Generic Algorithms for Subset Sum

December 23, 2010

The Subset-Sum Problem. The subset sum problem is a famous NP-hard problem which has often been used in the construction of cryptosystems. An instance of this problem consists of a list of n positive integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and an integer S. The solution is given by $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in\{0,1\}^{n}$ such that

$$
\sum_{i=1}^{n} \epsilon_{i} a_{i}=S
$$

That is, one must find a subset of the a_{i} 's which sums to S.
The density of the problem is defined as

$$
d=\frac{n}{\log \left(\max _{i} a_{i}\right)}
$$

There exist efficient lattice-based algorithms for the problem if the density is either low, $d<0.94$, or high, $d>1$. However, for the case where d is close to 1 , until recently the best algorithm run in time $O\left(n 2^{n / 2}\right)$ using $O\left(n 2^{n / 4}\right)$ bits of memory. This algorithm, by Richard Schroeppel and Adi Shamir, dates back to 1979.

Very recently Howgrave-Graham Joux [1] gave a new algorithm improving the running time to $O\left(2^{0.3113 n}\right) .{ }^{1}$

Goal. In this project the student will read and report on [1] and maybe some of the related literature. A possible more challenging topic is the following: the algorithm from [1] is only shown to work for "most" instances of the problem (i.e. it's not a worst case algorithm.), give a nice classification of the "bad" instances and an explicit bound on their density.

Supervision. Krzysztof Pietrzak, pietrzak@cwi.nl

References

[1] Nick Howgrave-Graham and Antoine Joux: New Generic Algorithms for Hard Knapsacks. In EUROCRYPT, 2010.

[^0]
[^0]: ${ }^{1}$ A nice exposition of this algorithm is given on Lipton's blog http://rjlipton.wordpress.com/2010/02/05/a-2010-algorithm-for-the-knapsack-problem/

