Irreducible rational ordered vector spaces

An ordered field is a field F together with a total order \leqslant on F such that:
(i) For all $\lambda, \mu \in F$ with $0<\lambda$ we have $\mu<\lambda+\mu$.
(ii) For all $\lambda, \mu \in F$ with $0<\lambda$ and $0<\mu$ we have $0<\lambda \mu$.

Two examples of ordered fields are the rationals \mathbb{Q} and the reals \mathbb{R}. One can show without much effort that any ordered field is an extension of \mathbb{Q}.

From now on we let F denote an ordered field.
An ordered vector space is an F-vector space V together with a total order \leqslant on V such that:
(i) For all $\lambda \in F$ and $v \in V$ with $0<\lambda$ and $0<v$ we have $0<\lambda v$
(ii) For all $u, v \in V$ with $0<u$ we have $v<u+v$.

Two ordered vector spaces V and W are considered the "same" if there exists an order-isomorphism between them, that is, a linear isomorphism $f: V \rightarrow W$ such that $u \leqslant v$ in V implies $f(u) \leqslant f(v)$ in W.

For any ordered field F and any $n \in \mathbb{Z}_{\geqslant 0}$, the pair (F^{n}, \leqslant) is an ordered field if we define

$$
\left(\lambda_{1}, \ldots, \lambda_{n}\right)<\left(\mu_{1}, \ldots, \mu_{n}\right) \Longleftrightarrow \lambda_{j}<\mu_{j}
$$

where $j=\max \left\{i: \lambda_{i} \neq \mu_{i}\right\}$ provided the latter is non-empty. This order is called the anti-lexicographic order on F^{n}.

Another interesting example is the rational vector space $V=\mathbb{Q}+\mathbb{Q} \sqrt{2}$ ordered as a subfield of \mathbb{R}. One can show that this space is not order-isomorphic to \mathbb{Q}^{2} with the anti-lexicographic order. On the other hand, the case $F=\mathbb{R}$ is much simpler: by a theorem of Koshi, [1], any finite-dimensional ordered real vector space is orderisomorphic to \mathbb{R}^{n} with the anti-lexicographic order.

Let V be an ordered vector space and U be a subspace. We say U is convex if for any $u \in U$ and $v \in V$ with $0<v<u$ we have $v \in U$. Clearly $\{0\}$ and V are convex. One can show that the set of convex subspaces of V, which we denote by $C(V)$, is totally ordered by inclusion.

This notion is fundamental in the study of ordered vector spaces. For example, showing that $V=\mathbb{Q}+\mathbb{Q} \sqrt{2} \subset \mathbb{R}$ is not anti-lexicographically ordered amounts to show that $C(V)=\{\{0\}, V\}$. Here, we call an ordered vector space with this property irreducible.

By a theorem in [2], for any finite-dimensional ordered vector space V there is an order isomorphism

$$
V \simeq \bigoplus_{W \in C(V) \backslash\{0\}} W / W^{\prime}
$$

where W^{\prime} denotes the predecessor of W in $C(V)$ (for the definition of the order on the above sum see the reference). Thus, any finite-dimensional ordered vector space is an anti-lexicographic sum of irreducible ordered vector spaces.

The objective of the project is to study the irreducible rational vector spaces. Can we describe the order-automorphisms of such a space? Can we decide when two such spaces are order-isomorphic? Of course, a first step in the project is to study the existing literature.

Supervisor: Erwin Torreao Dassen
[1] Koshi, S. 1979. Vector spaces with linear order. Commentationes Mathematicae. Special Issue 2: 183187.
[2] Torreao Dassen, E L. 2011. Basis reduction for layered lattices. Proefschrift. Universiteit Leiden (December 20, 2011).

