Exercises Reading course Algebraic Topology - Covering spaces II, Fall 2013

Let X be a topological space.

Exercise 1. Let $p: Y \to X$ and $q: Z \to X$ be covers and let $r: Y \to Z$ be a map of covers of X. Let $x \in X$ be a base point. Prove that

$$r(\alpha \cdot y) = \alpha \cdot r(y)$$

for all $\alpha \in \pi_1(X, x)$ and all $y \in p^{-1}(x)$. Here the \cdot stands for the monodromy action of $\pi_1(X, x)$.

Exercise 2. Let $p: Y \to X$ be a cover, with Y path-connected. Let $x \in X$ and $y, y' \in Y$ be such that p(y) = p(y') = x.

- (i) Prove that the stabilizers Stab_y resp. $\operatorname{Stab}_{y'}$ of y resp. y' in $\pi_1(X, x)$ under the monodromy action are conjugate subgroups of $\pi_1(X, x)$.
- (ii) Show that Stab_y is naturally isomorphic to $\pi_1(Y, y)$.

Exercise 3. Let \mathbb{C} be a category and $F \colon \mathbb{C} \to \operatorname{Sets}$ be a covariant functor. Assume F is representable, represented by an object \tilde{X} of \mathbb{C} . Identify a canonical element \tilde{x} of $F(\tilde{X})$ and show that every morphism $\pi \in \operatorname{Hom}(\tilde{X}, Y)$ is determined by the element $F(\pi)(\tilde{x})$ of F(Y).

Exercise 4. Let G be a group and S a transitive left G-set. Identify S with the coset space G/H for some subgroup H of G. Let $N_G(H)$ be the subset

$$N_G(H) = \{ g \in G : gHg^{-1} = H \}$$

of G.

- (i) Show that $N_G(H)$ is a subgroup of G, containing H as a normal subgroup.
- (ii) Establish a group isomorphism

$$\phi \colon N_G(H)/H \xrightarrow{\sim} \operatorname{Aut}_G(S)^{op}$$
.

Of course, this includes showing that your ϕ is a well-defined group homomorphism, and indeed is bijective.

(iii) Assume $p: (Y, y) \to (X, x)$ is a path-connected cover with X locally simply connected. Let $\pi_1(X, x)$ be the fundamental group of X and $\pi_1(Y, y) \subset \pi_1(X, x)$ be the fundamental group of (Y, y) (see Exercise 2). Prove that $\operatorname{Aut}(Y/X)$ is isomorphic to $N_{\pi_1(X,x)}(\pi_1(Y,y))/\pi_1(Y,y)$.

Exercise 5. Let S_3 be the symmetric group on three letters.

- (i) Classify the transitive S_3 -sets up to isomorphism.
- (ii) Describe the Hom-sets between each pair of transitive S_3 -sets.

Exercise 6. Let X be the plane \mathbb{R}^2 with 2 points removed.

- (i) What is the fundamental group of X?
- (ii) Show that there is a connected Galois cover $p: Y \to X$ with automorphism group isomorphic to S_3 .