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Notation and terminology.

Atgégé‘geed not be commutative and has a unit element | which ig different from
0 and which is preserved by ring homomorphisms. The group of units of a ring R
is denoted by R*. A module is a left module, on which I acts as the identity. A
domain 1is a commutative ring without zero-divisors. Fields are commutative.

By Z, Q, R, C, Eq we mean the ring of integers, the field of rational

numbers, the field of real numbers, the field of complex numbers, and the finite
are

field with q elements, respectively. Notations like Z and R |

> 0 0

self-explaining.

Set — theoretic difference is denoted by —; but A + B ={a+b|aeA,beB} if
A,B are subsets of an additive abelian group, and a + B = {a+b[beB}. The
cardinality of a set S is denoted by # S. For a real number x we mean by
{g] either the greatest integer not exceeding X or a reference to item X
of the bibliography. Confusion is unlikely. The end or the absence of a proof is

matked by [ |.

We assume that the reader is acquainted with the elementary properties of
well ordered sets and ordinal numbers. The smallest infinite ordinal is
denoted by w, and + denotes ordinary ordinal addition (so | + w = w < w * 1).

For Hessenberg addition ® we refer to the proof of (l.11).



1. Defipitions and elementary properties.

Let R be a ring, M a left R-module and W a well ordered set.

(1.1)Definition. A map ¢: M - {0} > W is called an algorithm of type | on

M if for all a,b e M, b # 0, there exist q € R and ¢ e M such that
a =gb + c and either ¢ = 0 or ¢(c) < o(b).

It is often convenient that ¢(0) have 3 meaning. There are two natural

ways to achieve this.

(1.2) Definition. A map ¢: M -+ W is called an algorithm of type 2 on M if for

all a,b e M, b # 0, there exist q ¢ R and ¢ e M such that a = gb + ¢ and
9(e) < 9(b).

(1.3) Definition. A map ¢: M > W is called an algorithm of type 3 on M if for

all a,b e M there exist q € R and ¢ ¢ M such that a = gb + ¢, and ¢ = 0 or
¢p(c) < @(b).

In order to clear up the relation between these three types of algorithms
it is useful to introduce the following notion. We call two maps
Y: S > Wand p': S > W' from a set S to well ordered sets W, W' equivalent
if there is an isomorphism of ordered sets o: w[ﬁ] -> w'[S] such that
' = oy. Note that such a o is necessarily unique. Note also that each map
¥: S+ W is equivalent to a unique y' whose image is a beginning segment of
the ordinal numbers.

It is clear that a map equivalent to an algorithm of any type is itself an

algorithm of the same type. We are only interested in algorithms up to

equivalence.

(1.4) Proposition. Let 9,° M - {0} + W be an algorithm of type 1, and put
W2 = {#} UW (disjoint). Extend the ordering of W to a well-ordering of
wz by ®# < w for all w e W. Then the map 9yt M > W2 defined by

mz(m) = @10m) (m # 0),

&

i

q>2(0)

is an algorithm of type 2 on M. Conversely, every algorithm of type 2 on M is,

up to equivalence, obtained in this way from an algorithm of type I.



Proof. It is straightforward to check. that 9, is an algorithm of type 2.
To prove the converse, it clearly suffices to show: if ¢ is an algorithm
of type 2 and ¢(b) is minimal in mB@], then b = 0. But this follows from
(1.2), since in the case b # O we would get ¢(c) < ¢(b), contradicting the

minimality of ¢(b). [j

(1.5) Proposition. Let R {0} > W be an algorithm of type !, and put
WB = W {#} (disjoint). Extend the ordering of W to a well-ordering of W3

by w < #* for all w ¢ W. Then the map 943 M - w3 defined by

@3(m) 9, (m) (m # 0),

|
o
%

<p3(0) =

is an algorithm of type 3 on M. Conversely, every algorithm of type 3 is,

up to equivalence, obtained in this way from an algorithm of type 1.

Proof. One verifies immediately that 94 is an algorithm of type 3. Next let

¢ be any algorithm of type 3 on M. To prove the last assertion of (1.5) it
suffices to show ¢(a) < ¢(0) for every a e M, a # 0. But this is clear from

(1.3) with b = 0. [ ]

an algorithm .
In the sequel we mean by an algorithm/of type 3, unless the contrary 1is

mentioned. Using (1.4) and (1.5) the reader will have no difficulty in

reformulating the various results so as to conform to the other definitions.

Instead of "algorithm" we also say left algorithm. On a right R-module,

the notion of a right algorithm is defined similarly: just replace a = gb + ¢

by a = bq + c.

A left R-module M is called euclidean if there exist a well ordered set

W and an algorithm ¢: M -+ W. We call a ring R euclidean or left euclidean

if it is euclidean as a left module over itself. Similarly, we call R

right euclidean if there is a right algorithm on the right R-module R. Finally,

R is two-sided euclidean if there is a map ¢ from R to a well ordered set

which is at the same time a left algorithm and a right algorithm.

(1.6) Theorem. Let M be a euclidean R-module and let N &< M be a submodule. Then

N = Rx for some x e N. More precisely, if ¢ is an algorithm on M and X e N



satisfies

9 (x) = min{g(y) |yeN}

then N = Rx.

Proof. Let x e N satisfy ¢(x) = mih{m(y)[yeN}. Clearly we have Rx~ N, and the
opposite inclusion is proved as follows. For y e N we can write y = gx + ¢
with g e R, c ¢ M, and ¢ = 0 or ¢(c) < ¢(X). Then c = y - qgx e N so

¢p(c) < ¢(x) is excluded by minimality of ¢(x). Hence ¢ = 0 and y = qx e Rx,

as required. [j

(1.7) Corollary . Every left ideal of a euclidean ring is principal. Every

euclidean domain is a principal ideal domain and therefore has unique
factorization. Every two-sided ideal a of a two-sided euclidean ring R contains

an element X such that a = RX = xR, [j

(1.8) Corollary. Let ¢: M > W be an algorithm. For a submodule N oM Put

$(N) = min{p(y) |yeN}
and for X e M let
0y (%) = G(Rx).
Then we have
(1) 9(N) < §(N") for N' ~ N, with equality if and only if N = N';
(i1) 9,(x) < ¢(x) for all x e M;
(iii) ¢, is an algorithm on M;
(iv) 94(%) < ¢,(qx) for all x ¢ M and q ¢ R, with equality if and only if

Rx = Rgx.

Proof. (i) Clearly 9(N) < P(N') for N'< N. If equality holds, then some
¥ € N' = N satisfies g(x) = min{w(y)[yeN}. By (1.6) this implies N = Rx « N'

so N = N', as required.

(1i1) is obvious.
(iii) Let b e M and a ¢ M - Rb. Choose r ¢ R such that mﬁ(b) = ¢(rb).
Since ¢ is an algorithm, there exists c e a + Rrb with g(c) < ¢(rb). Then

¢ ea+ Rb and g,(c) < ¢(c) < ¢(rb) = ¢*(h), which proves that



Py is an algorithm.

(iv) is clear from (i). (]

(1.9) Proposition. Let N be a submodule of a euclidean module M. Then

both N and M/N are euclidean.

Proof. If ¢ is an algorithm on M, then mlN is easily proved to be an algorithm
on N. An algorithm y on M/N is obtained by putting ¥(x+N) = min{¢(y) |yex+N} for
x + N e M/N. []

(1.10) Corollary. Let R be a euclidean ring and a < R a two-sided ideal.

Then R/a is a euclidean ring. L]

Subrings of euclidean rings need not be euclidean, e.g.

kEXZ,X%]¢: k[X]| where k is a field, or ZI}:3]~?5Ei226]’ where z, ., is a
primitive 20-th root of unity.

(1.11) Proposition. Let Mi be a euclidean Ri~modu1e, for i = 1,2. Then

M1>< M2 is a euclidean Rl>< Rz—module (the action of RI>{ R2 on Ml>< M2
being componentwise).

Proof. First we note that a map ¢: M > W is an algorithm if and only if for
all a,b e M there exist q e R and ¢ e M such that a = q*b + ¢ and ¢ = b or

9(c) < ¢(b) (notice the inessential replacement of "¢ = 0" by "¢ = b").

Secondly, we recall [cf.jl that the "Hessenberg sum" of two ordinals

o and B can be defined inductively by

a ® B = min{y|y is an ordinal,
Yy > A &8 for all A < q,
Yy > o ® X for all A < g},

This addition is commutative and associative.
Now let 0 be an algorithm on Mi with ordinal values, for i = 1,2. We
claim that an algorithm ¢ on M = MJN( M2 is given by

To prove this, let a = (a‘,av), b = (bl’bz) e M. For i = 1,2, choose q; e Ri’



c. e M, suchAthatvai‘= q;*b, + ciband @i(ci)‘s wi(bi), with equality if and only
if c; = bi;~Putting q = (q],qz) e R =R;%¥ R2 we then have a = gb + c. More-
over, if at least one of the inequalities ¢I(c1) < @l(b]) and wz(cz) S mz(bz)

holds striCtly, then

p(c) = "’l(cl) ® cpz(cz) < wl(bl) @ wz(bz) = ¢(b)

and if both ¢l(cl) = ml(bl) and mz(cz) = mz(bz) then c; = bi for 1 = 1,2 and

¢ = b. This proves that ¢ 1s an algorithm. [i]



2, The smallest algorithm.

Let M be a euclidean module, W a well ordered set and ¢ a
non~empty set of algorithms ¢: M - W. Then the map ¢: M +~ W,
defined by

P(x) =min {9 (x) | ¢ e @}
is an algorithm on M. To prove this, let a,b e M and choose
® e ® such that ¢Y(b) = ¢(b). Since ¢ is an algorithm, there
exist g e R and ¢ e M such that a=gb+c, and c¢=0 or ¢(c) <o(b).
This implies c=0 or Y(c) <9p(c)<¢(b) = ¢ (b), as required.

Taking

WM = {ordinals of cardinality < # M}

we conclude that the map g, ,: M + WM defined by

M
8MCK) =min { ¢(x) i p:M > WM is an algorithm }

is itself an algorithm, the so-called "smallest algorithm" of M.

(2.1) Proposition. Let ¢ : M QJWM be an algorithm. Then the

following three assertions are equivalent:

() ¥ =0y

(b) ¢ (x) €0 (x) for all xe M and for all algorithms ¢ : M ~» WM.

(¢) for all b e M and for all A e W, satisfying A < y(b), there

M
exists a ¢ M — Rb such that ¢y (¢) > A for every c ¢ a + Rb.

Proof. (a) ¢ (b) is clear from the definition of By
(b)Y ={c)., Assume (b), let b e M and A <y (b). Define ¢:M - WM

by
¢ (m) =¢ (m), m#b,

o (b) = A.

Then ¢ (b) <¢ (b) so (b) implies that ¢ is not an algorithm.

Therefore there are a,b' e M with a ¢ Rb' such that

there is no ¢ e a + Rb" with ¢ (¢) <¢ (b"). In the case b # b'

this would contradict the assumption that y is an algorithm. Hence
)

b = b', and we conclude ¢ (¢) = ¢ (c) » ¢ (b") = X for all

¢ e a + Rb, as required.



(¢) = (b). Let ¢: M ~+ Wy be an algorithm, and b e M.
Assuming (c), we prove y (b) s ¢ (b) by induction on 9o (b).
Hence we may assume y(%)<p(x) for all x e M with ¢(X)<g(b).
Suppose ¢ (b) < ¢ (b); we derive a contradiction.Applying (c)
with X = ¢ (b) we find a € M-Rb such that ¥ (e) > 9 (b) for all
€ e a+ Rb. In particular, if we choose c e a + Rb such that
¢ (c) < ¢ (b) then we have ¢ (c) < ¢ (b)g ¥ (¢), while the inductive

hypothesis asserts ¢ (c) < ¢ (c). Contradiction. v

Using (2.1) (c¢) one verifies easily that the usual degree is
the smallest algorithm (of type 1) on k [X], where k is a field.
Compare (4.3).

(2.2) Corollary. If M is euclidean, then QM (x) < BM (gx) for all

x eM, q e R, with equality if and only if RX = RgX.

Proof. Let 8 = 6M. From (1.8) (ii,iii) and (2.1) (b) we conclude
6, = 08, so (2.2) follows from (1.8) (iv). 7

(2.3) Corollary. Let Mi be a euclidean Ri~module with smallest

algorithm Gi, for i=1,2. Then the smallest algorithm 6 on the

Rlx‘Rz—module M=Mlx M2 is given by

] ((ml,mz)) = 6l (m]) @ 62 (mz).

Proof. We know from the proof of (1.11) that the map y:M ~ WM
defined by w((ml,mz)) = 6l(m1) o 62(m2) is an algorithm on M. To
prove Y = 6 it suffices to check that (2.1) (¢) is satisfied. So
let b= (bl’bz) e Mand A < ¢ (b) = Gl(bl) o Gz(bz) be arbitrary.
The definition of the Hessenberg sum implies that for i=1 or for
i=2 there exists an ordinal o< ei(bi) such that

MSug @0, 5 (by )
i=1. Applying (2.1) to M] we know that there exists a e M]*-R]bl
such that e](cl) > My for all ¢ ]+RJbJ. Then the element

a = (al,bz) of M is not in R * b = (Rlsz)'b, and for each

Without loss of generality we may assume

e a

c = (c],cz) e a+R-b we have c, @ Rz-b2 and therefore
v(e) =8,(c;) 0,(cy) >n @86,(b) > A.

This proves that indeed (2.1) (c) is satisfied. /7
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(2.4) Proposition., Let ¢ : M - WM be an algo¥ithm, and let b e M
satisfy ¢ (b) = ¢,(b) (cf.(1.8)). Let Ann (b) be the left ideal
{reR | rb=0}of R. Then R/Ann (b) is a euclidean R-module,

and
¢ (gb) > ¢ (b) + GR/Am(b) (g+Ann(b))

for all g e R; here + denotes usual ordinal addition.

Proof. For all q e R we have ¢(qb) > ¢(b), so we can write

9(gb) = ¢(b) + n(q)
for some map u : R ~+ WM. Clearly n(q) = ﬁ(q‘) if q-q' e Ann (b),
so Y induces a map A : R/Ann (b) + W,. It is easily checked that

M
A is an algorithm on R/Ann (b), and (2.4) follows quickly. O

(2.5) Corollary. Let R be a euclidean ring without zero-divisors. Then

GR(ab) > GR(b) * GR(a)

for all a,be R, b &0,

Proof. Apply (2.4) with R=M and ¢ = GR. o

We conclude this section with a discussion of the "transfinite
construction".

Let M be a module over a ring R, and let WM be the set of
ordinals whose cardinality does not exceed #% M. For X e Wy, we
define inductively.

M= {x e M | the natural map {0} v , L) M, M/Rx

ueWM,a<A
is surjectivel.
Here the natural map {O}ﬁ)(,g Ma + M/Rx is the composite of the
inclusion in M and the canonical projection M -+ M/Rx.
We have

MO={xeM{M=Rx},

M <M for a < 8.
o 8 =
If M= R is a commutative ring, then one easily checks
%
R, = R,

I«l‘1 - R \J{ xe R | Rx is a maximal ideal in R, and the map

o i
R -+ (R/Rx) 1is surjective}l.
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(2.6) Theorem (Motzkin [1],Samuel [2]|). The R-module M is
euclidean if and only if ) Mk‘q M. If M is euclidean, then
AeWM

its smallest algorithm is given by

GM(x) = min {A i X € MA}'

Proof. If \ } M

AewM

(2.7) v (0 =min {d | xeM }

xS M then the function y : M - WM defined by

is easily proved to be an algorithm; so\v)MA = M implies that
M is euclidean. Conversely, suppose M is euclidean and let
p: M Wy be an algorithm. Using induction on A it is not

hard to prove that

(2.8) {x e Mo(x) < A} SN

for A e W . Taking the union over ) gives Mc:\_JMA so M = LﬁMA,

as required.

Finally, if M is euclidean then (2.7) and (2.8) imply
V(») € 9(x), for all x e M and all algorithms ¢: M »> WM. This

means | = GM. [:I
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3. Commutative rings.

In this section R denotes a commutative ring.

(3.1) Proposition. Let M be an R-module. If M # Rx for all x e M, then M

is not euclidean. If x e M satisfies M = Rx,then M is euclidean if and only

if the ring R/Ann(x) is euclidean.
Ptoof. Obvious. Note that R/Ann(x) is a ring since R is commutative. [i]

By (3.1) we need in the commutative case only consider the situation

M =R,

A special local ring is a local ring whose maximal ideal m is
n

generated by one nilpotent element: m = Rm, m = 0. For example, a field is

a special local ring.

(3.2) Proposition. Let R be a commutative ring. If R is not a principal ideal

ring, then R is not euclidean. If R is a principal ideal ring, then

for some non-negative integer t, where each Ri is either a principal ideal domain which
is no field or a special local ring. In this case R is euclidean if and only if

all R, are euclidean. Finally, if R is euclidean then its smallest algorithm ©

is gi;en by

B(x) =

’ ei(xi),
L

1

I &

]

mmllest algorithm of Ri'

Proof. The first assertion follows from (1.7). For the decomposition of a

principal ideal ring, see [ﬁ,Ch. IV, Sec. 15, Th.33]. The rest of (3.2)
follows from (!.11), (1.10) and (2.3). [j

(3.3) Proposition. Let R be a special local ring with maximal ideal m = Rm,

. .. . n & :
and let n » O be minimal with 7@ = Q. Then R =\"J} R +ql (disjoint wunion),
i=0
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and R is euclidean with smallest algorithm

)

n 1
GR(X) =i for x eR on".

Proof. Straightforward (use (2.2)). [ ]

By (3.2) and (3.3) the question, whether a commutative ring is euclidean
and, if so, how its smallest algorithm looks like, is reduced to the case
of a principal .ideal domain. It is known that there exist principal ideal

domains which are not euclidean ((7.4),(16.7),[5]).
The following proposition sharpens (2.5) in the commutative case.

(3.4) Proposition. Let R be a euclidean domain with smallest algorithm 6.

Then 6(ab) » 6(a) ® 6(b) for all a,b e R - {0}.

Proof. By induction on 6(ab). If 6(ab) < 6(a) ® 6(b) then, interchanging a and

b if necessary, we may assume 6(ab) < A ® 0(b) for some A < 8(a). Choose

r e R - Ra such that 6(c) > X for all ¢ e r + Ra (by (2.1)(c)). Choose cb e rb + Rab
such that 6(cb) < 6(ab). Then ¢ € r + Ra so 6(c) > A. Now we have

B(cb) < 6(ab) < A & 8(b)
while the inductive hypothesis asserts
B(cb) > 6(c) ® 6(b) > A & 6(b).
This contradiction proves 6(ab) > 6(a) @ 0(b). []

We remark that for all known R to which (3.4) applies GR[R—{Of] consists only
of finite ordinals. Since ® and + coincide on finite ordinals, this means

that no example is known in which(3.4) is actually sharper than (2.5).
Also, for all euclidean domains R for which 6 is known there exists
k e Z such that
—30

0(a) + 6(b) < 6(ab) < 6(a) + 6(b) + k
for all a,b e R - {0}. I do not know how generally this is true.

(3.5) Proposition. Let R be a euclidean domain. Then

eR(a) > é ordEKa) (a e R,a # 0),
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the sum ranging over the nonzero prime ideals m of R. Here ord denotes

the number of factors m in Ra. -
Proof. Clear from (3.4) or (2.2) since BR(a) =0 only for a e R%, []

We note that any principal ideal domain R which satisfies the "second

stable range condition"
R* > (R/Ra)* is surjective for all a e R,

is a euclidean ring for which equality holds in (3.5). This includes the
case of a semilocal principal ideal domain [?,prop.SI. Also for R = kt&],

where k is an algebraically closed field, we have equality in (3.5).

(3.6) Proposition. Let R be a euclidean domain with algorithm ¢, and let

§ 2R - {0} be a multiplicatively closéd subset. Then S—IR is euclidean with algorithm

p(x) = min{w(sx)ls e S,sx e R}.

Proof. [2, prop. 7]. [ ]
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4. Unique remainder algorithms.

Let M be a module over a ring R, and let W be a well ordered set.

A map ¢: M > W is called a unique remainder algorithm (u.r.a) if for all

a,b € M there exists a unique element r € a + Reb which satisfies r = 0 or
o(r) < 9(b).
Example: R = M = k[K], with k a skew field, and ¢ = degree (where deg(0) = w).
(4.1) Proposition. An algorithm ¢: M - W is u.r.a. if and only if
(i) and (ii) hold:

(1) V x5y e M: x ¥y o(x-y) < max{o(x),0(y)},
(ii) V x e M: V q e R: ¢(x) < 0 (gqx) .

Proof. "Only if". (i) Putting a = x and b = X~y we have x, y € a + Rb so by
uniqueness we cannot have both ¢(x) < 9p(b) and o(y) < o9(b). Hence

0(x) > ¢(b) or 9(y) > ¢(b), as required.
(11) If ¢(qx) < o(x) then qx # O by §1. But then r = qx and r = O

are two different elements of O + Rx which both satisfy
r=0 or o¢(r) < g(x),
contradicting uniqueness.

"If". Suppose (i) and (ii) hold. We have to prove that

r = s mod Rb,
r=0or ¢(r) < ¢(b),
s = 0or ¢(s) < ¢(b)

implies r = s. In thg case r = O we have s e¢ Rb, so ¢(s) > ¢(b) by (ii), and
s =0 =r. Similarly the case s = 0 is treated. If both ¢(r) < ¢(b) and
¢(s) < ¢(b) then putting r - s = gb we find

max{g(r),0(s)} < ¢(b) < ¢(gb) = ¢(r-s)
so (i) implies r = s. []

(4.2) Corollary. If ¢ is u.r.a. on M, then

o(x) = 9(-x) for all x e M,
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and

o (xty) = max{o(x),0(y)} if o(X) # ¢(y), X # 0 # y.

Proof. ¢(x) = ¢(-x) is clear from (4.1)(ii). Further, if ¢(x) > ¢(y) then
(i) implies
o(y) < o(x) < max{o(x+y),0(y)}

and therefore

o (x+y) » o(x) = max{o(x),0(y)}.

The other inequality is clear from (i) and ¢(~y) = o(y). EWJ

(4.3) Proposition. Let ¢ be u.r.a.on M such that ¢[M] is a beginning segment

of the ordinal numbers. Then ¢ is equal to the smallest algorithm by on M.

Further, for b e M and q e R we have (cf.(2.4))

GM(qb) = eM(b) + eR/Ann(b) (q + Ann(b)).

Proof. We check that ¢ = ) satisfies (2.1)(c). Let b ¢ M and X e WM be such
that A < ¢(b). Choose a e M with ¢(a) = A. Then a # Rb, and since the only

element r of a + Rb satisfying ¢(r) < ¢(b) is given by r = a, we have

o(r) » A for all r e a + Rb.
This proves (2.1)(c) and we conclude ¢ = GM.

Further, let b e M. As in the proof of (2.4) there is an algorithm
X: R/Ann(b) - WM such that

6y (ab) = 6,(b) + A(q)

where g = q + Ann(b). We want to prove X = and this .will follow

eR/Ann(b)’

from the above once we know

(1) A is u.r.a.;

(ii) the image of X is a beginning segment of the ordinals.

Statement (i) is easily checked. To prove (ii), let a e R/Ann(b) and

u e W, satisfy p < K(E); we have to find r e R/Ann(b) such that A(r) = u.

M
From @M(b) + p o< 3M(b) + A(q) = eM(qb) we know that there exists
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¢ € M such that GM(C) = GM(b) + p. If ¢ is a multiple rb of b, then

p = A(r) and we are done. If c is not in Rb, then ¢ = rb + d with
6, (d) < 6,(b), and (4.2) implies 8y(c) = 8, (rb) so again w = A(r). This
finishes the proof of (ii). [:]

Note that (4.3) implies that any two u.r.a.'s on a module M are

equivalent. In (4.5) we will see that essentially there are no other algorithms

on M.

(4.4) Corollary. Let R be a ring without zero-divisors having a u.r.a. Then

SR(ab) - GR(b) + GR(a) for all a,b e R, b # O. [:]

(4.5) Proposition. Let M be a module with u.r.a., and let y: M > W be a map,

with W well ordered. Then y is an algorithm on M if and only if y(a) < y(b)
for all a,b e M for which GM(a) < GM(b).

Proof. The "if'"-part is obvious. "Only if". Suppose § is an algorithm, and
suppose there are a,b € M with eM(a) < 6M(b) and ¢(a) > ¥(b). Choose such
a,b with ¢(b) smallest possible. From GM(a) < GM(b) we know a % Rb. Since

Y is an algorithm, there is r e a + Rb with y(r) < ¢(b). Then r # a, so be-

cause eM is u.r.a. we have GM(r) > eM(b). We conclude

6,(a) < 0,(r), ¥(a) > ¥(x)

contradicting the minimality of y(b) since ¢(r) < y(b). []

In the rest of this section we determine all rings R with u.r.a. which

are commutative or have no zero-divisors. References: [§,28,9,10,11,12,15].

(4.6) Theorem. Let R be a commutative ring. Then R has u.r.a. if and only if

R =z k[X] for some field k, or R is a field, or R

n

sz F—Z'

Proof. The "if"-part is easily checked. "Only if". Let 6 = and put

6R
k = {0} UR* = {0} U {x e R[6(x) = O}, cf. (2.6).By (4.1)(iy , the set k

is additively closed, so it is a field. Since R is a principal ideal ring,
(3.2) tells us'that either R is a principal.ideal domain but no field, or R

is a special local ring, or R ER1 X R2 for certain nonzero rings RI’RZ'
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Case 1. R is a principal ideal domain but no field. Choose
%x ¢ R = k with 8(x) = l; we claim R = k[ﬁ]. Suppose, in fact, that there
exists g ¢ R - k[ﬁ], and choose such a guwith 8(q) smallest possible.
Then ¢ = a*x + ¢ with a,c ¢ R and ¢ = 0 or 6(c) < 6(x) = I. Clearly c e k.
Also 8(a*x) » 6(x) so from (4.2) we conclude 6(q) = 6(a*x). Using commutativity
and (4.4) we find 6(q) = 6(ax) = 6(xa) = 6(a) + 6(x) > 6(a). By the
minimality of 6(q) it follows that a e k[%] and therefore also
q = ax + ¢ e k[x|, contradiction. Hence R = k[g], and since R is no field

we have R a]&Dﬂ.

Case 2. R is a special local ring. Let x e m, then

x = (1+x)~1 e k + k = k = {0} UR%, but x ¢ R* so x = 0, and R is a fiéld.

Case 3. R = R x R, with R] # 04 RZ‘ If ue R? then (u,1) = (1,1) is in

2
k but not in R* so (u,1) = (1,1) and R? = {1}, Similarly Rg = {1}, so

R* = {1} and k = EZ' Let x = (XI’XZ) e R satisfy 6(x) = 1. Then R # Rx, and

k = F, surjects onto R/Rx = (RI/RIXI)‘X (R2/R2X2)' Hence R/Rx 2 EQ and after

~2

re~indexing we may assume Rl/Rlxl = F

- .. . &
9 and R2 R,%x,. This implies X, € R

272

Now let y = x~1 = (xB“R,O). Since 6(y) = 1 by (4.2) we have in the same

R/Ry = (RI/RI(XI“l)) % R.. We conclude R

m

way EQ 9°

s % = - = =2
X, l e Ri {1}, so x, =0 and RI R!/Rlx

9 = EQ and

;& By as required. [ |

Let R be a ring, p: R > R a ring homomorphism and §: R » R a map satis-
fying §(a+b) = §(a) + §(b) and S(ab) = p(a)s(b) + 8(a)b (a so—-called "o-derivation').

Then the skew polynomial ring REX;@,@] consists of formal finite sums

, i . . . . .
L r.X", with r. e R. Addition is performed in the usual componentwlse manner,
o

o

and the multiplication is determined by the multiplication in R and the rules

141

X-x* = X (i30)

Xer = p(r)eX + &(xr) (reR).

o -

It is straightforward to prove that this gives a ring. We say that R[g;p,ﬁl is

- o . . P S . ¢ e . ¥
a J-skew polynomial ring over R if p is injective and satisfies Jategaonkar's
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condition p[ﬁ]c: R% ., {0}. If such a p exists then clearly R and R[X;p,d]

have no zero-diyisors.

(4.7) Proposition. Suppose S = R[X;p,&] is a J-skew polynomial ring over R,

and let R have u.r.a. Then also S has u.r.a., and

05(0) = w8, (0)

n i
GS(Zi=0riX ) = n‘eR(o) + GR(rn), r.eR, T # 0, n>0.

Proof. The multiplication is usual multiplication of ordinals

(2°w = gtw, and we 2 = ). Notice GR(O) > eR(r) for all r e R -~ {0}, so the
term n€%§0) dominates.

g as defined in (4.7) is an algorithm on S.
Let f = Z?:O riXi e S with r, # 0, and let g ¢ S - Sf. We have to find

We check that the function 6

h e g+ Sf with es(h) < es(f). To this end, choose h e g + Sef with es(h)
minimal. Write h = Z?=O tin with tﬁ # 0. We distinguish three cases.
If m < n then 6S(h) < (m+1)-6R(0) < eS(f) and we are done. If m = n then the

minimality of es(h) and the fact that 6, is an algorithm on R imply

R
GR(tm) < SR(rn) so again es(h) < es(f). Finally, if m > n then

hy =h -t (pm'“(rn>)"‘-)c‘“'“-f satisfies h) e g + Sf and 64(h;) < 05(h),

contradicting minimality of Os(h). We conclude that 8, is an algorithm on S.

S

Using (4.1) it is immediate that 6, is u.r.a., and from (4.3) it

S

follows that bg is actually the smallest algorithm on S. [ |

Let T be an ordinal number. A ring R is called a J-ring of type t if

there is a chain of subrings Ru’ where o ranges over the ordinal numbers

< T, such that:

(1) R0 = R* U {0};

(ii) Ra+l is isomorphic to a J-skew polynomial ring over Ra’ for all a < 71
o o 0 = } ° - . o

(iii) Rq L"B<a RB for all limit ordinals o < T}

(iv) R = RT.
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For example, a diyision ring is a J-ring of type O, and a polynomial ring
in one variable over a field is a J-ring of type 1. For every ordinal

T there do exist J-rings of type t1; for proofs, see [9,!2]:

The following result is slightly sharper than a theorem of Jategaonkar
[10,11].

(4.8) Theorem. Let R be a ring. Then there exists an ordinal t such that

R is a J-ring of type t if and only if R has a unique remainder algorithm and

no zero-divisors.

Proof: The "only if" part is easy from (4.7) by tranfinite induction. Next let

R be a ring without zero-divisors with u.r.a.. 6 = 6_. Denote by A the

R
collection of ordinals A < BR(O) satisfying the condition
(4.9) if < A and vy < A then 8 + vy < A, and X >0,
Notice GR(O) e A by (4.4). We claim

(4.10) A e A, B< A= B + A = A.
To prove this, just notice that the unique solution y of B + y = X cannot be
< A, by (4.9), and clearly cannot be > A, so that y = X is the only

possibility.

 Index the elements of A by a beginning segment of the ordinals such

that Am < ), if and only if o < B. Let t be determined by XT = GR«)).

B
Define RuC:'R by
Ra = {r e R|8(x) < Aa} w{o}, o€ T.

From (4.1) (i) and (4.4) it is clear that Rm is a subring of R. To prove (4.8)

it suffices to check that (i), (ii), (iii) and (iv) are satisfied.

From (4.4) one easily deduces R* = {r e R]e(r) =0}. This implies
(1) since N@ = |, Further (iv) is obvious and (iii) is clear from the

easily proved relation

Aa = lim AB, o = (limit ordinal < T).
B<a
We are left with (ii).

Choose ® e R with 8(r) = Xm. We claim that Ra+l equals

B gg@ = {X?WQ r;xllri e Ra,n » 0} and that this is a J-skew polynomial ring

Ae
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n i .

For £ = Xi;0>rix e Ra[g] w1th.ri e Ra and r # 0 we conclude from (4.4),
Ay € A and (4.2) that 6(f) = ned +~6(rn). This is smaller than Aps SO

. £ # 0 and every element of Ra[§j has e unique representation as a finite

i . v
sum Lr.x with r. ¢ R .
i i o

=3

Let r e Ra’ r # 0. Since 6§ is u.r.a., there are unique p(r) e

it
>

8(r) e R with xr = p(r)x + &§(r) and either &§(r) = 0 or &§(r) < 0(x)
Clearly &8(r) e Ra’ and putting §(0) = 0 we have a map §: Ru -+ Ra“ We

claim p{r) e R% c:Rd, In fact, (4.4) and (4.10) imply 6(xr) = 6(r) + 6(x) = 8(x) so

(4.2y81ives 8(p(r)x) = 0(x) which by (4.4) means 0(p(x)) = 0. Hence

p(r) e R* C R, <R . It follows that R [x]| is a ring.

Putting p(0) = 0 and using the distributive and associative laws

one proves easily that p: Ru %vR@ is an injective ring homomorphism and
that §: Ra +~Ra ig a p-derivation. It is clear that Ra[ﬁj iékisomorphic to
the J-skew polynomial ring Ra[ﬁ;ﬁﬁﬁj,

To finish the proof of (ii) we must show Rm[i]‘n R .- Clearly c
since X e Ra+1n To prove the opposite inclusion we first note that A = Mﬂka
is the smallest ordinal » Xa which satisfies (4.9); hence ka+l = e .
Now suppose f e Rm+l - Raggjg we may assume 0(f) is smallest possible. Write
f = asx + b with b e Rda As before, 6(f) = 0(x) + 6(a) = ka + 6(a), since
a # 0. But 6(f) < Aya1 implies that we can write 6(f)= ned + B with B < Ay
and 1< n < . Then 6(a) = (nwi)xm + B < noku € 8(f) so a e Ru[gj by the
minimality of 6(f). We conclude f = ag + b e RaEé], contradiction. This
proves (ii). [ |

Notice that the type T and the chain of subrings (Ra)~

are unidquel
0T quely

determined by the ring R. In fact, they can be read off from the smallest

algorithm as has been done in the above proof.

Finally, we remark that a simple module M over an arbitrary ring R always

has u.r.a.
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5., Laurent series.

Let R be a ring, and Q = R [E{[]Eg‘f] the ring of formal
Laurent series with coefficients in R (we let X commute
elementwise with R). For

v

. i
£=.0, %X @Q a;eR, helZ, ah,# 0

we put P(£) = a s and Y(0) = 0. So ¢ is a function from Q to R.

(5.1) Theorem (Sammel). If R is euclidean then so is Q. More

precisely, if ¢ is an algorithm on R then ¢ { is an algorithm

on Q.
Proof. [2, prop. 8]. [::7

(5.2) Theorem (F. Dress, [14]). Suppose R has no zero-divisors.

Then if Q is euclidean, also R is euclidean, More precisely, if
¢ is an algorithm on Q, then an algorithm on R is given by
X (r) = min {0 (£f) | £ e Q, ¥ (£f) e Rr}.

Finally, the smallest algorithm OQ on Q is given by 6Q=8R‘w.
Proof. We show that y is an algorithm. Let a, b e R, a ¢ Rb,
we look for s e a + Rb with x(s) < ¥(b). Clearly we may assume
b # 0. Choose f e Q such that #(f) e Rb and such that 9(f) is
smallest possible. Then x(b) = ¢(f).

Choose r e a + Q-f with ¢(xr) < ¢(f) (it is easy to see that

r=0 cannot happen). We can write

r = atqf = a+i§h

where a, e Rb since R has no zero-divisors. If h <0 then y(r) =

i
aiX, ah¢0’

a e Rb; but this contradicts the choice of f since ¢(r) < o (f).

Hence we have h » @ and a= Y(r) mod Rb. Clearly
x(WCeN € 9(r) < 9(f) = y(b) so we can take s = Y(r). This
proves that y is an algorithm on R.
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It follows that
By (£) € x () (r e R)

SO

B (WD) < X (W(E) (£ e Q)

while the definition of ¥ implies
x (W(£)) s o (f).
We conclude eRw (f) € ¢ (£f) for all f e Q and for all

algorithms ¢ on Q. But ORQ is itself an algorithm on Q by

(5.1), s0 81 = 6. [ ]
Using (3.2) one easily derives:

(5.3) Corollary. Suppose that R is commutative and that Q is
euclidean. Then R is euclidean, and GQ = (SR- V), (in the notation

of (1.8)). [/ 7

We note that the construction of Laurent series rings can be
repeated transfinitely often. The above results then carry

over without difficulty.
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6. Matrix rings.

This section contains some results on euclidean matrix
rings, without detailed proofs. For a ring R and a positive
integer n we denoté the ripg. ofrn.x n matrices over R by
M(n,R).

(6.1) Theorem (cf. Brungs, [15]). Let n > 1. If R is left

euclidean then so is M(n,R). If R is right euclidean, then

so is M(n,R). If R is two-sided euclidean then so is M(n,R).

Proof. Let R be left euclidean and let ¢ be an algorithm on R
assuming ordinal values. Then for every matrix b e M(n,R) there
exists u e M(n,R) such that ub is upper triangular, i.e.

u*b = Eﬂifllsi,an’ with dij e R, dij = 0 for i>j.

Define ¢y on M(n,R) by

. n fo
P(b) = min { @ m(dii) l there exists u e M(n,R)h such that
i=1

u'b = {gijjlsi,j<n is upper triangular},

where @ denotes Hessenberg sum. We leave it to the reader to
verify that Y is an algorithm on M(n,R), thus proving the first
assertion of (6.1). The second one follows immediately. For the

proof of the last statement ome has to take
o E3
Y(b) = min { @ Q(dii) | there exist u, v e M(n,R) such that
i=]

ubv = [diﬂ

Igi,3¢n is upper triangular},

R

where ¢ is a two-sided algorithm on R assuming ordinal values. L .
If k is a field then the proof of ( 6.1) shows that
Y(b) = nn = gank(b)
is an algorithm on M(n,k). It is not hard to show that it is the
smallest algorithm on M(n,k).
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(6.2) Theorem. Let R be a commutative principal ideal ring, and

n » 2. Then M(n,R) is two-sided euclidean.

Proof. Using (3.2), (3.3) and (6.1) we reduce to the case R is a
principal ideal domain but no field. In that case, let £(d) denote
the Jordan-H5lder length of the R-module R/Rd, for d e R-{0},

and let /{0) = w. So £ is a function from R to W= {0,1,2,...,w}.

Well-order W by defining (ai):;] to be smaller than (ﬁi)?=l

if aj < ﬁj for j = min'{ilaiflﬁ}.We define a function @:M(n,R)ewn.

&
For b e M(n,R) there exist u,v ¢ M(n,R) such that u b v is a
diagonal matrix

“bve “Ofori%j,

d.. . d..
[ 1J]isl,JSn’ ij
which moreover satisfies

d..= 0 mod Rd.. for lgj<is<n.
ii ji
Further, the sequence of ideals (Rdii)izl is uniquely determined
by b. We define
n
9 (b) = (@4, 0.0 e W

The proof that¢ is an algorithm rests on the following lemma

and is left to the reader. [ |

(6.3) Lemma. Let R be a principal ideal domain, and a, d e R,
d #0 . Let Ra + Rd = Rb. Then there exists t e R such that Rt + Rd = R
and ta=b mod Rd. | |

Let R be a principal ideal domain which is no field. For

certain R we can determine the smallest algorithm én M(n,R).

For b ¢ M(n,R), put

n
£ (b) =iS] E(dii)

where £, dii are as in the proof of (6.2). It is not hard to prove
(e.g. using (2.2)) that y(b) > £(b) for every ordinal-valued
algorithm ¢ on M(n,R). Hence if £ is an algorithm, it is the

smallest one. Without proof we mention:



(6.4) Theorem. Let R be a principal ideal domain which is no

field, and let n > 1. Then £ i& an algorithm on M(n,R) if and
only if R and n satisfy the following condition:
(6.5) for all b e R, b # 0 and all a e R-Rb there exists

Te a + Rb such that £ (r) < n-2(b). [

Examples. Condition (6.5) ig satisfied in the following cases:

(3) n > 1 and £ is an algorithm on R (cf.§ 3), e.g. R = k [X]
where k is an algebraically closed field.

(b) =n > 2 and R is the ring of integers in an algebraic number
field of class number one (by Dirichlet's theorem on
primes in arithmetic progressions).

(¢) n>»2and R =k [X| where k is a real closed field.
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7. Subrings of global fields.

Let F be a global field, i.e. a finite extension of Q or a

function field in one variable over a finite field, and let S be
a finite non-empty set of prime divisors of F, including the
set S of archimedean primes of F. By O, we mean the ring of

Zg
S—-integers of F, i.e.

0y = {x e F| [xlp < 1 for all primes p of F with p ¢ S}.

Suitably normalizing the absolute values we have
; -1
# ©g/0g0 =TT [el7! =TT |
péS = pesS 24
for x e O, x # 0. Hence the S-norm Ng: F¥* >R, defined by
N @) = T Il
peS L4

assumes positive integer values on - {0}. Wecall O

0
norm—euclidean if NS is an algorithm (of type 1, see §1) on 96'

We are interested in the relationship between the following
three assertions:

(7.1) 95 is a principal ideal domain;

(7.2) QS is euclidean;

(7.3) 98 is norm—euclidean.

0f course,(7.3) implies (7.2) and (7.2) implies (7.1).
Moreover, if QS is euclidean we are interested in its
smallest algorithm.
It turns out that the situation much depends on the number

of units in QS' It is known that Qg is isomorphic to the direct

sum of a finite cyclic group and a free abelian group of ramnk
$#s-1. So Qg is finite if and only if #H=S=1.

First, let Qg be finite. Then Ng = [[p if S={B}, so Ng is an

absolute value on F. All euclidean O, can be determined easily

g
[1,2] and it turns out that they are all norm-euclidean (§8).
Since also all 98 which are principal ideal domains are known in
this case [16, Jj]; we can form the difference to obtain [18]:
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(7.4) Theorem. Let 98 be as above. Then QS is a non-euclidean

principal ideal domain with only finitely many units if and only if

98 is isomorphic to one of the following rings:

z Ez-(,l +\/'-d‘)], d = 19, 43, 67 or 163;

E, 1] [ (Peracexe);

5

Ez[X:Y] / (_YZ*Y*X *XB*.]);

3

EB[X,i] / (Yz—x +X+1) 3

‘ga[g,ij | (PParaxao) vhere o e F,-F,. [ |

In the function field case the only euclidean rings 98 with

%%S=l turn out to be the polynomial ringsdgq[X]. These rings

and their algorithmshave been discussed in § 4. The number

field case will be considered in sections 9-11.

Secondly, consider rings 95 with 9§ infinite. It has been

proved by Weinberger [Eé] and Queen [jé], modulo certain
generalized Riemann hypotheses, that in this case 95 is a
principal ideal domain if and only if it is euclidean (§ 13).

But there exist many principal ideal domains O, which are not
norm-euclidean (examples: Z Eszj, £3[8A/X -Xzél Yy , so (7.1)

and (7.3) are not equivalent.
In the function field case the necessary Riemann hypotheses

have been proved [20,2i], so there are indeed rings QS satisfying

(7.2) but not (7.3). In the number field case however such
examples are unknown. Possibly one might find them by using
slightly disturbed norm functions as in § 9.

A theorem of O'Meara [22] asserts that for every global
field F there exists S such that 95 is norm—euclidean. A
quantitative version of the number field case of this theerem is
proved in section l4. In section 15 we discuss shortly the

number fieldswhose rings of integers (i.e. 98 with S=S ) are

known to be euclidean. The function field case of 0'Meara's

theorem is included in section 16.
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8. Absolute value algorithms.

Let R be a domain with field of fractions F. We consider a function

d: R -+ B>O which satisfies

(8.1) d(r) =0 <= d(r) <1 <= r =0 (r e R);
(8.2) d(rs) = d(r) d(s) (r,s e R);

(8.3) there is a constant C, not depending on r and s, such that

d(r+s) < C max{d(r),d(s)} (r,s ¢ R).

So d induces an "absolute value' on F which on R - {0} is > 1.
We are interested in when d is an algorithm (of type 2) on R. For this

it is clearly necessary that R is euclidean and that d(r) = 1 only for

r € R*. It turns out that these conditions are also sufficient and that,

in fact, a complete list of examples can be given.

(8.4) Theorem. Let R be a domain which is no field and let d: R - R, satisfy

0

(8.1), (8.2), (8.3). Then the following four assertions are equivalent.

(a) d is an algorithm on R (this includes that d[R|c R is well ordered).

(b) R is euclidean, and d(r) > 1 for every non-unit r ¢ R - {0}.

(c) R is a Dedekind domain, and there exists X e¢ R with d(x) > 1 such that R=®
maps surjectively onto (R/Rx) - {0}.

(d) Either R = k[X| for some field k and d(f) =
f #0, or R is isomorphic to one of the rings Z, g‘/:gj (e = 1,2),
g[%(+/?€)j (e = 3,7,11), and d(x) = |x|C for some ¢ > O and all x.

cdeg(f) for some ¢ > 1 and all

Proof. (a) % (b) is obvious as noted above; (b) 3 (c¢) is clear from (1.7) and
(2.6); (d) 2 (a) is easily checked (cf. section 10). We prove (c) » (d).

We recall the theorem of Artin and Whaples [23,Ch.12i[. Suppose we have a
field F and a non-empty set of non-equivalent non-trivial absolute values

{ [q on F, where q ranges over some index set M. Put

k =ka e F[lxlq < | for all q e M}. Clearly k is a subfield of F if and only
if all | iq are non-archimedean. Assume that the following three conditions
are satisfied:

(8.5) ¥x ¢ F#: [x{q = 1 for all but finitely man/q e M;

(8.6) Vx ¢ F#: TW‘<WXW
geM 2

Hl;

(8.7) there exists a "reasonable" prime q e M.
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Here g e M is called reasonable if it satisfies one of the follwing three
conditions: (i) q is archimedean; (ii) g_is discrete with finite residue
class field; (iii) q is discrete, k is a field and the residue class field

of q is finite dimensional over k.

In this situation, the theorem of Artin and Whaples asserts:
either some q e M is archimedean, and then F is a finite extension of qQ,
every absolute value of F is equivalent to | [p for some p e M, and there
is a constant ¢ > O such that the choice of the absolute values is the c-th
power of the usual one making the product formula valid;
or k is a field, and then F is finite over k(r) for every r e F - k, every
absolute value of F which is trivial on k is equivalent to | Ip for some p e M,
and again the absolute values are as usual except for a positiVé exponent

not depending on p.

Further we need the following Hahn-Banach-type lemma, the proof of which

may be left to the reader.

(8.8) Lemma. Let H— G be abelian groups and let T—G be an additively closed

subset. Suppose f: H ~ R is a group homomorphism such that f(t) > O for all
t e TN H. Then there exists a group homomorphism g: G - R such that gIH = f
and such that g(t) » O for all t e T. [:]

We turn to the proof of (8.4), (c) = (d). Assume (c). Extend d to the
field of fractions F of R by multiplicativity. Clearly d(r) = 1 for r e R¥
so d induces a group homomorphism d: H » B>O’ where H is the group of
principal fractional R-ideals. Apply lemma (8.8) to G = {all fractional R-ideals},
T = {nonzero ideals of R} and f = log d. Then we find a homomorphism, again
denoted by d, from G to B>O which satisfies

d(p) » 1 for every maximal ideal peR;
ord (a)

d(a) = [[ d(p) R for all a e F#,
P

where p runs over the maximal ideals of R. Now we apply Artin-Whaples with
M= {oho {2124: R is maximal and d(p) > I}

d(ai

5
i

-ord
or Eﬁa).

al_ = d(p)
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Clearly, conditions (8.5) and (8.6) are satisfied. We now distinguish

two cases.

Case 1. [ Im is archimedean. Then (8.7) is satisfied, and Artin-Whaples asserts
that F is a number field every absolute value of which.is equivalent to | [q
for some q e M. First of all, this implies that F has only one archimedean -

absolute value, so F = Q or F = g(/:g) for some squarefree positive

integer e. Secondly, all maximal ideals of R must be in M, so
R={xe Filx[ﬂ‘s I for all q e M - {=}}

and therefore R is the integral closure of Z inside F.

If F=QorF = Q(/:T) or F = g(/:ﬁ) we are done. So let F =_9(¢:g), e as
above, e # 1, e # 3. Then R* = {+1} so the element X of (8.4)(c) satisfies
#(R/Rx) e {2,3}.

If e # -1 mod 4 then x = a + b V=€ with a,b e Z, and a2 + eb2 = #(R/Rx) e {2,3}

clearly implies e = 2.

If e = -1 mod 4 then 2x = a + b/:gx with a,b e Z, a = b mod 2, and

a2 + eb2 = 4+#(R/RX) = 8 or 12 yields e < 12 so e = 7 or e = 11.

So in case 1 we indeed have one of the six number rings mentioned in

(8.4)(d), and d = | [00 is the unique archimedean absolute value on F, up to
equivalence.
Case2.| |_ is non-archimedean. Then k = {a e FllalﬂQII for all q ¢ M} is a

field containing R* « {0}. Let x be as in (8.4)(c) and let r be the ideal Rx of

R. Clearly, (8.4)(c) implies that r is maximal and belongs to M. Let Rr denote

the localization of R at r. We have k Rr’ and since k is a field the two

natural maps

R* o {0} > k > R /rR
r —7rY

are injective. But we also know that

R* ., {0} >~ R/Rx = RE/__RE

is surjective. We conclude that all these maps are bijective, so
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k = R% < {0} ~ R

and k = Rr[ERr. Hence the residue class field of r has dimension one over k,

and condition (8.7) is satisfied.

We conclude that F is finite over k(x), and that every absolute value on F

which is trivial on k is equivalent to [ [ﬂ'for some q € M. The divisor of = is

(x) = oo_l ® £_
Since the "zero part" r has degree ! it follows by a well known formula
|24, Ch.I,8§8,Th.4| that [F:k(x)| = I so F = k(x). Further k|[x| ~ R and
equality follows for numerous reasons. Finally, one easily proves

d(f) = d(x)deg(f) for £ e R ={0}. This proves (8.4). [j

Further references: [25,13].
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9. Algorithms on Z.

In this section all algorithms are understood to be of type I.

(9.1) Theorem. Let W be a well ordered set and ¢:Z2- 0} > W a map.

Then ¢ is an algorithm on Z if and only if
Vr>0,s>0:min {0 (r), ¢ (-s)} <min { ¢ (r+s), ¢ (-r-s)}.

Proof. "If". Let be Z, b4 0, a e Z - Z-b. Let r be the smallest
positive element in the residue class a + Z.b, and -s the largest
negative one. Then r+s = *+ b so we have min {¢ (r), ¢ (-s)} <¢ (b).
Hence at least one of t=r and t=-s satisfies t e a + Z+b and
p(t) <¢(b), and ¢ is an algorithm.

"Only if". Assume that ¢ is an algorithm, and consider a triple
(r,s.b) of integers such that
(9.2) r>0, s>0, 1r+s = |b

To prove (9.1), it suffices to show

(9.3) ¢ (r) <¢ (b) or ¢ (-s) <g (b).

This is done with induction on ¢ (b). So assume that the assertion

is true for all triples (r',s',b') as above for which ¢ (b') < ¢ (b).
If ¢ (-b) < ¢ (b), the induction hypothesis, applied to the

triple (r,s,-b), yields ¢ (r) <¢ (-b) or ¢ (-s). <¢ (-b), and

(9.3) follows. Therefore assume ¢ (-b) > ¢ (b), so

(9.4) 9 (b)) > ¢ (b), o (=|b]) > ¢ (b).

Now choose d e r + Z<b = -s + Z+b such that ¢ (d) is minimal
(note that O is not in this residue class, by (9.2)). Since 9 is

~an algorithm, we have

(9.5) ¢ (d) <o (b).
We distinguish three cases:
(i) d > |b|

(ii) d <= |b|
(iii) d e {r,-s }.
In case (iii), (9.3) follows from (9.5). In each of the cases

(1) and (ii) we derive a contradiction.



- 34 -

Case (i). The triple (r',s',b') = (d—[b[, ]b], d) has the
properties corresponding to (9.2). By (9.5) we may apply the

induction hypothesis, which says
¢ (d-|b]) <od) or 9 (-|b]) <o (d).

But the first possibility is excluded by the minimality
assumption on ¢ (d), and the second one by (9.5) and (9.4).
Case (ii). Applying the induction hypothesis to the triple
(r',s',b") = (|b|, ~d~|b|, d) we get
9 (|b]) < 9(d) or 0 (d+|b]) < ¢ (d).
The first possibility would contradict (9.5) or (9.4), the

second one our choice of d. [ |

The proof shows that (9.1) can be reformulated as follows:

(9.6) for every algorithm 9 on Z we have
Vbez-0}:VaezZb:drea+Zb:
®(r) < o(b) A |r| < |[b].

So [ | plays a dominating role among all algorithms, although

it is not the smallest algorithm (cf. § 10). Note that (9.6) also
holds if Z is replaced by k [XJ (for a field k) and ] ] by deg
(cf. (4.5)). But the assertion is false if Z is replaced by
Z,[/;TT. For the five imaginary quadratic number rings mentioned

in (8.4) (d) no analogue of (9.1) is known.

From (4.5) and (9.1) it follows that for R = k[X| and for
R = Z the following statement holds. Let W be any well ordered set
and let ¢:R-} + W be a map which is no algorithm. Then there
exists a finite subset EcR- 0} such that there exists no
algorithm ¢ : R - 0} > Wwith y | E = ¢ | E. It is not known how

generally this is true.

Next we consider multiplicative algorithms. An algorithm

¢ : R - {0} > W is called multiplicative if WcR and ¢(a b) =
e(a) o(b) for all a,b e R~{ 0} (here R is a domain). One easily proves :
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(9.7) Proposition. Let R be a domain, and let ¢ : R - {0} » R o

be a map with well ordered image such that (p(ab) = ¢(a)e(b) for
all a, b e R - {0}. Extend ¢ to‘the field of fractions F of R by
multiplicativity and ¢(0) = 0. Then ¢ is an algorithm on R if
and only if for every x e F there exists y e R such that

o(x-y) <1. [ ]

An example of a multiplicative algorithm on Z different from the
usual absolute value is the following one. Let p be a fixed prime
number and q > p a real number. Then the unique function

9:Z2- 0} + R for which

o(r) = r for every prime number r # p,
¢(p) = q,

o(=1) =1,

¢(ab) = ¢(a)9(b) (a,b e z-{0})

is easily checked to be a multiplicative algorithm on Z (e.g.,

using (9.1)).

Analogously, one finds "exotic" multiplicative algorithms on
Z [/-1], by taking the usual absolute value and adding extra
weight to one prime #; in the case of Z [ (l+/ﬁ3§} one can

even add weight to two primes m and Moo This is easily derived

from (9.7) and the following assertion? which holds for R = Z,
n=2, for R=2 [/-1], n =2, and forR=£E(1M;3‘il, n=

For every x e Q-R-R there exist elements y; e x+ R, I<1ig<n,
such that
lyil< 1, for ls<ign,

y—% e R%, for 1<i<jgn

If in the case Z(~(1+/AB2J one adds extra weight to two primes
™ and T, which do not lie over the same ratlonalnprlme » then
one finds a multiplicative algorithm on Z[-(l+/;3}J whose

restriction to Z is not an algorithm on Z.
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In the case R=Z we prove below that the multiplicative algorithms

described above are essentially the only exotic ones. The analogous

result for Z[/-1| and g{§k1+/:§i] is not known.

(9.8) Theorem. (A.E. Brouwer , H.W. Lenstra jr.) Let g:2- 0} » We R

be a multiplicative algorithm. Then there exist a prime number p and
real numbers A>0, B»0 such that

B
p

where ap denotes the largest power of p dividing a. Conversely,

(9.9) o(a) = ]a{A-a for all a e 2z- {0}

if p is prime and A>0, B>0 are real numbers, then the function
¢ defined by (9.9) is a multiplicative algorithm on Z. Finally,

A+B

¢ assumes only integral values if and only if A e Z,, and p e Z.

0
Proof. We have already seen that ¢ is an algorithm if (9.9) holds
(A»0, B30). Further the integrality assertion at the end of the
theorem follows by repeatedly forming differences, cf. [gmer. Math.
Monthly 80 (1973), pp.l70,17§1. So it suffices to prove the first
assertion of (9.8), and that is done by an argument due to

R. Sattler.

For a e Z-{0} we clearly have ¢(a) = ¢(-a), Hence theorem
(9.1) and multiplicativity yield
¢(a+b) > min {9(a), o(b)}

p{ab) = ¢(a)g(b)
for all a>0, b>0. It follows that ¢(a)>1 for all a2, so if we '
define y(a) by

¢(a) = aw(a), a2,
then ¥(a) is positive. Let

o = inf {W(a) | a»2}.
Clearly u>»0. Now there are two cases. Either there is at most
one prime p with

v(p)>a,
and in that case we have

p(a) = Ia]a (if there is no such p),

o) = [a]® a VP (if y(p)va)
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for all a e Z - {0}, which clearly solves the problem. Or there
exist two different primes p-}-q such that

(9.10) Y(p) > a+e, P(Q) > a +¢

for some € > 0, and in this case we will deduce

w(a)>a+%e for all a > 2
which contradicts the definition of a.
So let p+#q be primes for which (9.10) holds, and let a » 2
be arbitrafy. Let N e Z, N > 0 satisfy aN>3, and choose integers

r > O and s > 0 such that

A

1 N r+l 1 N +1
p’ </——a spt, ¢S </—3-a <q®.

Since pr and qS are relatively prime, there are x,y e Z such that
r s N . s s
X-p +y°q =a , and moreover we can achieve that q <X<2-q .

Then aN> 3-pr~qS implies y > pr. Now we have

(p(a)N q)(aN) > min { 9Gp"), ¢(y ¢°)} =

min { o(p)"-0(x), o(y)-0(q)5}

r(a+e).xa a.qs(a+s)}

v

min {p s Y

. : a
min’ { pr(a+e).qsa’ r .qs(a+e)}

v

min {

N

o+e ) 3
p

1
.l +5'3N(u+-2—~€).
(3p)*
Taking N-th roots and letting N tend to infinity we find

ie
2

>

9(a) » a® *

soy(a) > a + %-e, as required. [ |
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10. The smallest algorithms of discrete subrings of C.

In this section we give an approximative description of the smallest

algorithms of the rings z, 2[V=d] (d = 1,2), z[31+/~d)] @ = 3,7,11).

Let R be one of these rings, and embed R in K = R® R. Clearly, K is isomorphic to

Z

R or C. By I | we denote the usual absolute value on K.~ We define c e R by

¢ = max min | x-y].

xeK yeR

A picture shows

R=2, z[/-d], [0+~ ]

c = 2, 2 9 4/&‘1 b

Jd+1' d+1
. . . 1 1 3 d+1 .

the maxima being attained at x = 5y X = 3(1+/;d) and x = ~ZE/?d, respectively.
In particular, we have c—] < 1, and by (9.7) it follows that [ | is an algorithm

>
(of type 2) on R(note that lriLK'B’»I e Z for r e R, so {[r||r e R} is well

ordered).

(10.1) Theorem. Let R and c be as above, and define y: R - {0} »»E?O by

Y(x) = [?1og[x]]. Then ¢ is an algorithm (of type 1) on R. Further, if 6
denotes the smallest algorithm on R, and k is the smallest integer » o for

then

which ck > ! s
c—1

0(a) < ¥(a) < 6(a) + k

for all a e R - {0}.

Proof. First we show that ¢y is an algorithm. Let b e R - {0} and a e R - Rb;

choose yv ¢ R with [%N— yl < c_], then r = a - yb belongs to a + Rb and
satisfies |r| < cﬂl'[b[ so P(r) < P(b). Hence } is an algorithm, and since it is
integer valued it follows that y(x) » 6(x) for all x # O.

Put s, = Sup{[aila e R,8(a) < n}. Clearly Sy = 1. Let a e R satisfy 6(a) < n.
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Choose X e K such that minlx—y[ = c_l, and let b ¢ R be such that [xa—b[ < c—l.

yeR

Since 6 is an algorithm, there exists r = b - ga e b + Ra such that r = 0 or

6(r) < n-l. Then we have

Sh-17 [rl = I(Xa

> c
so |a| < ces -y * I. Since a is an arbitrary element with 6(a) < n, we conclude
S £ ces + 1, and by induction
n n-1

n+l
c ~1 1 n+l n+k+1
Sn < c—1 < c-1 - ¢ s

. . . . +
if ck > EéT - Therefore, if a ¢ R - {0} satisfies 6(a) = n, then Ia' <M k1 and

y(a) < n+k = 6(a)+k, as required. [:]

(10.2) Corollary. The smallest algorithm of Z is given by

-

6(a) =l_210g]a|_~X

(a#O), 8(0)

]
€

]

0. []

In the next section we will give a precise description of the smallest

algorithms of.EEV:TJ and.§[1(1+/:3)]. For these rings one has k = 3 and k = 1,

Proof. Clear from (10.1) since ¢ = 2 and k

respectlvely, and it can be checked that k = max{y(a)- 6(a)|aeR-{0}}. For
L/_Z] 2[2(1+/ f)J and Z[é(l+/‘lli] no precise description of the smallest

algorithm is known. We have k = 13, 5 and 23, respectively, but doubtless
max{y(a) - e(a)[a € R - {0}} is smaller. It should not be hard to determine

this maximum exactly.

(10.3) Corollary. Let R be as in (10.1). Then there exists a comstant C e R such

that
6(a) + 6(b) < 6(ab) < 6(a) + 6(b) + C
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for all a,b e R, ab # O.

Proof. Clear from (10.1) and the corresponding assertion for V. [:]

It may be of interest to remark that the absolute value can be recovered

from the smallest algorithm and the value of c¢ by

(10.4) la] = 1im BE@M/Mm Lo,

n-e

This follows easily from (10.1).

The method used in proving (10.1) can also be employed to determine all
quaternion division algebras over Q which ramify at « and contain a
euclidean order. The result is that up to isomorphism there exist three such
orders, namely

. . ] e e .2 .2 . . s
_Z_.EL’J’-Z_(1+1+J+1J):I’ 1 =3 =-1, ji = -ij,

EB—QPI: iz=_1: 02='P" 1, ip = 1

[
o
et

-

2
“p"l,l(=—5,l<p=p|<,

i

Z_E):K:'p__l'l—(l'ﬂ():r, o]

each one of which is actually two-sided euclidean. The smallest algorithm can be de-
sribed as in (10.1). It follows that the smallest left algorithm and the
smallest right algorithm have bounded difference.it is unknown whether or not

they are actually equal (cf.(11.3)).

(10.5) Proposition. Let R, c¢ be as in (10.1), and put

r = min{|a||a ¢ R - {0}, 6(a) > n},

s, = max{[a[[a e R, 6(a) < nl.

. -n . -n .
Then r = lim r ¢ and s = lim s, ¢ exist, and r £ s < o,
-0 n-»o

Proof. The argument showing that Y is an algorithm easily generalizes to

- -n . .
prove r > cer _, for n > l. Hence (r_«c™™) is non-decreasing and there-
n n n n>0
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fore has a limit r e R \u {=}. Further we have seen in the proof of (10.1)

. \ 1 .
+ 1. Putting s* = s_ + —— we then have s* < ce.g%
n n . c-l

L °
that s, € cos x -1

n-1
-n
so (sg-g ) is non-increasing and has a limit s e R 50 Of course, s

nz0

is also the limit of (sn-c_n) Finally, the definition of s implies

n30’
e(fer + 1) >n, so ro < [snj + 1 <s ¥ 1 and r < s. D

For R=Z we have r = g = 2. For R = Z[/:U it follows from the results of
- S . 1 .
the next section that r = v2 and s = /10 , while for _Z_[—2-(1+|/—‘3)J we have r = V3~

and s = —;—/2_7 (cf.§11,fig.2). For the other three rings the values of r and s

are unknown.
Let again R be as in (10.1), and put

an=#{aeR]a= 0 or 8(a) < n}, n » O,

From (10.5) one easily derives that the sequence alnw:_nl:K:—le has a finite

limes superior and a positive limes inferior; more precisely,
. -n[K:R] _ 2 &n
limsup a_-c - g —

n->e n N VlAl°c2

2
liminf a -n[K R—I 2xnm

oo xflp-cz

for R # Z, where A denotes the discriminant of R over Z.

Has the sequence actually a limit? For R = Z, we have

a = 2:2"-1,
n

and for R = g_[[:]j we will see in §11 that
a = 14:2™ = 342™ & 4en + 21 for n = 2em, m >0,

an=l4-2n—48‘2m+4-n+21 forn=2m+ 1, m>»0,
while the same methods yield for R = g_[%(n/;}ﬂ the formula
57-a_ = 333-3" - q + Il4en + 266, for n >0, where

dp = 542, q, = 980, qy = 1724, q_ 4 =2'q ., +2'q (n » 0)
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It follows easily that for these rings the limit actually does exist.
Further, for each of these rings the sequence (an)n>,-0 satisfies a linear
recurrence relation. There seems to be no reason to suppose that this also
holds for the other three rings. For R = 2[V-Z] the sequence (a )rl1=7=o is

given by (1,3,9,17,31,53,85,133, 197,293,417,593,849,1193,1661,2291,3139,4299)

(the values given in [2] are erroneous).



11. The smallest algorithms of Z [i] and Z [p].

In this section all algorithms will be of type 2. For the
smallest algorithm 6 this means 6(0) = O.
Let R be a ring without zero-divisors, R1 = R* {0} and
n—l i y
®x ¢ R. The subset {Ei=0 u,x [n e g@@* u; e R1 for 0 ¢ i <{n}
of R is denoted by Rl[ﬁj. We define b Rl[iJ >

N

LM
wx(r) = min{n e 590153 u. e Rl’ O0gi<n:rs= Z?;é uixl}.

Clearly wx(r) = 0 <=> r = 0yand wx(r) = 1 <> r ¢ R¥,

Examples. Let R = k[i], with k a field, and x = X. Then R1 =k
and R [x[ = R. Further v (£) = deg (£) + 1 for £ e R - {0}. We
know from §4 that wx is the smallest algorithm on R.

Let R = Z, then R1 = {1,0,-1}. For x = | we have Rl[g] =7,

and wl(n) = {n . This is an algorithm on Z, but not the smallest
one. For x = 2 we also have Rl[}j = Z, and wz(n) = [%login[] + 1

for n # 0. By (10.2) this is the smallest algorithm (of type 2)
on Z. Also for x = 3 we have R][i] = 7, but w3 is no algorithm on Z.

(11.1) Lemma. Suppose x ¢ R - R, and let a ¢ Rl[g] - {0}. Then

wx(ax) = wx(a) + 1. Further wx(xn) =0 + 1 forn e Z»O'

Proof. Clearly wx(ax) £ wx(a) + 1. If ax = Z?;é uixl with

n = wx(ax) and u; e R¥*;{0}, then x 4 R* implies U, % R* so

2

o e _ ; . i ool = _
u 0. Since x + 0 we find a Zi=0 U, X so wx(a) & n-1 wx(ax) .

0

This proves the first assertion. The second one follows by induction on n. [:1
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(11.2) Theorem. Suppose R is euclidean with smallest algorithm

B: R~ Z>O' Let x e R - RI' Then the following three assertions are
7

equivalent:

(a) R = ngil and by is an algorithm on R;

(b) wx(a) » 6(a) for all a e ngg];

(c) R = Rl[ij and y_ = 6.

Proof. (a) => (b) and (c) => (a) are gbvious. We prove (b) = (c).

Assume (b) and let a e R. With induction on 0(a) we prove
ae R§[§] and wx(a) = 6(a).

For 6(a) = 0 this is right, so let 8(a) = n + 1 3 1. Since 6 is an
algorithm, we have

X" = gea + r, with q,r ¢ R, 8(r) < n.

The induction hypothesis asserts r e leg] and wx(r) £ n. So we can

write r = Z?;é tixl with ti e R,. By (11.1) we have wx(xn) =n + 1 so

1

Using (b) we get
0(qa) < y_(qa) < n+l = 6(a)

and since qea # O this implies q e R* by (2.2). We conclude

-1 n n-1 -1

= . - X ot ex
e

SO0 a e Rl[gj and wx(a) £n+ 1 = 0(a). Equality now follows from (b).

The condition x € R] cannot be missed as is shown by the example

R=12, x=1.

(11.3) Examples. For R = k[gl, x = X and R = Z, x = 2 theorem (11.2)

tells us that w% is the smallest algorithm of R, as we knew already.
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For R = Z {ij, where i2 = -], and X=1+i we prove below
that wx is an algorithm on R and therefore the smallest one. The

same method can be used to show that wl—p is the smallest algorithm
on Z [p|, where p =%— (-1+/-3). 1t is probable that the smallest
algorithm of the ping of integral quaternions Z [i;j,%(l+i+j+ijij
(where iz= -1, j2 = =1, ji = -ij) equals w1+i’ but the proof,

which involves four-dimensional pictures, has not yet been carried
out. It would follow that on this ring the smallest left algorithm

and the smallest right algorithm coincide.

Arbitrarily many examples are obtained by applying the

following result transfinitely often. Suppose wx is an algorithm
on R, where x ¢ R-RI, and let y e R[IX]] [X—{] be a nonzero
element whose first non-zero coefficient equals x; then wy is an

algorithm on R[[X]] [X-F]. This can be proved by checking (11.2)
(b), using (5.1).

Finally we mention the trivial example of a discrete

valuation ring R, with x equal to a prime element.

(11.4) Rings which have no algorithm wx. Let R be one of the rings

Z EZ:?‘, Z [%(1ﬁ/:§;] and Z [%(1+/:T?)J. We claim that there is no
¥ € R such that Vx is an algorithm on R=RI[§]. To prove this,
note first of all that R=R][¥] would &mply x ¢ R]. So by (11.2)

we would have y,=6, and (11.1) and (10.4) give [xl = c¢. But

11[2 e Z, while ¢? is one of %, %3 %;-so 2 é_g, contradiction.

Without proof we mention the following more general result.
We call a ring R of finite type over a subring A if there is a
finite subset Y ¢ R such that A and Y generate R as a ring.
Suppose R is a domain which is of finite type over Z or over a

field, and suppose there exists x e R—R1 such that ¢y, is an
algorithm on R=R][g]. Then either R=Z, x = *2, or R=Z [}], ® e RE(1+1),

or R=Z[p], X e R*(1-p), or R=k{§1 for some subfield k of R, and

X is transcendental over k.
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Finally, if R is a domain satisfying the second stable

range condition (§3) and having an algorithm Uys x € R—Rl’ then

R is a discrete valuation ¥ing and x is a prime element.
The proofs of these statements basically consist in
finding units u such that x+u is neither a prime element nor a

unit.,

Next we develop a technique for proving a function %x

to be an algorithm. Let R be a ring without zero-divisors, and

X € R—Rl. By Q we mean the left R-module
Q = RF’.-I = Jrx "
S n30
For commutative R one can consider Q as the ring generated by

R and x“1 inside the field of fractions of R. For arbitrary R a

formal definition is

Q= 1%m (Rn’ fn,m)n>0, m>n>0

where
R =R for n20,
m-1
f :R->R maps r to rx , for m»n>0.
n,m n m

The image of 1 e R, under the canonical injection R~>Q is
denoted by xnn, and we consider R as a submodule of Q by

R = R'x_o; in particular x"= x "« x-o for n20. There is a unique

R-automorphism Q -+ Q mapping " to xn+1 for all n e Z. This
automorphism and its inverse are written as right multiplications
by x and xml, respectively.
Define R {WA ;E} = { ke 'xi'] n,m é . R}
o L wE lnmef e r)eq.
i=-m
Using (11.1) we can extend the mapping ¢ R.[éj 9—%’0 to a
7
mapping ¥ : lifﬁx + Z by putting b (re~ ) = w (r)-n for
X

re RILﬁé—{O} and n»0. Let

¢
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<
i

=tveR[xx ] |y (v <0

n

. u.x_l[n e Z e R, }.
i=]1 1

1z 207 %N

The following proposition gives a criterion for wx to be an

algorithm in terms of covering properties of the set V, cf. (9.7).

(11.5) Proposition. The following two assertions are equivalent:

(a) R = Rl[il and by is an algorithm on R;

(b) there exists an algorithm 9: R > Z , and for each v e V = {0}

the natural map V » Q/Rvx is surjective.

Proof. (a) => (b). The existence of ¢ is clear. Let v e V - {0}.
For n sufficiently large there exists a e R with v = axmn“l and

wx(a) < n+l. Since wx is an algorithm, the matural map
V-xn(ﬂ R={re RHWX(T) < n} > R/Ra
is surjective. Multiplying by x " on the right we find that

v r\Rx_m > Rx—n/va

is surjective for n sufficiently large. Taking the union over n

one finds that V - Q/Rvx is surjective, as required.
(b) = (a). Let 9: R » Z, o, denote the smallest algorithm on R
(4
(of type 2). Let a e Rl[i]’ a # 0, satisfy wx(a) = n+l. Then

-l e V-{0} so by (b) the map V -+ Q/Rvx is onto.

vV = aex
By Rvx C Rx " this easily implies that
VA Rx > Rx “/Rvx
is onto, and multiplying on the right by x" one finds that
{r e Rl[illwx(r) < n} > R/Ra

is surjective. By induction on n and using (2.6) one derives from this 6(a) < n+l.

Hence we have proved that 6(a) < wx(a) for all a e Rl[é1-{0}.
This implies (a) by (11.2). [:1
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Finally we prove a result which is convenient in

determining V. For WC Q we define

F(W) = { (u+w) x—1§ueR,weW}.

1

(11.6) Proposition. Let S = (Q-R) & {0} and let T¢ Q. We have:

(i) v= UM ({o})=ﬂFm (S);
m>0 m>0
(ii) if TCS and Tc F(T) then TCV;
(iii) if 0 e T and F(T)<T then VT,
(iv) if 0 e TCS then
T=V&EF(T) =T,

Proof. One easily checks

FRe)) = {2  u. x Y| u. eR, for 1<i<m }
i=] "1 1 1

for m » 0, so
v=\_J Fi{on.
m>0
Since
W CH, = F(W)CFW,)
{e} crl{o}), F(S)CS
it follows that
OENeh o N\ FNS).
mx0 m30

To prove the other inclusion, one first proves by induction on m:
(11.7)  F(S) = (@R ™H U F({o}), m0 .

Now let a e [\ Fm(S). For m sufficiently large we have
m>0

ae Rguﬂx so (11.7) implies a e Fm({()})CZLW} Fm('£0}). This
my
proves (i). Statements (ii), (iii), (iv) are immediate

consequences. D
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(11.8) Example. R = Z, x = 2. Let T = {a eQ | |a]<1 } where

Lo [ . .
l | 1s the usual absolute value on Q = 2 L < R. One easily checks

/T =F(T), 0eTcS,
so we have T = V. Since (=|v|, + |v|]AQcV for v e V,
it follows that
V > Q/zZ2v
is surjective for v e V-{0 }. By (11.5) we conclude that wk is

an algorithm on Z.

I+i. We consider Q = R(#*{J = g{é,é}

as a subset of the complex plane. If a,,...,a_ are complex numbers,
1 o}

(11.9) Example. R

[
N
-
»
]

then C(a],...,an) denotes the intersection of Q and the convex
hull of { al,...,an}; further, if a, ay5...,a ,a are the

vertices of an n-gon (in that order), then the interior of that

n-gon, intersected with Q, is denoted by I (al,...,an).

Let
T] = L(2+1, l+Zi,—I+Zi,—2+i,—2-i,—l—zi,l—2i,2—i),

cf. fig. 4. One easily checks F(Tl)c;T and O e Tl’ so (11.6) (iii)

I

tells us
(11.1¢n Vc:Tl.

Let T2 be the intersection of Q and the bounded open region of C
the boundary of which has been drawn in fig. 3 (note'{_i 1, + ilNnT

= @). Then T,CF(T,) and T,CS so by (11.6) (ii) we have
(11.11) T,cV.

An impression of how V looks like is given in fig. 1, but we need no
information from this picture..

Write x = I-i. We are going to prove that for v e V we have
(11.12) C(0, xv, §v, 2v) VLJ(xv+V)L)(§v+V)L)(2v+V)
cf. fig. 5. Since C(Q, %v, xv, 2v) is a fundamental domain for
the lattice Z[i].wv, for v#@, and since %v and 2v belong to this
lattice, it follows from (11.12) that the natural map

vV > Q/g[}]-xv, v e V-{ 0},

is surjective, so that y is an algorithm by (11.5).
X
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Proof of (11.12). First we remark:
(11.13) for veV, v e C(x, g, -x, -X), assertion (11.12) is true.
This follows simply from C(v, -v, iv, -iv)cV, cf. fig. 4.

The general case is treated by induction on

n(v) = min {n e Z. | x™ v e R}.

Start of the induction: if n(v) <1 then v e C(x, X, -x, -x) and
(11.13) applies.

Induction step. By (11.13), (11.10) and reasons of symmetry we
may assume

-?‘__+ 1-5-1, 1+ 21, 2i),

cf. fig. 4. A lemma which we formulate and prove below asserts

vecC(i, 1+i, 1

that we can write

v = %~x (I+w), withwe V, nlw) = n{v)-1.

Applying the inductive hypothesis to w we find
C, %w, iw, 2w) Vi (xw + V)Lj(gw + VYuwuw + V).

After the transformation zr> %— x(1+z) (z e Q) this means

that the dotted square in fig. 5:

i -
Clz %, 3% (lew), 5 x (lw), 3% (1424))
1 = = 1= 1
~«C(»2«x,x:v+»2fx, XV = 5 X, 2v 2x)

is contained in the set

1% (W UGV + L2 i) UGy + L x (1)) UY + L x (-147))
2 2 2 2

which in turn by F(V) = V is contained in
VUGV + VYUY + V) U(2v + V).
In order to finish the induction step it now suffices to show that

the "large" square C(0, xV, xv, 2v) minus the dotted one is also
contained in VU (xv + V) U (xv + V) (2v + V). For reasons of
symmetry this follows if we prove (cf. fig. 5)

(11.14) 1 @, %v, &v - —;- x, -;-x)uC(o, W) CVUEY + 7).

Suppose (11.14) is false. Then there is an element a in the left
hand side of (11.14) such that a ¢ V and a-xv & V. Putting

b = Xv - a this means:
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(11.15) there exist a, b e I (0, % X, XV - %—x, gv, Xv - %—;, %—x)

such that a ¢ V, b ¢ V and a+b = xv = | + w.
From (11.15) we derive a contradiction. Note that (11.15) is

symmetric in a and b.
I

—2-' +2i) N

First we consider the case v e C C%'+i, I+i, l%-+ l%i, 1+21,
cf. fig. 6. Then both a and b are contained in

I (0, 3-5 0 20~ 1i, 3, 3+i, 292i).

We have Re (a+b) = Re (xv)<3 (Re = real part), so we may

assume Re (a)'<%. Then

1 1. i I . i 1.
aeI(o,—?:-—~2~1, 1-2-“-2-1, l-é-'l'l'il),

so from a ¢ V and (11.11) we conclude a = | (cf. fig. 3). But then
b = w which contradicts b ¢ V.,

Secondly we consider the case v e c(i, %~+ i, %—+ 2i, 21),

cf. fig. 7.
Then

a, b eI (0, i, Zi + l; i, ﬁl + Zl : + Ll i,-l + L i).

% 2 Pl gt gy, g
We have Re (;a + ib) = Re (=-2iv) <4 s0 we may assume Re (ia)< 2.
Then

ael (g, % -

L
2

1. 1 1 i I, 1
7h 7t ghigrizig

But this set is by (11.11) and fig. 3 entirely contained in V, so

i + %-i).
a e V, contradiction.

This finishes the induction step and the proof of (11.12),

except that the following lemma is still to be proved.

(11.16) Lemma. Suppose v e V~C(i, 1+i, 1-% ¥ 1%—

x(1+w) and n(w) = n(v)-1.

i, 1+2i, 2i).

Then there exists w e V such that v =

Do} =

Proof. Let n = n(v), then we can write v = z?=] uj % J with
Uj € RI and u e R*. Repeated use of x B —ex M x-(m—l)

shows that we may assume u; e R* for Ix j<n.
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-1 ‘
Then we have v e x ., (R%® + V) =-% % (R* + V)
(since % X = i'xfl), 80 V e % x*{e + V) for some ¢ e R*, We
distinguish four cases: ¢ = =i, ¢ ==1, ¢ = 1 and ¢ = 1.

If ¢ = -i, then v e%g(—i N V)(:—;:x(—i +T,) by (11.10),

but %'x(—i + Tl) has empty intersection with the pentagon

C (i, 1+i, ":!a“ + 1-,5 i, 1 + 2i, 2i), contradiction.

For € = -1 we derive exactly the same contradiction.

il

For ¢ = i we have v e %-x(i + V)Cﬁ% x(i + Tl) and taking

the intersection with the pentagon we find
ve C(i, 1+i, 2i) - C(1+i, 2i).

If v ¢ C(i, 2i) then fig. 3 easily yields v e %-x(l + Tz) which
by (11.11) is part of %-x(l + V), so we can take € = 1; and if

v e C(i, 2i) thenv=-—§e-—-%-£(—i+v) ._,.;.x (1 + V) which

also reduces to the case g = 1.

The conclusion is that we are always in the fourth case
1 .. .
e=1, sovs= E-x(l + w) for some w e V., It is immediate that

n(w) = n(v)-1. [ |

(11.17) Example., R = Z [p], p2 = ~—p=1, x=l-p. In this case V is

slightly more complicated (cf. fig. 2). But by methods completely
analogous to those employed for Z [3] one can show. that

condition (11.5) (b) is satisfied. We conclude that wx is an

algorithm on R.

Let again R = 2 [i]. We conclude this section with an
outline of the computation of
& T %aRn
where
R = {aeR | w1+i(a)611}

= { yn—!

-

uy (1+i)7 | us e Ry = R¥U {0} for 0« jen-1}.
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Fig. 4
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. Fig, 6

Fig. 7
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The injective map Rn—l > Rn mapping a to a+(l+i) has as its

image precisely the elements Z?-l u,+(1+i)? with uy= 0. Hence
=0 3 "o
if we put )
b = a - a ., where a_= 0,
then
b =#B8 (n30)
n
where ‘
By = {0}

) ...1 4
B.o= {27 u.-(1+i)d u. e R
=0 Yy (1+h) | j

for 1 €j<n~-1, and u e R*},
n ] 0

1

We will compute bn by considering the area of a suitable region

in C. Por Weg, put FOD = { (wr) (1+1) ™' [ we R, we W } as

before. Let Uc¥ be the square { a + Bi | a, B eR, [a]+}ﬁ]‘sl 1.

By induction on n one proves

Fl(U) = rké“gn (x e +x ™0

where the union is "disjoint" in the sense that the intersections
have measure zero. If u denotes the usual measure on C, then u(U) = 2, so

n I-n
u (F(U) =2 b

and

b= 2" uEt ).

Drawing pictures of the first few Fn(U) one discovers that it

is not hard to give an explicit description of Fn(U) for all n and
a formula for its area. But this method would be difficult to

imitate for Z [p]. Below we describe a method which needs much

less information about the sets Fn(U) and has the advantage of

being applicable to Z [p|. The details are left to the reader.

(a) Fn(U) 1s simply connected, and its boundary can be
broken up in a certain number, say fn’ of straight line segments,

each one of which has length /o im

. The angle between two
consecutive line segments, measured inside Fn(U), equals oneof
1 3 . . .

5 s T, 5 T Let this happen c,e dn and e, times, respectively.

Clearly, ¢ +d_+e = f_.
n n n n
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(b) If t is one of those £ line segments, then there exists
a unique triangle, not lying inside Fn(U), which has t as one of

its edges and whose other two edges each have 1ength./frn. Let
this triangle,together with its interior, be denoted by At' Note

that u(a) = ol

(c) Fn+X(U) arises from Fn(U) by adjunction of all triangles
At:
+
(H.M)Fnlw)=ﬁ€AguF%m,
AN

and this union is disjoint modulo sets of measure zero. Therefore

w(E ) = wEt @) + g 2

and
1
n+l n 2 'n
1 . I n+l, . .
(d) One can use (11,18) to describe the boundary of F (U) in

terms of the boundary of Fn(U). This yields

Chsl fn - 2-en =c dn - e,
dn+l T % * ®n
elel T dn'
The conclusion is
bn+lg 2%%% bn}
cnﬂf S0 e el n s D,
;dn+1§ 0 1 0 1 dn
en+§% 0 0 1 OJ »en

and we also have b =1, ¢ =4, d =e _=0. By standard techniques of
0 0 0 0

linear algebra one finds

by = 72 = (5 L/D /- (5 - %‘/?) C (D w4
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and it follows easily that

a_= 142" = (17+412/2) V2 B=(17-12/2") (/2 )H™ + 4on + 21

which is equivalent to the formula mentioned in section 10.
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12. Artin's. conjecture.

In this section we discuss a generalized version of Artin's conjecture,

which will be needed in §13.

Let F be a global field, E/F a finite Galois extension with group G, and
C < G a conjugacy class. Further we fix an element t e F* which is no root
of unity. If p is a finite (i.e. non-archimedean) prime of F we say that t is

a primitive root (p.r.) mod p if ordp(t) = 0 and the image of t in the residue class

field ?p of p generates F;. Here ordP denotes the normalized exponential

valuation induced by p. We are interested in the set
M. = {p|p is a finite prime of F,
R PP
t is a primitive root mod p,

and (p,E/F) = C}
where (p,E/F) is the Artin symbol.

If m is a squarefree positive integer not divisible by char(F),we put

Lm = F(cm,vg), where Qm‘denotes a primitive m—th root of unity. Clearly Lm/F

is Galois, and L <L , = L ¢ for (m,m') = 1.
mm mem

(12.1) Lemma. Let p be a finite prime of F with ordp(t) =0, and if F is a number

field assume ord (2.AF/ ) =0, where A denotes the discriminant of F over

P Q F/Q
Q. Then t is a2 p.r. mod p if and only if for all prime numbers £ # char(F) we

have (p,%K/F) # id (we understand (p,LK/F) # id also to be valid if p ramifies
in ?K; id is the identity element of Gal(pK/F)).

o

Proof. "If'": if t is no p.r. mod p, then for some prime number £ dividing # F

we have (t mod p) e ?gg. But since ordpﬁﬁ) = () = ordp(t) this exactly means that

p splits completely in L, , contradiction.

£
“Only if". Let t be p.r. mod p, and let £#¥ char(F) be a prime number. If

@fdméﬁ-l) >@ then F is a number field and the condition p $ Z‘AF/Q implies that
p ramifies in ;Z by the presence of the £-th roots of unity in Lp . If
gr&y@ﬁ«&} = 0 and (PﬁHf/F) =id, then §§ contains the £)~-th roots of unity and
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an L -th root of (t mod.g), so t cannot be p.r. mod_E) contradiction. [}

Note that some condition on p is necessary: =7 is p.r. mod 2, but 2

splits in Q(/-7). B

We conclude that Mt c differs only by a finite set from

9

{pJ(P,E/F) = C and (23PK/F) # id for all primes £ # char(F)}.

The determination of the Dirichlet density would be easy if (E,Fﬂ/F) # id

would be required for only finitely many primes:

(12.2) Lemma. Let m be a squarefree positive integer not divisible by char(F).

Then the set

has a Dirichlet density which is given by

1

[L_<E:F]

« # {5 e Gal(Lm°E/F)I(0[E) ¢ C, and

o 4 Gal(Lm'E/La) for all primes £|m}.

If we define, for d|m:

f(d) = # (C nGal(E/E X>Ld))

~

‘= # C if C ¢ Gal(E/E r»Ld)

i

4

{= 0 else,

then this density can also be expressed by

Loou(d)-£(d)
d|m [Ly-E: F]

where u denotes the Moebius function. If the density is O, then the set is
finite.
Proof. The first expression for the Dirichlet density is immediate from

Tchebotarev's theorem [26]. The second formula is immediate from the principle

of in—- and exclusion and the remark that the number of elements ¢ e Gal(Lm-E/F)

for which (0/E) e C and o ¢ Gal(Lm-Elyé N ...(WGal(Lm-E/ya ) precisely equals
: ‘1 s
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sl M~ Y 1, . ‘ s o g
A CARRY I o B LﬁW“°£ “E]; here ﬁl""’ﬁs are different primes dividing m.
1 s

If the density is Q0 then all p in the set must ramify in Lm-E 50 then the set is

finite. [51”

Letting m tend to infinity we arrive at a generalized form of Artin's

. 1
conjecture {27,Prefacqj:

(12.3) Hypothesis. The set Mt has a Dirichlet density which equals
¥

C

lim ? u(d)-£(d)
s 5 ° 2
[Ly-E:F]

the limit being taken over all squarefree m not divisible by char(F), ordered

by divisibility. Here £(d) is as defined in (12.2.)).

The evidence for this hypothesis is as follows. For F a function field
and E = ¥, C = {id}, Bilharz [Qg] proved (12.3) modulo the Riemann hypothesis
for function fields. This hypothesis was shown to be correct by A. Weil
g}ogcf.ZEE, From what Bilharz actually proves [28,9.485] it is not hard to
derive the more general result (12.3) in the function field case, cf.[ﬁﬂ.

We conclude that (12.3) is a theorem in the function field case.

In the number field case (12.3) easily reduces to the case E is abelian
over F, cf. [?6,pp.!69~17d]. For E abelian over F, Weinberger [19,formula(6.2)]
proves (12.3), with natural density instead of Dirichlet density, modulo the
generalized Riemann hypothesis, making use of ideas of Hooley [?Q] (the
assumption of Weinberger that t is a fundamental unit is doubtless irrelevant).
We conclude that in the number field case (12.3) is a consequence of the

generalized Riemann hypothesis.
Further references: [é0,31,32,33,6€].

We are interested in whether or not the density of Mt c is zero.
2

(12.4) Theorem. Assume (12.3). Then the following four assertions are

“aguivalent (t and C are fixed):
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(a) M is an infinite set;

t,C

(b) the density of Mt is positive;

,C

(c) for every squarefree m > 0, m # O mod char(F), there exists
o e Gal(Lm-E/F) such that
(U[E) e C,
(o[Lﬂ) # id for all primes £|m;
(d) let h be the product of those prime numbers £ # char(F) for which

t e F* , and let n be the product of those prime numbers £ # char(F) for

which L£<: E(ch); then there exists o € Gal(E(gh)/F) such that

(c|E) e c,
(o|Lg) # id for all primes £|n.

Note that h and n in (d) are well-defined, since there are only finitely many

. . e . . ..
primes £ with t e F¥7, or t ¢ E(ch)*£3 respectively. Notice also that h divides n.

Proof of (12.4). (b)=» (a) and (c) & (d) are obvious. Further (a) % (c) is
clear from (12.1) and (12.2). We prove (c) » (b) and (d) & (c) below.

(12.5) Lemma. Suppose F is a number field, and let T be the product of those

prime numbers £ which satisfy one of the following conditions:

£ divides Z'AE[Q;
there is a finite prime £ of F with ordz(ﬂ) > 0 and ordp(t) # 0;
£ — -
t e F& |
Then for every prime number ¢ not dividing T we have
(i) [Lqﬂ = q(q-1);
(ii) if d is any squarefree number not divisible by q,.then the fields Lq and
Ld-E are linearly disjoint over F.

Proof of (12.5). (i) [Lq:FI is divisible by q since t 4 F*q, and

[F(Cq)iﬁj = g-1 since q%ZE/Qf Hence [iq:?] = q(g-1).



_64_

(ii) Since Lq/F is Galois it suffices to prove Lq(ﬂ Ld-E = F,

d-E. Cleatly, M/F is a solvable Galois extension, so if M # F then

there is an abelian subextension F < M' ~ M. From M'< Ld-E we see that

Let M =1L n L
q

M'/F is only ramified at primes lying over prime numbers dividing d.T. Hence

M'/F is unramified at primes lying over q.

But from M' < Lq and M'/F abelian it follows that M'.- F(gq) (here we use
(i) and q # 2). Since F(gq)/F is totally ramified at all primes lying over

q (by q{AE/Q) we conclude M' = F, contradiction. Hence M = F, as required. [:

)

Proof of (12.4), (c) & (b), in the number field case. Let T be as in (12.5). For
Q%T and d as in (12.5) (ii) we have

-u(d)

=
~
[= N
£
~
i

by linear disjointness. Therefore the limit in (12.3) becomes

BOE@) 7 - L)

& ¥
T [LgeEer] ) @yT a(g=1) /°

The second factor is a converging infinite product and clearly nonzero. The
first factor is nonzero by (12.4) (c) (with m = T) and (12.2). Hence if we

assume (12.3) then Mt has indeed nonzero density.

C
2
We give a sketch of the proof of (c¢) & (b) in the function field case.

Corresponding to lemma (12.5) we have:

{12.6) Lemma. Suppose F is a function field with finite field of constants k.

Then there exists a positive squarefree integer T not divisible by char(F)

with the following property.

Let k denote an algebraic closure of k and let K = (E-LT)/W k denote

the largest finite field contained in E+L_. Then for every squarefree integer

T
d > 0 which is relatively prime to T.char(F) we have
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[LypEsF[ = de[R(z) k|  [LB:F].
Proof of (12.6): left to the reader. [ |

Now (12.4), (c) & (b) can be proved for function fields in the following way.
Let T be as in (12.6), and put

C' = {7 e Gal(L,E/F)[(t|E) e C, and T[L£‘¢ id for all primes £[T}.
From (c), withm = T, we know C' # . For T e C' and d as in (12.6) we define

£.(d) =1 if oe Gal(LdT*E/Ld) with o[LT°E = T,
fT(d) = 0 else.

Note that f (d) = I precisely when riLd(V (LT-E) = id; but (12.6) implies

Ly 7 (LpeE) = F+(K N k(g;)) and it follows that £ is multiplicative:

fT(d~d') = fT(d)'fT(d'). Here we assume that k is the exact field of
constants of F.

Using (12.2) and (12.6) we now can rewrite the limit in (12.3) as:

S ° 1$m ) X u(d)fr(d) .
[LT-E:ﬁ] teC' d|m d“[k(gd):xj

m ranging over the squarefree positive integers relatively prime to T.char (F).
But for fixed t e C', it follows from theorems of Romanoff [34| and Heilbronn [35}
(c£.[28,p.482]) that the limit

Ly M@ @
modlm 4 [K(z,) K]

exists and is positive (we need multiplicativity of fr(d) for Heilbronn's theorem).

Summing over T e C' we find that the density of M is positive, as required.
g y t P

,C
This proves (c) % (b).

Proof of (12.4), (d) & (c). Let o e Gal(E(cH)/F) be as in (d), and let m be as

in (c). Clearly it suffices to find an element ¢ e Gal(Lm-E(ch)/F) which satisfies
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(@{Lg) # id for all primes £|m.

1f £ divides n then (w[LZ} # id is automatic from (@{E(;h)) = g and (G[Lﬁ) # id.

Hence there is no loss in generality if we assume that m and n are relatively

prime.

Suppose there does not exist such a ¢. Then choose an element

9 e Gal(LmvE(Ch)/F) such that (@[E(gh)) = ¢ and such that the smallest prime £
dividing m for which (@{Lﬁ) = id is largest possible. We derive a contradiction.

Let this smallest prime be called p, and let r be the product of all

£ < p which divide m. We have

(p|L ) = id

oIt

(@{Lﬁ) # id for all primes £|r.
We distinguish two cases.

Case 1. Lr-E(ch)Eg Lp-Lr-E(;h). In this case we can choose T e Gal(Lm-E(ch)/Lr-E(ch))

such that (r%Lp) # id. But then ¢ = 19 satisfies

(wiLa) # id for all primes £ < p which divide m,

(@{E(Ch)) = O’
contradicting the choice of o.

Case 2. Lp(w’Lr'E(Ch)' 1f 3!,0..,£s are the primes dividing r, then

[Lr“ﬁéih}iﬁﬁﬁh§j divides (51-1)*51...(£S‘l)~£g which is not divisible by p. Hence

13\7 é“ﬂﬁ(gﬁ) implies that %¥P-t must have a zero in E(gh). 1f xP-t is irreducible
T £ i

over ¥, then normality of E{gh)/F implies Lp ,’E(Ch) so p|n, contradicting that

n and m are relatively prime. If XP-t is reducible over F, then p|h, and since

h divides n this gives the same contradiction.

This concludes the proof of (12.4). L]
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The following corollary is needed in the next section. We note that in
the function field case the conditions of (12.7) imply that the field
E is linearly disjoint over F with all fields L ,m £0 mod char(F). This assumption

simplifies the proof of (12.4), (c)=r (b) a bit, cf. [18].

(12.7) Corollary. Assume the following.

2N { v'g - .

(1) t ¢ F*  for every prime number £ # char(F);

(1i) E/F is abelian, and every prime p with ordp(t) # 0 is unramified in E/F;
(iii) for every subextension F — E'< E there is a finite prime p of E' which

ramifies in E'/F,

Assume moreover that Mt’c’is finite and that (12.3) holds. Then F is a number
field, and there exists a prime number £. such that:

(iv) some finite prime %ﬂof F lying over £ ramifies in E;

(v) F contains a primitive £-th root of unity;

oy . ) ) A . .
(vi) 1if C = {0} then Lp = F(V/Y) is contained in B0 = {x e E[o(x) =%}

(vii) [E:F| is divisible by £.

Proof. If Mt is finite and (12.3) holds, then (12.4) (d) is not satisfied.

C
»
Since h = 1 by (i), this means that there exists a prime number £ # char(F)

for which Lp € E and (o!Le) = id.

£ . .
Then F(V@) is contained in the abelian extension E and must therefore

be normal: F(Vt) = Lp.. We conclude that (v), (vi) and (vii) hold.

Since F< F(vt) is unramified at all finite primes p for which

ord@(@&i) = ordp(t) =0, it follows from (ii) and (iii) that some £ satisfying
!

£ .
ordg(ﬂj # Q ramifies in F(/?). This clearly implies (iv), and orda(ﬂb # 0

implies that F is a number field. E]
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13. The theorem of Weinberger and Queen.

Let F be a global field, S a finite non—empty set of primes of F

containing the archimedean ones, and the ring of S—integers (§7). A

O
m(p)

divisor of F is a formal product a = T e
P

set of finite primes of F and m(p) e Z, m(p) = O for almost all p. We

identify the group of fractional Qs~ideals with the group of divisors
ﬁjm“TTi?¢(E> satisfying m(p) = O for all p e S - §_. In particular, the
P

prime ideals of O, are identified with the primes of F outside S. In this section

S
() is not considered as a prime ideal of 96’

(13.1) Theorem (Weinberger,Queen). Suppose that Og is a principal ideal domain

and that % S » 2, and assume hypothesis (12.3). Then 98 is euclidean, and

the smallest algorithm 6 on O, is given by

-5

6(x) =

v ord X)en_,x #0, 000) = w,
pes B E

where n_ = 1 if Qg > (QS[R)* is surjective and n,* 2 else.

Remark. It is not hard to see that (13.1) is also valid if S is infinite.

Proof. We prove, modulo (12.3), that the function 0 defined in the theorem is

an algorithm on O,. From (2.6) and (3.4) it then follows easily that 0 is

S
actually the smallest algorithm on QS'

Let a,b e QS; we look for an element r € a + Qs-b gsuch that r =0 or
8(ry < 6(b). Clearly we may asssume b # 0. Since 98 is a principal ideal
domain there exists d e QS with gg°d = Qs-a + Qs-b; let a = a}d and
h = bzd@ From 6(xd) = 6(d) + 0(x), forx e 98’ we see that it suffices to find
e a, *+ Qﬁabz with r, =0 or 6(r}) < @(bl). This means that we may assume

{a,b) = 1, We distinguish four cases.

1. 6(b) =0. Then b is 2 unit and we can take r = 0.

. 8(b) = 1. Then O,*b = p is a prime ideal of §S with nP = 1,
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Therefore Qg > (QS/QS'b)* is surjective and we can find r e gg with r = a

modlgs-b. Clearly 6(r) = 0 < 1 = p(b).
Case 3. 0(b) » 3. By a suitable generalization of Dirichlet's theorem
on primes in arithmetic progressiomns [?6] we know that every residue class

Ce (98/98-5)* contains infinitely many elements w such that Qs~n is a prime

ideal. In particular the residue class a + Qs~b contains an element r such that

Qs-r = p is prime. Then 6(r) = n, < 2 < o(b), as required.

Case 45 6(b) = 2. Then the ideal Qs-b = b is of one of the following three
types:
(13.2) b=~ with4{ prime and n, = 2;
(13.3) b= Q;E with é'# m primes and np =n_ = 1;

(13.4) b = g? with £ prime and n, = 1.

Let im(gg) denote the image of Qg under the natural map Qg > (QS/Q)*, and let
a be the image of a in (QS/E)*/im(Q§)~Suppose we are able to find a prime ideal
r of 98’ not dividing b, such that the following two conditions are satisfied:
(13.5) the map 9§ > (QS/E)* is surjective;

(13.6) if ¢ = Qs-r then the image of r in (gs/y)*/im(gg) equals ;V(noteithat

this image only depends on r).

Then we can choose r in (13.6) in such a way that r e a + qs-b, and (13.5)

guarantees 0(r) = n_ = 1 <2 =20(b), as required. T

We first reduce the problem of finding primes r which satisfy (13.5) and

(13.6) to the question comsidered in section 12.

Since S contains at least two elements, the group of units Qg contains a
"fundamental' unit t, i.e. t + F*Z for every prime £. It is clear that condition

(13.5) is satisfied if t is a primitive root mod r.

Condition (13.6) is by the following lemma equivalent to

(x, E/F) = C
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for a suitable Galois extension F ¢ E and a suitable conjugacy class

C < Gal(E/F).

(13.7) Lemma. There exists an abelian extension F< E with the following

properties:

(i) the groups (95/9}*/im(9§) and Gal(E/F) are naturally isomorphic, and if
o e Gal(E/F) corresponds to a, then (13.6) is equivalent to
(r, E/F) = 0.

(ii)

i

/F is unramified at all infinite primes and at all finite primes not
dividing b.
(iii) for every intermediate field F i:E' < E there exists a prime of F

ramifying in E'/F.

Proof. We need class field theory [36,26}. Let I(b) be the group of divisors of

F which are "prime to b'":

I(b) = {[] R§(B>{ng) = 0 for all p ¢ S dividing b}.
p

Let IS be the subgroup of I(b) consisting of all divisors based on the finite

" members of S:

1= (T 2" ®lnep) e 23

EQS'Sw

For £ ¢ F¥% the principal divisor (x) is defined by
1 _ord, (X)

) =[] p B
D

Finally we define
P = {{x)|x e F¥, and ordp(xwl) > ordp(@)
for all p % S dividing b}.

the subgroup Epaybh:.i(b} is an ideal group in the sense of class field
g B
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theory, so there exists a finite abelian extension F < E such that the

Artin reciprocity map gives an isomorphism

%I(E)/IS-Pb z Gal(E/F).

It is clear that this field E satisfies condition (ii). More precisely:
(13.8) the conductor of E/F divides b.
We prové (iii). Let

P(B) = {(x)|x e F%, (x) e I(b)}.

We claim

(13.9) I(b) = I4°P(B).

In fact, let §_=-TTE?<Q> e I(b). Since 9 is a principal ideal domain there
P

exists X e F* with
ordp(x) = m(p) for all p % S.

Then a = a'+(X) where a' ¢ I, and (x) e P(b), as required.

S
A fortiori, we have
I() = (IP,) B (D).

Translating this statement about ideal groups in one about their class fields
we find

F = & 1 (maximal abelian unramified extension of F).
This is exactly condition (iii).

To prove (i), first note
P() N Ig={&)|x e 0%l

Using (13.9) this yields
Cal(B/F) = T(0)/IgPy = IR (D)/Ig2y

= P(®)/ (@) NI P,



i

P()/{(x)[x e O}-P,

13

n

(0. /5)%/im(0%)
=5 = -

Using the remarks preceding the lemma we arrive at the following conclusion.

E and o be as in (13.7). Then there exists a prime ideal r of g%,

is infinite: here M o) is as in §12.

t e 0% such that M )
=5 t,{o} t,{o

Hence assume that M_ [
gk

o} is finite, for fixed t. We apply (12.7), the

conditions of which are satisfied by the choice of t and by (13.7)(ii),(iii).
We conclude first of all that F is a number field. So we have dealt with the
function field case without using that b has one of the types (13.2-4).

Further, we conclude (modulo (12.3)):

(13.10) some prime dividing b lies over £;
{1

v,k‘u‘,..‘a

(13. EY;

(13.13) [E:F] is divisible by £.

We distinguish three cases, according to the type of b.

=L with £ prime and np = 2.

ﬂL@, hence £= chaxﬁggﬁéj* By (13.7)(i), the

hich is Eﬁ -~ 1 for some f >0, This

= Lem with £ # m primes and m, = n_ = 1. In this case (13.10)

- A m

|£.. The degree |E:F| equals #(0./b)*/im(0%), But
i 2 L ! Buds bt g

)%, and im(0%) projects onto the second factor since
o s |

&

. P R P U S
= 1, Therefore P{Gqu}“;im(GEE divides #(0_/£)* which is £~ - | for some
Ya/b o Vgt
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f >0 . This again contradicts (13.13).

Case c. E.=.§? with £ prime and n, = I.

L
Again &is the unique prime number divisible by {7 The set Mt {g} ¢an very
b
well be finite (cf.below); if it is finite for all t, then (13.12) sharpens
to
’ Igv/””"”“ ag
(13.14) “E(Q_g)c.E
since Qg is generated by the fundamental units.
The group Gal(E/F) is isomorphic to (QSLQ?fVim(Qg); since Qg projects onto

<96/§)* this is a factor group of Ker((95/£?>* > (Qs/é)*) which is an elementary

abelian {-group. Therefore Kummer theory and (13.11) give us

£, 4
(13.15) E = F(VE%,...,VQL) for some n >0, and a, e F& - F*&.

Fix i, | < i < n, for the moment. Since E/F is unramified outside {_we have

K%orégﬁai) for all finite primes p # £. But O, is a principal ideal domain, so

S

we can modify a; by an £-th power so as to achieve

(13.16) ord (a)) =6 for all p ¢ Syl

0

A

orégfai) < £-1.

We claim ordg(ai) = 0. Suppose this is false. We compute the conductor

Ei of F(VEE)/F. Since this extension is cyclic of prime degree, £i equals the
conductor of any one of its non-trivial characters, Taking the product over all
characters we find by the conductor-discriminant product formula

- £
f% b discriminant (F(/E})/F).

But if orﬁg(ai) # 0 then over the épdic completion Eﬂ of F we have

e ¢
Fé(;/ép = Fé(fvrb,

for some m e Ep with or@e(w) = |, Since X?—ﬂ has discriminant +4£4 7 and
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and since there is no ramification outside £ we conclude

ﬁ-0$d£(ﬁ)ﬁ5“§
discriminant (F(%EE}/F) = 4 -

,«
o

£, = ‘&(ﬂ’e/(ﬂ*}))*l

£; , where e = or%&é@).

.
=

Frgm.ﬁ(ﬁgg) < E and (13.8) we know that f£. divides b = 52. Hence {(Lee/(L-1))
oo bt % —" —

which is a contradiction. This proves ordfiai) = Q,

By (13.16) we now have a; e Q§3 which by (13.15) implies E c.F(gﬁg).

bination with (13.14) shows = Es0o0 e Gal(E/F) is the identity element.

Cor

=

By (13.7)(i) this means that a is the identity of (QS/E)*/imﬁgﬁ) so there

N

sts an element ¥ € a + Qg'b for which r ¢ gg. Clearly

8(r) = 0 < 2 = 0(b), as required. This proves theorem (13.1). EJ

An example which shows that in case (c¢) the set Mt (g} S&m be empty for

s

all ¢t e 0%

o
RO ey

18 given by

F=Q(t), S=5_,4£=1(2), b= (4),0=id.
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14, The theorem of O'Meara.

In this section T denotes a number field of degree n and

discriminant A over Q. By r, and r, we mean the number of real

and complex archimedean primes of F, respectively. We write B

for the Minkowski constant

r —
50l (&2 /N

o

where 1 denotes the Ludolphsche Zahl. Finally, O = QS .

[+]

(14.1) Theorem. Let Wys Wyseees w[B]be [B] 4+ | different elements

of the ring of integers 0 of F. Then the ring

9.[Zwi~wj>“* | 0<i<j<[B]] = 9¢
where

S = Sm(f‘{ﬁl,g is a finite prime dividing.TTw(wi—wj)}
i<j
is norm—-euclidean.

Proof. First we recall the classical geometry of numbers approach.
T T

; o Cpgim e h Voo 2
Embed F in the R-algebra Fg'— k@ﬁ R=zR xC . Let HB*be the

Haar measure on R such that ug ([o,1]) = 1, as usual, let ug

be the Haar measure on ({ for which “@‘[Q’gl + [M,l]'i) = 2

(this is twice the usual one), and let p be the product measure

r2 T
on R " x C = J

The ring O is a lattice of rank n in FR' Let D be a

measurable subset of FR which is a fundamental domain for 0, i.e.

the natural map D ~+ FR/Q_is bijective. It is well known that

o ¥, T L tr,
Us ) T e Fglz Ixgl v 2'21=r1+1[xil <z n .
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A classical computatien. shows

r n
3\ 2‘ n

LLI I’%g 3

so  Beu()

]

() = ¢ u(D),

and the arithmetic-geometric mean inequality implies

(14.2) u, v e U =>N(u~-v) <1,
Here we mean by N the function

r,+r

r
‘T% |x. | T% 2 )

N(x) = x| ] %, 1%, w=(x.). F,
iy Pl Ll et Doy

which on F restricts to the absolute value of the field norm

F + Q and coincides with the §,-norm NS defined in § 7.

o

We turn to the proof of the theorem. Given x e F we have

to find q e O, such that Ns(x—q)< 1, by (9.7).

-5
The strong approximation theorem asserts the existence of

an &% F for which

(14.3) ordy (x=%x") » 0 for all p e S-S _,

Qrdp (x") » 0 for all p % S.

Then x'e_gs so {x-q | qe 95 Y= {(x=x")-qa] qe O .
Hence we may replace x by x-x° without changing the problem,

and by (14.3) this means that we may assume

<<<<<< o0

ordp x) 20 for all p e S-S

(14.4) x| =<1 for all p e S-S .
§ e [49]

Consider the [B| + ! sets x-w, + U. The sum of their

volumes equals

o W@ +0) = ([B]+1)-u(U) > Beu(U) =u(D)

( (s, + ) » 0 =
\\"‘/‘ \M.Ll ) M FR/W D
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cannot be injective. Hence there are i, j, and u, v e U such that
Xw. + u w. + Vv
w; # ZF

Xwi + u = ij + v mod O.

If we would have i = j then u-v e 0 - {0} so N(u-v) > 1,
contradicting (14.2). Therefore i # j and

x-(wi~wj) -y = v-u, for some y e O.
We claim that q =y / (wi~w3) satisfies
(14.5) Ny (x-q) < 1

which solves our problem since q e O,. To prove the claim, we

g
note first that
Ng (x-q) = Ng (X-(mi-wj)~y)

since (w.-w.) e 0%; secondly, (14.4) implies ix{w.—w.)—y| <1
1 =5 1] P

for allkp‘e S~Soo and therefore

NS (X'(wi_wj)—y) < NS (X'(wi-wj)—Y)

<]
and thirdly we have
Nsm(x'(wi—wj)-y) = Ng (v-u) < 1

- 0

by (14.2). Combining these three remarks we immediately get

(14.5). [ ]
Compare [37].

(14.6) Corollary. Let $=S_u {p finite | # (8/p) g [B]+B}; then

98 is norm—euclidean.
Proof., Let E = [[ﬁj'ﬁ]. Then (E+1)-u(U) > [ﬁ]-u(D) sO0 we can
choose t e R4 such that

(E+1)+u(U) > £7eu(U) = u(el) > [B]-u(d).
Consider the natural map

tU - FR / 0 = D.
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If each point of D is the image of at most [ﬁ} elements of
tlU, then we would have u(tl) < Eﬁ}*u(D), contradiction. Hence

there exist ﬁﬁi%~i different elements Vd,...,V[gj of tU which
o i
map to the same point in D, i.e.

vV, e 0 - {0}, foro<i<j<|[B].

Now apply (14.1) to the elements W, = V.- vb of 0, for 0<ix Eﬁ;
then we find that 95' is euclidean for

g7 = S ,ulp finite [ 3 i<j: W, = ““j ep I

For each p e 8'-S_ there are i # j with w;= Wy e p so using

(14.2) we get

%#(gjg)ag#l(gfgﬂwi~ mj)) = N (wi” wj)< th<E o+ 1.

Since %*Qgﬁg) is an integer this means %=(Qfg)é E and p e S.

Hence we proved S' « S, and since is norm-euclidean it

0

follows easily from (3.6) that also is norm-euclidean. [:

9%

(14.7) Corollary. Let T be a finite set of finite primes of F, such

that %:QQ[R) > B for all p e T. Then there is a finite set S of
primes of F, containing S,» such that SnT =@ and such that QS

is norm-euclidean.

Proof. Using the Chinese remainder theorem one chooses

WyoseeesWry] € 0 such that wg # wj mod p for all i<j and all

pe T. Then (14.7) is immediate from (14.1). [j

=1

It is unknown whether the restriction " %:(g[g) > B for

all p e T" can be missed or not. It is easily seen to bhe

superfluoys if one only requires O, to be a principal ideal

S
domain.

a : : : =
An instructive example is the ring ggylﬁ; §@.'Methods
L i

ttttttttt ek

analogous to those used above show that this ring is norm—euclidean

(cf. WQddarbuxn,{3E$ p. ESS}}» but this cannot be proved by means
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of theorem (14.1): one has [B] = 2, and the prime lying over 2
o . - - - y [Wamrl
divides any product (uwy= w;)(wy= w,) (v~ w,), where w, e 2 V-57.

Let the constants M and M' be defined by

M= max {m | there are w; e 0, for I<i<m, such that
Wi wy e 0% for all lsi<jsml},

M' = min {# (0/a) ] gig is an ideal }.

One proves easily 2<M<M's 2n, and (14.1) immediately gives:

(i4.8) Corollary. If B<M then 0 is norm-euclidean. m

This compares nicely with a classical result of Minkowski:
if B<M' then O is a principal ideal domain.

It is an amusing exercise to show that B # M for all
number fields F. Hence in (14.8) we can replace B <M by B« M.

The following proposition is slightly sharpex tham (14.8):

(14.9) Proposition. Let RCF be a subring which is integral over

Z and has F as its field of fractions. Let 4 be the discriminant

or R over Z and put

_nl | 42
By = 5 0 @ gl

n
MR =max {m l there are w, € R, for l<i<m,
such that w, - w, e R* for all Isi<js<m }.
Suppose M_> B_. Then R is euclidean with algorithm
R

=) = # (R/RX), x +o0, $(0) = w.

Remark. Of course (14.9) is not more general than (14.8) in the
sense that the only R which can possibly satisfy the conditions
of (14.9) is R = 0 (any euclidean domain is integrally closed);
but (14.9) is more convenient in the applications since one need
not show beforehand that the order R to be proved euclidean is

actually the maximal order O.
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Proof of (14.9), The proof of (l4.1) carries over without
problemsg. One just notes the formula

# (R/Rx) = N(x), x e R - {0},
and the fact that the part of the proof concernad with (14, 4)

can be tt i =3 ,
2 forgotten since S Sm []

Examples. Let F = Q (gp), where p is prime and gp is a
primitive p~th root of unity. We have

_ (=Dt A () /2 -2)/2
et 2 @ >3

and M' = p. Consideration of the elements w,= (g; - i)/(Cp- 1)

(for 1 €i<p) shows that we also have M = p. One easily checks
B<p for p =3, 5, 7,

so it follows that the rings Z [§3J, gk[;é] and g,[;ij are

norm—euclidean. For p = 11 we have B > p, although Z [;1;] is

known to be norm~euclidean (cf. § 15).

Some other examples:

R =2 [a], where: n r, By M My
cxl'b = o + | 4 1 2,008 7 2 6

u5 = 20 + 1 # -1 4 1 2.832 3 3
0 =a + 1 52 3.3 4 4
0f = a? 41 6 2 4.603 8 8

The last column is obtained by considering sequences of the

form (0, 1, &,n.,,&n). It follows that each one of these rings

is norm—euclidean.
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15. Norm—euclidean number rings.

In this section we survey the number fields F the ring of integers of

r, be as in section 4.

which is known to be norm—euclidean. Let n, T, 9

if

For n I there is only F = Q.

Fornm=2, r, =0, r, = 1 there are F =4g(/E) where A = -3, -4, -7, -8, -11,
and as we have seen in §8 this list is complete.
Form =2, r) =2, r, = O there are F = Q(YA) with A = 5, 8, 12, 13, 17,

21, 24, 28, 29, 33, 37, 41, 44, 57, 73, 76. A theorem of Chatland and Davenport

asserts that this list is complete [39,40,41].

Forn=3, r, = 1, r, = I it is known that there are only finitely many

1
such F, see [&2,43]. The known ones are those with discriminants, -23, -31,

-44, -59, -76, -83, -87, ~104, -107, -108, -116, ~135, -139, -140, -152 [}4].
For n = 3, r, = 3, r, = 0 it is known that there are only finitely many

examples which are Galois extensions of Q, see [45,46]. The known ones [}7,481
have discriminants 72, 92, 332, 192, 312, 372, 432, 612, 672. For F/Q not
Galois there are examples [ﬁ?,Si] with discriminants 148, 229, 257, 316 and 44
others (discriminants ranging from 321 to 1994) which were found with the help

of a computer.
For n = 4, r, = @, r, = 2 the number of examples is finite [AZ,&@]. In

ESQ} one finds 30 non-isomorphic examples which are quadratic over a totally
imaginary quadratic extension of Q:;among these examples are Qﬁga) and_g(giz).

The only other known one in this category is_g(cs), see [Sl,pp.228—231; 52].

For n = 4, r, = 2, r, = 1 only the two examples mentioned at the end of

§14 are known, with discriminants -283 and -563.

For n = 4, r =4, v, = 0 one finds nine examples with discriminants 725,

1 2
1125, 1600, 1957, 2225, 2304, 2624, 2777 and 4205 in [54].

For n > 5 eight examples are known:
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n rl rz F A reference
- . -1 4 .
5 5 0 3(@124511) 11 [54]
51 2 Qo),8°=041] 19x151  §14
6 0 3 Q@) -7’ §14
6 0 3 Qzg) -3 [55]
6 2 2 qe),0%=e%1  2%.23%  §u
8 0 4 Qo) 3%.58 [55]
b ¢ .
8 ¢ 4 Qz, ) 4 5 [55]

#= 1, 21, 72, 42, 8, 144,

Among these examples there are eleven cyclotomic ones: F = Qﬁgm) with
m= 1, 3, 4, 5, 7, 8, 9, 11, 12, 15, 20. A unified treatment of these
fields can be found in [55]. Nothing about the completeness of this list is

known. Note that.g(gzm) = gﬂcm) for m cdd. For m = Q mod 2 the field Q{cm)

has class number one if and only if {gﬁcm);gj < 20 orm e {70,84,90}

(thirty cases) (56[.

In [46j one can find information about the finiteness of the number of
examples in certain classes of number fields. Also a candidate for an infinite
class of examples is proposed.

There are six quaternion division algebras over number fields which are known

to have an order which is euclidean with respect to the norm.

In section !0 we mentioned already that there are exactly three such examples

over Q which ramify at infinity: (m!éal), (~léa3) and (TBé“S), cf. [57]. There
. P -1,3 | “2,5y .
are two known examples over Q which split at infinity: (~6L%~% and (—22). The

sixth example is the unique quaternion division algebra over Q(vV5) which splits

at all finite primes. This algebra contains the euclidean order

| - ¥l [ 1
: ~ v L. 3 i N bl
; e {143y N R R o
Lelps T {;; 4"4,.;,}4{ 9 1 = by G, = 1 w0 13:% ol L
" Le™i - b ' 3 2 )
5
|
T SRR B A 1. .. o it e ool
can be proved by the methods of |[55]
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16. Rings of algebraic functions.

Let ¥ be a function field in one variable over an arbitrary field
k, cf. [24]. We assume that k is the exact field of constants of F.
Each placeng of F over k gives rise to an exponential valuation ordp on F
whose image is Z \J{~}. The degree d(p) of p is the degree of its residue

class field over k.

A divisor of F/k is a formal finite product a =~TTimcp)

p
over the places of F/k and m(p) e Z, m(p) = 0 for almost all p. We put

where ©p ranges

d(a) = Ep m(p)-d(p) and L(a) = {x e F!ordp(x) > mp for all p}. The dimension

of L(a) over k is denoted by £(a). The theorem of Riemann-Roch implies

3(3) 7 d(-a) + 1 -g for all a, where g is the genus of F/k.
~—ord (x)
p 2.

For x e F* the principal divisor (x) is defined to be |
P
We have d((x)) = 0 for all x e F#,

Let S be a non-empty set of places of F/k. Then 98 = {x e F| ordp(x) >0
for all p.¢ S} is a Dedekind domain, and the group of fractional ideals of

0. can be identified with the group of divisors §_=ATThpm(9)

for which

m(p) = 0 for all p e 5. Here we agree that also F itself is a Dedekind domain.
. . . - m(p) . _ - \
If é»CIQS is a nonzero ideal, a TTE , then dlmk(gs/g) Egés m(p)d(p) d(a).

The following theorem is the function field analogue of (14.6).

(16.1) Theorem. Let S be a non-empty set of places of F/k, and let
d = g.c.d.{d(P)lg € S}. Put T = {P[d(E) < 2d + 2g = 2}. Then QStJT is euclidean

with respect to the function
0G) = dim (O  p/0g  4x) & e O p)

Remark. In (16.9) we determine under which conditions T is finite.

Proof. The definition of d implies the existence of a divisor 'based on $":

=T @

RGS

C
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which satisfies

-d - 2g + 2 > d(c) » -2d - 2g + 2.
Riemann-Roch implies

(16.2) £(c) » d(-c) + 1 =g >d+g~- I.

Note that L(E)cj_gg. ;

For a divisor a = .E?(E)’ let us define
P

dy(@) = 3 m(p)-d(p),
Pés

d (a) = I m(p)-d(p).
PQS

Clearly do(g) + dm(é) = d(a), so do((x)) = -dm((x)) for x e F%,

(16.3) Lemma. Let a,b ¢ O., b # 0. Then there exists a nonzerco element

t e L(c) such that the residue class ta + Qs-b contains an element r for

which r = 0 or dg((r)) < do((b)).

oréyKb)

Proof. The divisor {I’ p is based on S and has degree *do((b)). Hence

peSA

we can find a divisor r which is based on S and has degree d(r) = d - do((b)).

The space L(r) is contained invgs and has k—-dimension at least

dQ{{b)) - d~ g+ 1. We claim
L(x) M 0,+b = {0}.

In fact, if x # O would be in the intersection, then x e gs-b would imply

d,((0)) » dg((B)), and x € L(r) would give d_((x)) > d_(r) = d = dg((b)), so

d@({x)) + dm((x)) »d > 0, contradiction.

We conclude that the map L{r) - Oq/00~b is injective. Demote the
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image again by L(r). Since dimk(gs/96°b) = do((b)) we find
dlmk((E%/QS‘b)/L(f)) <d+g- 1.

Consider the maps
L(e) » 0,/0g+b + (0,/0,+b)/L(x),

t » (ta mod st).
By (16.2) we have dimk L(c) > d + g = 1 so the composite map is not injective.
Hence for some t e L(c), t # O, the element (ta mod st) is inside the image
of L(r), say ta = r mod Qs-b, with r e L(E)' Then either r = @, or
dO((r)) = =d_((r)) < -d_(r) = do((b)) - d < do((b)) so the lemma is proved. [ i

(16.4) Lemma. L(c) - {0}« SUT

Proof. Let x e L(c), x # O. We have to prove ord (x) = 0 for all p & SufT

So let g é S satisfy ord (x) # 0, we must show q e T.

For every p 4 S we have ordp(x) » 0, since x e L(c). In particular ordq(x) > 0,

S0 dg((x)) = 2 ordp(x)d(p) > ordq(x)-d(g) > d(q)

while on the other hand

do((®)) = =d_((%)) s =d_(c) = -d(c) < 2d + 2g - 2.
We conclude d(q) < 2d + 2g - 2, i.e. q e T. This proves (16.4). [4]

Proof of (16.1). Note the formulas

9(x) =% ord (x) d(p)
Vp%s u T P

= dp((x)) - = ordp(x) d(p)
peT-S =

(16.5) o(xy) = o(x) + o(y)
- {o0}.

for %, vy e QSL}T
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Let a,b e O b # 0. In order to prove the theorem, we have to exhibit

""S ‘JT,

an element s € a + 0 b for which s =0 or ¢(s) < ¢(b). By (16.5) the

=SsoT
problem does not change if we multiply a and b by the same non—zero constant

c e QS‘ . This means that we may assume a,b e O

AT g°

Since_gs is Dedekind, the strong approximation theorem gives us an element

a' e 0, for which

ordp(a—a') >fordp(b) for all»p'% TuS,
ord (a') > ord_(b) for all pe T - S.
P P
L3 1 4 ® 4 ' i
Than a + QSLJT b a +-98»JT b, so replacing a by a does not change the

problem, except that we may assume

(16.6) ordp(a) >~ordp(b) for all p e T - S.

Using (16.3) we choose t e L(c) - {0} and r e ta +.gs°b such. that

r=0 or d.({(r)) < d.((b)). Then Lea+o *b, by (16.4), and we claim
0 0 £ -Su T

that s =-§ satisfies our requirement s = O or ¢(s) < o(b).

In fact, if s # O then

p(s) = ¢(b) = ¢(r) = ¢(b) =

= dg((r)) = 4 ((B)) 2 ord (=) -d(p)
O i pel-S pb P
< =z ord (X)-d(p).
peT-38 pb P

But r e ta + Qg'b and (16.6) imply ordp(%) > 0 for p e T-S, so we conclude
0(s) = o(b) <O
as required. This proves (16.1).

Remark. The proof shows that in the definition of T we may replace 2d + 2g - 2

[ 3

I 9omsi
" ; P LT A - - - . . e .
by de (2 + gwgww@)» But this is no. real improvement, since there is no loss in
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generality in assuming d|2g-2. In fact, if ever QU (U #@) is to be a principal

ideal domain, then U must always contain a (finite) set S' such that
d' = g.c.d. {dQE)LP.e S'} divides the degree of every divisor, in particular
the degree of a canonical divisor, which equals 2g - 2. Replacing S by S' we

rhen have d]2g - 2, while moreover T is not enlarged by this replacement.

(16.7) Theorem (MacRae,[58]). Suppose that k is an infinite field and that there

are only finitely many places of F/k of degree one. Let S be a finite non—empty

set of places of F/k. Then Og is not euclidean.

We need the following lemma, for the proof of which we refer to Samuel
[é, prop. 18, corZL

(16.8) Lemma. Let k be an infinite field and X a field extension of k such

that K#/k* is a finitely generated abelian group. Then k = K. | |

Proof of (16.7). Suppose O, is euclidean. Using (3.6) we may assume that all

S
places of degree one are in S.

Let 0 be the smallest algorithm on 98’ and choose w e_gs such that
8(wr) = 1. Then K =_QS[QSW is a field extension of k and the map 9§ + K* ig
surjective, cf. (2.6).

But Qg/k* is finitely generated since it maps injectively tom{TNZ,

pes
by ¢ » (ordp(e))pes. Hence K#/k* is finitely generated and by (16.8) we

conclude K = k. This means that gs'ﬂ is a prime ideal of degree one of 95’
contradicting the assumption that all places of degree one are in S. | |
From (2.6) or (8.4) one easily deduces that the principal ideal domain

R = RLX,i}/(X2+Y2+1) is not euclidean. Theorem (16.7) implies that for

every a ¢ R - {0} the ring R[é*lj is a non-euclidean principal ideal domain.

(16.9) Corollary. Let §, d, T be as in (16.1). Then T is finite if and only if

k is finiteyor d = | and g = 0.

Proof. "If" is clear. "Only if'". Suppose k is infinite and T is finite. Re-
placing S by a finite subset giving the same d we then have that S\ T is

finite. Therefore (16.1) and (16.7) imply that F/k has infinitely many places
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of degree one. Since T is finite we conclude 2d + 2g - 2 < 0 so d = ] and
g=0. []

{16.10) Theorem (Samuel,[Z]). Suppose F/k has genus O, and let S be a finite

non-empty set of places of F/k. Then_gs is euclidean if and only if

g.c.d.{d(p)ig e 8} = 1.

Proof. "If" is obvious from (16.1). "Only if". Let 04 be euclidean. If k is
infinite then (16.7) implies that there exists: a divisor a with d(a) = 1. It
is well known [S9,p,!45} that such a divisor also exists if k is finite. Since
Qg is a principal ideal domain we may assume that a is based on S, and we
conclude g.c.d. {d(p)|p e S} = 1. []

Without proof we mention:

(16.11) Theorem (Samuel,[i]). Suppose F/k has genus Q@ and k is infinite. Let

S be as in (16.10) and assume that OS is euclidean. Then the smallest algorithm

6 of 9

S is given by

B(x) = dimk(gs/gsx), x #0, 60) =w.. [ ]

Various other results on the same subject can be found in papers of J.V. Armitage,

which are recommended for careful reading [50,61,62,63].
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