Exercise 1. Let k be a field and let n be a positive integer. The ring of polynomial functions $O(k^n)$ on k^n is the ring of functions $f : k^n \to k$ such that there exists a polynomial g in $k[x_1, \ldots, x_n]$ with $f(x_1, \ldots, x_n) = g(x_1, \ldots, x_n)$ for all $(x_1, \ldots, x_n) \in k^n$.

(i) Determine $O(k)$ for k a finite field with q elements.
(ii) Assume that k is an infinite field. Prove that $O(k^n) \cong k[x_1, \ldots, x_n]$.

Exercise 2. Let A be a ring and let I be an ideal of A. The radical \(\sqrt{I}\) of I is defined as

\[
\sqrt{I} = \{a \in A : \text{there exists } n > 0 \text{ such that } a^n \in I\}.
\]

Prove:
(i) $\sqrt{I} \supseteq I$;
(ii) \sqrt{I} is an ideal of A;
(iii) $\sqrt{\sqrt{I}} = \sqrt{I}$;
(iv) \sqrt{I} equals the intersection of all prime ideals containing I. (Hint: in order to prove the difficult inclusion, take an arbitrary $a \notin \sqrt{I}$. We want the existence of a prime ideal $p \supseteq I$ such that $a \notin p$. Consider the collection of ideals J of A that contain I but have $a \notin \sqrt{J}$. Apply Zorn’s Lemma to this (clearly non-empty) collection. Any maximal element of it will be a prime ideal.)

Exercise 3. Determine the irreducible components of $Z(y^4 - x^6, y^3 - xy^2 - yx^3 + x^4)$ in \mathbb{A}^2.

Exercise 4. This exercise is devoted to a proof of the Cayley-Hamilton theorem: let k be a field, and let $M_n(k)$ be the set of n-by-n matrices with coefficients in k. For each $M \in M_n(k)$ denote by $\phi_M = \det(T \cdot \text{Id} - M) \in k[T]$ the characteristic polynomial of M. Then $\phi_M(M) = 0$. Note that we may assume that k is algebraically closed.

(i) Give a natural identification of $M_n(k)$ with $\mathbb{A}^{n^2}_k$, thus giving $M_n(k)$ the structure of an affine variety.
(ii) Show that the set $CH := \{M \in M_n(k) : \phi_M(M) = 0\}$ is a Zariski closed subset of $M_n(k)$.
(iii) Show that the set $DEV := \{M \in M_n(k) : M$ has no double eigenvalues$\}$ is non-empty and Zariski open in $M_n(k)$.
(iv) Show that $DEV \subseteq CH$. (Hint: CH contains all diagonal matrices).
(v) Prove that $CH = M_n(k)$.

Exercise 5. Suppose I is an ideal of a ring R. Show that if \sqrt{I} is finitely generated, then for some integer N we have $\sqrt{I}^N \subseteq I$. Conclude that in a noetherian ring, the ideals I and J have the same radical iff there is some integer N such that $I^N \subseteq J$ and $J^N \subseteq I$. Use Hilbert’s Nullstellensatz to deduce that if $I, J \subseteq A = k[x_1, \ldots, x_n]$ are ideals and k is an algebraically closed field, then $Z(I) = Z(J)$ iff $I^N \subseteq J$ and $J^N \subseteq I$ for some integer N.

Exercise 6. (Integrality) Let A be a subring of a ring B. We call an element $b \in B$ integral over A if there exist $a_0, \ldots, a_{m-1} \in A$ such that $b^m + a_{m-1}b^{m-1} + \cdots + a_0 = 0$. We call B integral over A if every element of B is integral over A.

(i) Let $b \in B$. Prove that the following statements are equivalent: (1) b is integral over A; (2)
Exercise 9. Let \(P_k \) be a projective \(k \)-space. Compute the number of elements of \(P_k \) over \(a \).

(ii) Let \(b_1, \ldots, b_n \) be elements of \(B \), each integral over \(A \). Prove that the ring \(A[b_1, \ldots, b_n] \) is a finitely generated \(A \)-module.

(iii) Prove that the set of elements of \(B \) which are integral over \(A \) is a subring of \(B \) containing \(A \).

(iv) Let \(A \subseteq B \subseteq C \) be rings, and assume \(B \) integral over \(A \), and \(C \) integral over \(B \). Prove that \(C \) is integral over \(A \).

(v) Let \(B \) be a domain and let \(A \) be a subring of \(B \) such that \(B \) is integral over \(A \). Prove: \(B \) is a field \(\iff \) \(A \) is a field.

Exercise 7. Describe the maximal ideals of \(k[x] \) for various fields \(k \) such as \(k = \mathbb{R} \), \(k \) a finite field, ...

Exercise 8. Let \(X \) be an affine variety. For \(f \) in \(A(X) \) define \(D(f) = \{ p \in X : f(p) \neq 0 \} \) and \(Z(f) = X \setminus D(f) = \{ p \in X : f(p) = 0 \} \). Prove:

(i) \(X = \bigcup_{i \in I} D(f_i) \iff \bigcap_{i \in I} Z(f_i) = \emptyset \iff \{ f_i \} \) generate \(A(X) \) as an ideal.

(ii) The \(D(f) \) with \(f \) running through \(A(X) \) form a basis for the Zariski topology on \(X \).

(iii) \(X \) is quasi-compact, i.e., every covering of \(X \) with open subsets has a finite subcovering.

Exercise 9. Let \(S \) be a graded ring. An ideal \(\mathfrak{a} \subseteq S \) is called homogeneous if every \(f \in \mathfrak{a} \) has all its components in \(\mathfrak{a} \). Prove:

(i) An ideal is homogeneous iff it can be generated by homogeneous elements.

(ii) The sum, product, intersection and radical of homogeneous ideals are homogeneous.

(iii) The homogeneous ideal \(\mathfrak{a} \) is prime iff for any two homogeneous elements \(f, g \in S \) one has that \(fg \in \mathfrak{a} \) implies \(f \in \mathfrak{a} \) or \(g \in \mathfrak{a} \).

Exercise 10. Let \(k \) be a field, let \(n \) be a positive integer and let \(\mathbb{P}^n \) be projective \(n \)-space over \(k \). Prove that there is a decomposition

\[
\mathbb{P}^n = A^n \sqcup A^{n-1} \sqcup \cdots \sqcup A^1 \sqcup A^0
\]

in disjoint subsets. Compute the number of elements of \(\mathbb{P}^n \) for \(k \) a finite field of \(q \) elements.

Exercise 11. For any \(d \in \mathbb{Z}_{\geq 0} \), let \(S_d \subseteq S = k[x_0, \ldots, x_n] \) be the \(k \)-vector space of homogeneous polynomials of degree \(d \). Prove that \(\dim_k S_d = \binom{d+n}{n} \).

Exercise 12. (Localisation) Let \(A \) be a ring and let \(S \subseteq A \) be a multiplicative subset, i.e., a subset \(S \) of \(A \) with \(1 \in S \) and closed under multiplication. Define a relation \(\equiv \) on \(A \times S \) as follows: let \((a, s) \equiv (b, t) \iff u \cdot (at - bs) = 0 \) for some \(u \in S \).

(i) Prove that \(\equiv \) is an equivalence relation.

We denote by \(S^{-1}A \) the set of equivalence classes for \(\equiv \).
For $f \in A$ one usually denotes $S^{-1}A$ for $S = \{1\} \cup \{f^n\}_{n \in \mathbb{Z}_{>0}}$ by A_f. For example, if $A = \mathbb{Z}$ and $f = 2$ then A_f is the ring of rational numbers a/b with $a, b \in \mathbb{Z}$ such that b is a power of 2.

(iii) Prove that A_f is the zero ring $\iff f$ is nilpotent. Hence the map ϕ of (ii) need not be injective.

For p a prime ideal of A one usually denotes $S^{-1}A$ for $S = A - p$ by A_p. For example, if $A = \mathbb{Z}$ and $p = (3)$ then A_p is the ring of rational numbers a/b with $a, b \in \mathbb{Z}$ such that b is not divisible by 3.

(iv) Prove that A_p has a unique maximal ideal.

A ring with a unique maximal ideal is called a local ring.

(v) Prove that $S^{-1}A$ and ϕ satisfy the following universal property: let $g : A \to B$ be a ring homomorphism such that $g(s)$ is a unit in B for all s in S. Then there is a unique ring homomorphism $h : S^{-1}A \to B$ such that $g = h \cdot \phi$.

(vi) Prove that if A is a subring of a ring B, and B is integral over A, then $S^{-1}B$ is integral over $S^{-1}A$.

Exercise 13. If A is a local ring with maximal ideal m, we call the field A/m the residue field of A.

(i) If B is a ring and p is a prime ideal of B, prove that the residue field of B_p is isomorphic to the field of fractions of the domain B/p.

(ii) Prove that a ring A is local iff the set of non-units of A is an ideal of A.

(iii) Prove that a local ring is not a direct sum of two rings.

Exercise 14. Let X be an affine variety. For non-constant f in $A(X)$ let $Y = D(f)$ be the corresponding quasi-affine variety. Prove that Y is (naturally isomorphic to) an affine variety, and describe the coordinate ring of Y. (Use localisation. See also Lemma I.4.2 in [HAG].)

Exercise 15. Let k be an algebraically closed field and let $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$. Let g in $k[x_1, \ldots, x_n]$ be such that $f_1(x_1, \ldots, x_n) = \cdots = f_r(x_1, \ldots, x_n) = 0 \Rightarrow g(x_1, \ldots, x_n) = 0$. Rephrase our proof that $g \in \sqrt{(f_1, \ldots, f_r)}$ (the Hilbert Nullstellensatz!) as follows.

(i) Let $A = k[x_1, \ldots, x_n]/(f_1, \ldots, f_r)$ and consider the localisation map $A \to A_{\bar{g}}$. Use the Weak Nullstellensatz to prove that $A_{\bar{g}}$ is the zero ring.

(ii) Conclude that \bar{g} is nilpotent in A.

(iii) Conclude that $g \in \sqrt{(f_1, \ldots, f_r)}$.

Exercise 16. Prove that $X = \mathbb{Z}(x^2 - y, y^2 - z)$ in \mathbb{A}^3 is irreducible, and that $X \cong \mathbb{A}^1$. Prove that $\mathbb{Z}(x^2 - y^3) \subseteq \mathbb{A}^2$ is not isomorphic with \mathbb{A}^1. Give a bijective morphism from \mathbb{A}^1 to $\mathbb{Z}(x^2 - y^3)$.

Exercise 17. Let k be an algebraically closed field. Describe the prime ideals of $k[x, y]$. Describe the algebraic subsets of \mathbb{A}^2.

Exercise 18. Let k be an algebraically closed field of characteristic $p > 0$, and let $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$ be polynomials with coefficients in a finite field \mathbb{F}_q. Let $X = \mathbb{Z}(f_1, \ldots, f_r) \subseteq \mathbb{A}^n$.

(i) Show that the map $F_q : X \to X$ given by $(x_1, \ldots, x_n) \mapsto (x_1^q, \ldots, x_n^q)$ is a morphism. We
call this map the q-th Frobenius map.
(ii) Show that F_q is bijective.
(iii) Show that F_q is not an isomorphism unless X is a point.
(iv) Describe the fixed point set of F_q and prove that it is finite.

Exercise 19. Let k be an algebraically closed field. Prove that $PGL(2, k)$ acts via automorphisms on \mathbb{P}^1, and that the action is 3-transitive. Prove also that if a projective transformation of \mathbb{P}^1 has three fix points, then it is the identity.

Exercise 20. More generally, prove that $PGL(n + 1, k)$ acts via automorphisms on \mathbb{P}^n. We call a collection of $k \geq n + 2$ distinct points in \mathbb{P}^n to be in general position if no $n + 1$ among them lie in a hyperplane. Let p_0, \ldots, p_{n+1} be $n + 2$ points in general position in \mathbb{P}^n. Prove that we can choose homogeneous coordinates such that $p_0 = (1 : 0 : \ldots : 0)$, $p_1 = (0 : 1 : 0 : \ldots : 0), \ldots, p_n = (0 : \ldots : 0 : 1)$ and $p_{n+1} = (1 : 1 : \ldots : 1)$.

Choose five points in general position in \mathbb{P}^2. Show that there is a unique non-degenerate conic passing through them.

Exercise 21. (Classification of conics over \mathbb{C}) Recall that a conic in the affine real plane \mathbb{R}^2 (that is, the locus in \mathbb{R}^2 defined by a quadratic equation with real coefficients) belongs to one of the following eight types:
(a) the empty set (as with $x^2 + y^2 + 1 = 0$);
(b) a single point (as with $x^2 + y^2 = 0$);
(c) a ‘double line’ ($x^2 = 0$);
(d) the union of two incident lines ($xy = 0$);
(e) the union of two parallel lines ($xy = 0$);
(f) a parabola ($y - x^2 = 0$);
(g) a hyperbola ($xy - 1 = 0$);
(h) an ellipse ($x^2 + 2y^2 - 1 = 0$).
Any two examples of one of these types differ only by a (real) projective linear transformation.
(i) Show that in the affine complex plane $\mathbb{A}^2_\mathbb{C}$ there are only five types of conics: types (a) and (b) disappear, and types (g) and (h) coincide.
(ii) Show that in the projective complex plane $\mathbb{P}^2_\mathbb{C}$ there are only three types of conics: they are represented by types (c), (d) and (h) from the above list. (Hint: this is a classification by the rank of a conic, where the rank of a quadratic form $\sum_i a_{ii}x_i^2 + 2\sum_{i<j}a_{ij}x_ix_j$ is defined by the rank of the symmetric matrix (a_{ij}).)
(iii) Show that the different types in (i) correspond to the relative position of the conic and the line at infinity. More precisely, a parabola is a rank-3 conic tangent to the line at infinity, while an ellipse/hyperbola is a rank-3 conic meeting the line at infinity in two distinct points.
(iv) For a real conic C, complex conjugation acts in a natural way on the set of its complex-valued points. Assume that C belongs to type (g) or (h). Prove: C is a hyperbola iff its points at infinity are fixed under complex conjugation (i.e., real), and: C is an ellipse iff its points at infinity are conjugate.

Exercise 22. Let $A = (a_0 : a_1 : a_2)$ and $B = (b_0 : b_1 : b_2)$ be distinct points in \mathbb{P}^2. Give an equation for the line AB passing through A and B.

4
Exercise 23. (Pascal’s Theorem) Let C be a rank-3 conic in \mathbb{P}^2, and let A, B, C, A', B', C' be six distinct points on C. Prove that the points $P = AB' \cap A'B$, $Q = AC' \cap A'C$ and $R = BC' \cap B'C$ are collinear.

Exercise 24. Let V be the projective variety of conics passing through four given points in general position in \mathbb{P}^2. Assume that $\text{char} k \neq 2$. Show that the degenerate conics correspond to a proper algebraic subset of V, consisting of three points.

Exercise 25. Give an isomorphism between \mathbb{P}^1 and $\mathbb{Z}(x^2 + y^2 - z^2) \subseteq \mathbb{P}^2$. Parametrise all integer solutions to the equation $x^2 + y^2 = z^2$.

Exercise 26. (Noetherian modules) Let A be a ring and let M be an A-module.
(i) Prove that the following conditions on M are equivalent: every submodule of M is finitely generated; every ascending chain $M_1 \subseteq M_2 \subseteq \ldots$ of submodules of M becomes stationary; every non-empty set of submodules of M has a maximal element. A module satisfying these conditions is called noetherian.
(ii) Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of A-modules. Prove: M is noetherian iff M' and M'' are noetherian.
(iii) If M_i for $i = 1, \ldots, n$ are noetherian A-modules, then so is $\oplus_{i=1}^n M_i$. Prove this.
(iv) Assume that A is a noetherian ring and that M is a finitely generated A-module. Prove that M is noetherian.

Exercise 27. (Closedness can be checked locally) Let X be a topological space and $Y \subseteq X$. Prove: Y is closed in X \iff there is a covering $X = \bigcup_i U_i$ with open subsets such that $Y \cap U_i$ is closed in U_i for all i \iff for any covering $X = \bigcup_i U_i$ with open subsets one has $Y \cap U_i$ closed in U_i for all i.

Exercise 28. Let (A, m) be a local ring and let M be a finitely generated A-module. Prove the following statements, all known as Nakayama’s Lemma:
(i) If $mM = M$, then $M = 0$.
(ii) Let N be a submodule of M. If $M = mM + N$ then $N = M$.
(iii) Let x_1, \ldots, x_n be elements of M whose images in M/mM form a basis of this vector space. Then the x_i generate M.

Exercise 29. Let (A, m) be a noetherian local domain with residue field k. Prove that the following conditions on A are equivalent:
(i) A is a euclidean domain;
(ii) A is a principal ideal domain;
(iii) $\dim_k m/m^2 = 1$.
If these conditions are satisfied, A is called a discrete valuation ring.

Exercise 30. Let U, V be open affine subvarieties of a variety X. Prove that $U \cap V$ is again an affine variety.

Exercise 31. Consider the “folium of Descartes” $X = Z(xyz - x^3 - y^3) \subseteq \mathbb{P}^2$. Prove that X is birationally equivalent with \mathbb{P}^1. Are they isomorphic?

Exercise 32. Consider the quadric $X = Z(x^2 + y^2 - z^2) \subseteq \mathbb{A}^3$. Prove that X is birationally equivalent with \mathbb{A}^2. Are they isomorphic?
Exercise 33. Prove that \(\mathbb{P}^2 \) is birationally equivalent with \(\mathbb{P}^1 \times \mathbb{P}^1 \). Are they isomorphic?

Exercise 34. (i) Let \(X \) be a variety that is both projective and affine. Prove that \(X \) consists of a single point.
(ii) Let \(X \) be a projective variety, \(Y \) an affine variety, and \(f : X \to Y \) a morphism. Prove that \(f \) is constant.

Exercise 35. Let \(X \) be an affine variety and let \(X \to \mathbb{A}^n \) be a morphism. Is the image of \(X \) closed in \(\mathbb{A}^n \)?

Exercise 36. (Elimination theory) Translate Theorem I.5.7A of [HAG] into the following statement: let \(X \) be a projective variety, and let \(Y \) be any variety. The projection \(p_Y : X \times Y \to Y \) is a closed map, i.e., it sends closed sets to closed sets. (Hint: first do the case \(X = \mathbb{P}^n \) and \(Y = \mathbb{A}^m \).

A variety \(X \) which has \(p_Y : X \times Y \to Y \) closed for all varieties \(Y \) is called complete. Is \(\mathbb{A}^1 \) a complete variety?

Exercise 37. Let \(f : X \to Y \) be a morphism of varieties. We call \(\Gamma_f = \{(p, q) \in X \times Y : q = f(p)\} \) the graph of \(f \).
(i) Prove that \(\Gamma_f \) is a closed subset of \(X \times Y \).
(ii) Prove that the image of a projective variety under a morphism is closed. (Use (i) and elimination theory.)
(iii) Use (ii) to prove that any regular function on a projective variety is constant (this is Theorem I.3.4(a) of [HAG]).

Exercise 38. (Rigidity lemma) Let \(X, Y \) and \(Z \) be varieties, with \(X \) projective. Let \(f : X \times Y \to Z \) be a morphism. Suppose that there is a point \(y_0 \in Y \) such that \(f \) is constant on \(X \times \{y_0\} \). Then \(f \) factors through the projection \(p_Y : X \times Y \to Y \), i.e., \(f \) is constant on every slice \(X \times \{y\} \). (Hint: choose any point \(x_0 \in X \), and define \(g : Y \to Z \) by \(g(y) = f(x_0, y) \). To prove that \(f = g \cdot p_Y \), it is enough to show that they agree on an open dense subset of \(X \times Y \). If \(U \) is any open affine neighbourhood of \(z_0 = f(x_0, y_0) \), consider the set \(W = p_Y(f^{-1}(Z \setminus U)) \).

Prove that \(W \) is closed in \(Y \), using elimination theory. By construction, \(y_0 \notin W \), so that \(Y \setminus W \) is a dense open subset of \(Y \). Use Exercise 34(ii) to show that \(f(X \times \{y\}) \) is a point for any \(y \notin W \).

Exercise 39. Let \(X, Y \) be group varieties (cf. [HAG], Exerc. I.3.21) with \(X \) projective and let \(f : X \to Y \) be a morphism. Prove that \(f \) is a homomorphism followed by a translation, i.e., prove that there is an \(y \in Y \) and a homomorphism \(g : X \to Y \) such that \(f(x) = g(x) + y \) for all \(x \in X \). (Hint: after a translation we may assume that \(f(e_X) = e_Y \). Rephrase the condition that \(f \) be a homomorphism in terms of the constancy of a certain map \(X \times X \to Y \).

Use the rigidity lemma to prove this constancy.)

As an application, prove that a projective group variety is commutative. A projective group variety is called an abelian variety.

Exercise 40. Let \(k \) be a field and let \(K \) be an extension field of \(k \). A subset \(S \) of \(K \) is called algebraically dependent over \(k \) if for some positive integer \(n \) there exists a non-zero polynomial \(f \) in \(k[x_1, \ldots, x_n] \) such that \(f(s_1, \ldots, s_n) = 0 \) for some distinct \(s_1, \ldots, s_n \in S \).
We call \(S \) \textit{algebraically independent} over \(k \) if \(S \) is not algebraically dependent over \(k \). A \textit{transcendence base} of \(K \) over \(k \) is a subset of \(K \) which is algebraically independent over \(k \) and is maximal in the collection of all algebraically independent subsets of \(K \).

(i) Prove that \(K \) has a transcendence base over \(k \).

(ii) Let \(S \) be algebraically independent over \(k \), and let \(t \in K \setminus k(S) \). Prove: \(S \cup \{ t \} \) is algebraically independent over \(k \) iff \(t \) is transcendental over \(k \).

(iii) Again let \(S \) be algebraically independent over \(k \). Prove: \(S \) is a transcendence base over \(k \) iff \(K \) is algebraic over \(k \).

(iv) Prove: if \(S \) is a finite transcendence base of \(K \) over \(k \), then every transcendence base of \(K \) over \(k \) has the same number of elements as \(S \). We call this number the \textit{transcendence degree} of \(K \) over \(k \), notation \(\text{trdeg}_k K \).

\textbf{Exercise 41.} Show how the geometric version of Krull’s Hauptidealsatz given in class follows from the algebraic version given in [HAG], Theorem I.1.11A.

\textbf{Exercise 42.} Prove that a group variety (cf. [HAG], Exerc. I.3.21) is non-singular.

\textbf{Exercise 43.} Compute the tangent lines to the conic \(Z(x_0^2 + x_1^2 - 2x_2^2) \subseteq \mathbb{P}_C^2 \) that pass through \((0 : 0 : 1)\). Make it clear by means of a picture that these tangent lines can not be defined over \(\mathbb{R} \).

\textbf{Exercise 44.} Compute the singularities of the Klein quartic curve \(Z(x^3y + y^3z + z^3x) \subseteq \mathbb{P}^2 \).

(Note: the ground field may have any characteristic!)

\textbf{Exercise 45.} Compute the strict transforms in \(\text{Bl}_0(\mathbb{A}^2) \) of the plane curves given in [HAG], Exercise I.5.1.

\textbf{Exercise 46.} Let \(X \) be an affine variety and let \(p \in X \) be a point. Prove that the elements in \(T_{X,p} \) correspond 1-1 with the \(k \)-algebra homomorphisms \(\phi: A(X) \rightarrow k[\epsilon]/(\epsilon^2) \) with \(\phi(m_p) \subseteq (\epsilon) \).

\textbf{Exercise 47.} If \(m > n \), prove that there are no non-constant morphisms \(\mathbb{P}^m \rightarrow \mathbb{P}^n \).

\textbf{Exercise 48.} Let \(k \) be an algebraically closed field. Compute the Hilbert function and polynomial for the ring \(k[x, y, z, w]/(x, y) \cap (z, w) \) corresponding to the disjoint union of two lines in \(\mathbb{P}^3 \). Compare these to the Hilbert function and polynomial of the ring corresponding to one projective line.

\textbf{Exercise 49.} Compute the Hilbert function and polynomial for the twisted cubic curve, cf. [HAG], Exercise I.2.9(b).

\textbf{Exercise 50.} (Posed by Matthijs van Duin) Let \(X \) be a variety such that the natural inclusion \(Q(O(X)) \rightarrow K(X) \) is an isomorphism. Is \(X \) quasi-affine?