Exercise sheet I - 'Jacobians and theta functions' - Fall 2010

Exercise 1. Let $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ be a non-empty open subset and $u \in U$ a point. Recall that the real tangent space $T_{U,u}$ is naturally a \mathbb{C} -vector space if we put $\frac{\partial}{\partial x_{\alpha}} = i \frac{\partial}{\partial y_{\alpha}}$. (i) Show that we have a natural direct sum decomposition as \mathbb{C} -vector spaces

$$\operatorname{Hom}_{\mathbb{R}}(T_{U,u},\mathbb{C}) = \operatorname{Hom}_{\mathbb{C}}(T_{U,u},\mathbb{C}) \oplus \overline{\operatorname{Hom}_{\mathbb{C}}(T_{U,u},\mathbb{C})}.$$

(ii) Show that $\overline{\operatorname{Hom}_{\mathbb{C}}(T_{U,u},\mathbb{C})}$ can be identified with the set of f in $\operatorname{Hom}_{\mathbb{R}}(T_{U,u},\mathbb{C})$ which are anti-linear, i.e. that satisfy f(iz) = -if(z) for all $z \in T_{U,u}$.

Let
$$z_1, \ldots, z_n$$
 be the coordinate functions on \mathbb{C}^n .

(iii) Show that (dz_1, \ldots, dz_n) is a basis of $\operatorname{Hom}_{\mathbb{C}}(T_{U,u}, \mathbb{C})$, and that $(d\overline{z}_1, \ldots, d\overline{z}_n)$ is a basis of $\overline{\operatorname{Hom}_{\mathbb{C}}(T_{U,u}, \mathbb{C})}$.

Exercise 2. Let $U \subset \mathbb{C} \cong \mathbb{R}^2$ be non-empty open and let $\gamma: t \mapsto z(t) = x(t) + iy(t)$ be a differentiable path in U. Show that the real tangent

$$\gamma'(t) = x'(t)\frac{\partial}{\partial x} + y'(t)\frac{\partial}{\partial y}$$

can be identified with the holomorphic tangent $z'(t)\frac{\partial}{\partial z}$. Here $\frac{\partial}{\partial z}$ denotes the dual vector of dz.

Exercise 3. Let U be a non-empty open subset of \mathbb{C} , let $f: U \to \mathbb{C}$ be a holomorphic function and write $\omega = f dz$.

(i) Prove that ω is *closed*, that is, $d\omega = 0$.

(ii) Assume that U is contractible. Verify that ω is *exact*, that is, we have $\omega = dg$ for some holomorphic function $g: U \to \mathbb{C}$.

Exercise 4. Give a free abelian subgroup of rank 2 in \mathbb{C} which is not discrete.

Exercise 5. Let $U \subset \mathbb{C}^n$ be a connected open subset. Prove that the set of meromorphic functions $\mathcal{M}(U)$ on U is naturally a field.