g
is defined over the same field as P and Q.

Proposition 2.2. Let E be an elliptic curve over Fq and let D be a divisor of E of
degree d. Then we have

D ∼ P + (d− 1)∞, for a unique point P ∈ E(Fq).

Moreover, if D is defined over Fq, then so is P and the divisor D − (d − 1)∞− P is the
divisor of a function in Fq(E).

Proof. Let D =
∑

Q nQQ for certain integers nQ. Let P be the point on E that one
obtains by adding the points Q, with multiplicities nQ, on the curve E using the chord
and tangent group law. The point P is defined over the field of definition of D. Applying
Lemma 2.1 inductively gives the relation

D ∼ P + (d− 1)∞,
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as required.

Example 2.3. We first compute the zeta function of the projective line P1 over Fq and
then deal in a similar way with zeta functions of elliptic curves E. The zeta function of
P1 over Fq is defined by

ZP1
(T ) =

∑
D≥0

T degD in Z[[T ]],

where D runs over the effective divisors of P1 that are defined over Fq. Since every divisor
is a sum of points, we have

ZP1
(T ) =

∏
P

1

1− T degP
.

Here P runs over the Gal(Fq/Fq)-conjugacy classes of points of P1. The zeta function of
the affine line A1 is obtained by omitting the factor 1/(1− T ) corresponding to the point
at infinity. So we have

ZA1(T ) =
∑
D≥0

T degD in Z[[T ]],

where D runs over the effective divisors of A1. Since the ring Fq[X] is a principal ideal
domain, every divisor D ≥ 0 of A1 that is defined over Fq is the divisor of a unique monic
polynomial g in Fq[X]. Moreover, the degree of D is equal to the degree of g. We can
therefore compute the zeta function of A1 by counting polynomials. We find

ZA1(T ) =
∑
d≥0

cdT
d =

∑
d≥0

qdT d =
1

1− qT
.

Here cd denotes the number of effective divisors of A1 of degree d. Since the number of
monic degree d polynomials in Fq[X] is qd, we have cd = qd. Going back to the projective
line P1, we obtain the following fomula for the zeta function of P1 over Fq.

ZP1
(T ) =

1

(1− T )(1− qT )
.

This completes the computation of the zeta function of P1.

Proof of Theorem 1.1. We determine the zeta function of an elliptic curve E over Fq

in a similar way. Recall that E0 is the affine curve that is obtained by removing the point
∞ from E. We first determine the zeta-function of E0. This means that we must count
effective divisors on E0 that are defined over Fq. These are simply divisors on E of the
form

∑
P nPP with nP ≥ 0 for all P in E for which nP = nP ′ whenever P and P ′ are

conjugate points. Moreover, we have n∞ = 0.
The only effective divisor of E0 of degree 0 is the divisor 0. The effective divisors over

Fq of degree 1 are precisely the points in E(Fq)−{∞}. Denoting #E(Fq) by h, there are
h− 1 of them.
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Let D be an effective divisor on E0 of degree d > 1. By Proposition 2.2 there exists
a unique point P ∈ E(Fq) for which we have −D ∼ (−d − 1)∞ + P on E. Equivalently,
there exists a function f ∈ E(Fq) whose divisor on E is D + P − (d+ 1)∞. The function
f is unique up to a non-zero constant. Since D is effective, f is contained in the ring R.

There are two cases. If P = ∞, the function f has degree d. Conversely, for every
f ∈ R of degree d, the divisor (f) − P + (d + 1)∞ is effective. There are qd−1 monic
functions f with this property.

If P 6= ∞, the function f has degree d + 1 and vanishes in P . Conversely, for any f
having these properties, the divisor (f)−P + (d+ 1)∞ is effective. For each point P 6=∞
there are qd−1 monic functions f with this property.

Counting all functions, we see that there are qd−1 + (h − 1)qd−1 = hqd−1 effective
divisors on E0 of degree d. This computation shows that

ZE0(T ) = 1 + (h− 1)T +
∑
d≥2

hqd−1T d =
1 + (h− q − 1)T + qT 2

1− qT
.

The zeta function of E is obtained from the one of E0 in the same way the zeta function
of P1 is obtained from the one of A1. In order to take into account the point at infinity,
we multiply ZE0(T ) by the factor 1/(1− T ). This gives

ZE(T ) =
1− τT + qT 2

(1− T )(1− qT )
,

where τ = q + 1− h. This proves Theorem 1.1.

3. An upper bound.

In this section we obtain an upper bound for the number of points of an elliptic curve E
over a finite field. This is the key ingredient in the proof of Theorem 1.2. Our method is
due to S.A. Stepanov.

We introduce some notation. Recall that E is given by a Weierstrass equation and
that R is the Fq-algebra generated by the functions X and Y . For a ≥ 0 let La denote the
Fq-vector space

La = {f ∈ R : deg f ≤ a}.

Since R does not contain any functions f ∈ R with deg f = 1, the space La consists only
of constant functions when a = 0 or 1 and therefore has dimension 1. In general we have
the following. Put e1 = 1 and

e2i = Xi and e2i+1 = Xi−1Y for i ≥ 1.

Then ei has degree i for i ≥ 1.

Lemma 3.1. For a ≥ 1, the monomials ei with i ≤ a are an Fq-basis for La. In particular,
La has Fq-dimension a.

Proof. The monomials ei certainly generate La. On the other hand, the orders of their
poles at∞ are all distinct. Therefore they are linearly independent and hence form a basis
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of La. This proves the lemma. Note that the fact that dimLa = a also easily follows from
the Riemann-Roch Theorem.

For a ≥ 1 the set Lq
a = {fq : f ∈ La} is an Fq-vector space of dimension a = dimLa.

Indeed, the map f 7→ fq is an Fq-linear bijection La ↔ Lq
a.

Lemma 3.2. Let a, b ≥ 1 and let Lq
aLb denote the Fq-vector space generated by the

functions fqg where f ∈ La and g ∈ Lb. Then we have
(a) dimLq

aLb ≤ aq + b;
(b) dimLq

aLb ≤ ab with equality if b < q.

Proof. Part (a) follows from the fact that Lq
aLb ⊂ Laq+b and Lemma 3.1. The inequality

of part (b) follows from the fact that the functions eqi ej with 1 ≤ i ≤ a and 1 ≤ j ≤ b
generate Lq

aLb. To get equality when b < q, we observe that

deg eqi ej = qdeg ei + deg ej = iq + j

Since we have j ≤ b < q, the degrees deg eqi ej are all distinct. So any Fq-linear combination∑
i,j λije

q
i ej that is zero, necessarily has λij = 0 for every i, j. This proves that the

functions eqi ej are independent. Therefore the dimension of Lq
aLb is equal to ab. This

proves the lemma.

From now on we assume that a, b ≥ 1 with b < q. Lemma 3.1 implies that the
Fq-linear map

ϑ : Lq
aLb −→ LaL

q
b

given by
eqi ej 7→ eie

q
j , for 1 ≤ i ≤ a and 1 ≤ j ≤ b,

is well defined.
The following proposition is the key ingredient in the proof of Theorem 3.4.

Proposition 3.3. Let a, b ≥ 1 with b < q. If the map ϑ is not injective, then

#E(Fq2) ≤ aq + b+ 1.

Proof. Every function F ∈ kerϑ vanishes on E(Fq2) − {∞}. Indeed, let F =
∑
λije

q
i ej

for certain λij ∈ Fq and let P ∈ E(Fq2)− {∞}. Then

F (P )q =
∑

λije
q2

i (P )eqj(P ) =
∑

λijei(P )eqj(P ) = (
∑

λijeie
q
j)(P ) = ϑ(F )(P ) = 0,

which is zero when F ∈ kerϑ. The second equality follows from the fact that P ∈ E(Fq2)

so that fq
2

(P ) = f(P ) for every function f ∈ R.
Since ϑ is not injective, there exists a non-zero F in kerϑ. Therefore we obtain the

following estimate.

#E(Fq2)− 1 ≤ #{zeroes of F} = deg(F ) ≤ aq + b.
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The rightmost inequality follows from Lemma 3.2 (a). This proves the proposition.

Theorem 3.4. Let E be an elliptic curve defined over Fq and suppose that q ≥ 5. Then
we have

#E(Fq2) ≤ q2 + 3q.

Proof. The map ϑ defined above cannot be injective if a, b ≥ 1 have the property that

dimLq
aLb > dimLaL

q
b .

Since b < q, Lemma 3.2 (b) implies that Lq
aLb has dimension ab. Lemma 3.2 (b) cannot

be applied to LaL
q
b . In some sense this is the point of the proof. But by Lemma 3.2 (a)

we know that LaL
q
b has dimension ≤ a+ bq. Therefore the map ϑ is not injective when

ab > a+ bq.

In order to deduce a sharp estimate from Proposition 3.3, we choose a as small as possible.
Since the inequality ab > a + bq must be satisfied, the minimal choice for a is a = q + 2.
Once a is chosen, we can take b = q−1, at least for q ≥ 5. With these choices the quantity
aq + b+ 1 in Proposition 3.3 becomes (q + 2)q + q − 1 + 1 = q2 + 3q, as required.

4. The Riemann Hypothesis.

Let E be an elliptic curve over Fq. In this section we prove that the complex zeroes of
the numerator of its zeta function have absolute value 1/

√
q. The key ingredient is the

inequality af Theorem 3.4. First we use the proof of Theorem 3.4 to obtain a lower bound
for #E(Fq2).

Proposition 4.1. Let E be an elliptic curve over Fq and suppose that q ≥ 5. Then we
have

#E(Fq2) > q2 − 3q

Proof. Let Ω denote the set of points (x, y) of E0(Fq) for which x ∈ Fq2 . For every
x ∈ Fq2 there are at most two points (x, y) ∈ Ω. If (x, y) is one such point, then (x, y)
where y = −y − a1x− a3, is the other. We have

#Ω = 2q2 − r.

where r is the number of values of x for which y = y. We have r ≤ 3.
The automorphism σ of Fq given by σ(t) = tq

2

also acts on Ω. It maps a point

(x, y) ∈ Ω to (σ(x), σ(y)) = (xq
2

, yq
2

) = (x, yq
2

). It follows that either σ(y) = y or
σ(y) = y. Therefore have

Ω = Ω+ ∪ Ω−,

where Ω+ = {(x, y) ∈ Ω : σ(y) = y} and Ω− = {(x, y) ∈ Ω : σ(y) = y}. The intersection
Ω+ ∩ Ω− consists of the r points (x, y) for which y = y.

Clearly Ω+ is the set E(Fq2) − {∞}. Theorem 3.4 provides an estimate for its size.
In this section we use the method of section 3 to obtain an estimate of the size of the
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set Ω−. Let a, b be as in the proof of Theorem 3.4. Note that the spaces La and Lb are
preserved by the automorphism of R given by f(X,Y ) 7→ f(X,−Y − a1X − a3). Consider
the Fq-linear map

ϑ′ : Lq
aLb −→ LaL

q
b

defined by
eqi ej 7→ eie

q
j .

Every function F ∈ kerϑ′ vanishes on the set W . Indeed, let F =
∑
λije

q
i ej for certain

λij ∈ Fq and let P ∈W .

F (P )q =
∑

λije
q2

i (P )eqj(P ) =
∑

λijei(P )eqj(P ) = (
∑

λijeif
q
j )(P ) = ϑ′(F )(P ) = 0,

and hence F (P ) = 0. Therefore we can draw the same conclusion as in the previous
section. We have

#Ω− ≤ q2 + 3q.

and hence
#E(Fq2)− 1 = #Ω+,

= #Ω−#Ω− + #(Ω + ∩#Ω−),

≥ (2q2 − r)− (q2 + 3q) + r,

≥ q2 − 3q.

as required.

Let 1− τT + qT 2 be the numerator of the zeta function of E and let π and π′ be the
complex zeroes of the reciprocal polynomial T 2 − τT + q.

Lemma 4.2. For every d ≥ 1, we have

#E(Fqd) = qd + 1− πd − π′d.

Proof. By Theorem 1.1 we have

ZE(T ) =
1− τT + qT 2

(1− T )(1− qT )
.

Combining this with the identity

ZE(T ) =
∑
D≥0

T degD =
∏
P

1

1− T deg P
,

we obtain
(1− πT )(1− π′T )

(1− T )(1− qT )
=

∏
d≥1

(1− T d)−ad .
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For d ≥ 1 we write here ad for the number of points on E of degree d up to conjugacy.
For every e ≥ 1 we have #E(Fqe) =

∑
d|e dad. Taking the logarithmic derivative of this

identity, expanding the geometric series and comparing coefficients shows that we have
qe + 1− πe − π′e =

∑
d|e dad = for every d ≥ 1. This proves the Lemma.

Theorem 4.3. The complex zeroes π and π′ of the polynomial T 2− τT + q have absolute
value

√
q. In particular π′ = π.

Proof. Lemma 4.2, Theorem 3.4 and Proposition 4.1 provide us with the inequalities

qd − 3qd/2 ≤ qd + 1− πd − π′d ≤ qd + 3qd/2, for even d ≥ 0.

Therefore we have
|πd + π′

d| ≤ 3qd/2, for even d ≥ 0.

Suppose |π| > √q. Since ππ′ = q, we have |π′| < √q. Then the absolute values of
both 1 + (π′/π)d and (π′/π)d go to zero as d → ∞. This is impossible. Therefore we
have |π| ≤ √q. By symmetry also |π′| ≤ √q. This implies |π| = |π′| = √q, as required.

The inequalities of Theorem 3.4 and Proposition 4.1 have only been proved for q ≥ 5.
However, when q < 5, we have qd > 5 for d ≥ 3. This implies that we still have the
inequality for even degrees d ≥ 6. Therefore the argument involving d→∞ is not affected
and the conclusion is the same for q < 5. This proves the theorem.
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