Graphs, Matrices, Determinants, and Pfaffians Contact: Owen Biesel at bieselod@math.leidenuniv.nl

CONSIDER an $n \times n$ matrix A with entries a_{ij} in some commutative ring R. We may associate to A a directed graph G_A in the following way: The vertices of G_A are $\{s_1, \ldots, s_n, t_1, \ldots, t_n\}$, and there is an edge $s_i \rightarrow t_j$ with weight a_{ij} whenever a_{ij} is nonzero. The determinant of A is the sum over all ways of choosing n edges $e_i : s_i \rightarrow t_{\sigma(i)}$, with the $\sigma(i)$ all distinct, of the product of the edge weights $a_{i\sigma(i)}$, with a sign in accordance with the the sign of the resulting permutation $\sigma \in S_n$.

In general, given two *n*-tuples $S = (s_1, ..., s_n)$ and $T = (t_1, ..., t_n)$ of vertices of a directed graph, a *connection* from *S* to *T* is a set *K* of edges that form *n* vertex-disjoint directed paths from a vertex in *S* to a vertex in *T*. Each connection *K* has an associated permutation σ_K , defined by $t_{\sigma_K(i)}$ being the endpoint of the path in *K* starting at s_i ; define sgn(*K*) as the sign of the permutation σ_K . Then our earlier observation can be written

$$\det(A) = \sum_{K:S_A \to T_A} \operatorname{sgn}(K) \prod_{e \in K} \operatorname{wt}(e), \tag{1}$$

where we are summing over all connections *K* from $S_A = (s_1, ..., s_n)$ to $T_A = (t_1, ..., t_n)$ in G_A , and denoting the weight of edge *e* by wt(*e*).

We may generalize Equation (1) as follows. For any directed acyclic graph *G* with two *n*-tuples of vertices *S* and *T*, we can produce an $n \times n$ matrix $M_G(S;T)$ whose *ij*th entry is a sum over paths $\sum_{P:s_i \to t_i} \prod_{e \in P} \operatorname{wt}(e)$. Then

$$\det(\mathbf{M}_G(S;T)) = \sum_{K:S \to T} \operatorname{sgn}(K) \prod_{e \in K} \operatorname{wt}(e).$$
(2)

Equation (2) is called the *Lindström-Gessel-Viennot lemma*.

An easy corollary is that the determinant is multiplicative: If we have two $n \times n$ square matrices A and B, and let G be the concatenation of G_A and G_B formed by identifying T_A with S_B , then the matrix $M_G(S_A; T_B)$ is just the product AB and the left-hand side of Equation (2) is just det(AB). However, every connection from S_A to T_B decomposes as a connection from S_A to T_A and a connection from S_B to T_B , so it is easy to show that the right-hand side of Equation (2) is det(A) det(B). The more complicated Cauchy-Binet formula for the determinant of AB when A and B are not necessarily square is just as easy to prove in this way.

A SEEMINGLY UNRELATED FACT is that the determinant of any alternating matrix *A* is the square of a polynomial in the abovediagonal entries: this polynomial is called the *Pfaffian* Pf(*A*). The Pfaffian also has a graphical formula analogous to Equation (1), but there is no known generalization analogous to the Lindström-Gessel-Viennot lemma that would allow one to easily prove identities such as $Pf(BAB^T) = det(B) Pf(A)$ or its variations. Example 1

A weighted directed acyclic graph G:

There is only one connection from (s_1, s_2) to (t_1, t_2) , with positive sign:

 $\det(M_G(s_1, s_2; t_1, t_2)) = ace.$

Example 3

An alternating matrix A:

$$A = \begin{pmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{pmatrix}$$
$$\det(A) = (af - be + cd)^2$$