Distribution of the number of points on biquadratic curves

Elisa Lorenzo García
e.lorenzo.garcia@math.leidenuniv.nl

We will start with the definition of a biquadratic curve.
Definition 0.1. A biquadratic curve is a curve in the projective space \mathbb{P}^{3} defined by a set of equations like this

$$
C:\left\{\begin{array}{l}
y_{1}^{2}=f(x) h(x) \\
y_{2}^{2}=g(x) h(x) \\
y_{3}^{2}=f(x) g(x)
\end{array}\right.
$$

where $f(x), g(x)$ and $h(x)$ are pairwise coprime polynomials. We denote by $B_{n_{1}, n_{2}, n_{3}}$ the set of biquadratic curves defined by polynomials $f(x), g(x)$ and $h(x)$ of degree equal to n_{1}, n_{2} and n_{3}.

Looking at the points of these curves over a finite field \mathbb{F}_{q} (where $q=p^{r}$) is equivalent to looking at the simultaneous solutions of the three equations. Let us denote the extended quadratic character modulo \mathbb{F}_{q} by $\chi: \mathbb{F}_{q} \rightarrow\{ \pm 1,0\}$ (that is, $\chi(r)=0$ iff p divides r and $\chi(r)= \pm 1$, if p does not divide r acoording to r being a square in \mathbb{F}_{q} or not). Then,

$$
\# C\left(\mathbb{F}_{q}\right)=\sum_{r \in \mathbb{F}_{q}}(\chi(f(r) h(r))+\chi(g(r) h(r))+\chi(f(r) g(r))+1) .
$$

The formula above comes from the fact that $(\chi(f(r) h(r)), \chi(f(r) h(r)), \chi(f(r) g(r)))$ can (up to permutation) only take the values $(1,1,1),(1,0,0),(1,-1,-1)$ or $(-1,0,0)$ that correspond to the cases in which there are $4,2,0$ or 0 solutions with $x=r$.

In this project, we will study the distribution of $\# C\left(\mathbb{F}_{q}\right)$ when we vary C inside the family $B_{n_{1}, n_{2}, n_{3}}$.

References

E. Lorenzo, G. Meleleo, P. Milione, Statistics for biquadratic covers of the projective line over finite fields, http://arxiv.org/abs/1503.03276.

