## Mastermath course "Elliptic curves" - exercise set 1

1. For an integer n > 0, let  $C_n$  be the circle in the Euclidean plane defined by the equation

$$x^2 + y^2 = n.$$

- a. Find a parametrization of the rational points on the circle  $C_2$ .
- b. Determine for which primes p there exist rational points on  $C_p$ .
- \*c. Can you extend the result of b to the case of arbitrary integers n?
- 2. Let (a, b, c) be a *Pythagorean triple*, i.e., a triple (a, b, c) of positive integers satisfying gcd(a, b, c) = 1 and

$$a^2 + b^2 = c^2.$$

Show that, possibly after interchanging a and b, there exist integers m > n > 0 such that we have

$$a = m^2 - n^2$$
,  $b = 2mn$ ,  $c = m^2 + n^2$ .

- 3. Consider the difference  $19 = 3^3 2^3$  of rational cubes.
  - a. Write 19 as a sum of two positive rational cubes.
  - b. Can you find different solutions to a?
  - \*c. Is the number of different solutions to a finite or infinite?
- 4. State and prove the Porism of Diophantus (on differences of cubes being sums of cubes) in full generality.
- 5. Let  $\phi: \mathbb{C} \to \mathbb{C}^2$  be the map defined by  $z \mapsto (\sin z, \cos z)$ .
  - a. Show that the image of  $\phi$  is the algebraic set

$$S = \{(x, y) \in \mathbf{C}^2 : x^2 + y^2 = 1\}.$$

- b. Show that  $\phi$  induces a bijection between the elements of the quotient group  $G = \mathbf{C}/2\pi\mathbf{Z}$  and S.
- c. Show that the "natural" addition of points  $(x, y) \in S$  induced by  $\phi$  is given by an algebraic formula, and find this formula.
- d. How many points  $P \in S$  satisfy  $2011 \cdot P = (0, 1)$ ?

6. Let  $F \in \mathbf{C}[x,y]$  be a non-constant polynomial, and C be the curve in  $\mathbf{C}^2$  defined by the equation

$$F(x,y) = 0.$$

A point (a, b) on C is said to be *singular* if we have

$$\frac{\mathrm{d}F}{\mathrm{d}x}(a,b) = \frac{\mathrm{d}F}{\mathrm{d}y}(a,b) = 0,$$

and non-singular or smooth otherwise.

- a. Suppose F is irreducible in  $\mathbf{C}[x,y]$ . Show that C has only finitely many singular points.
- b. Take  $F = y^2 f(x)$ , with  $f \in \mathbf{C}[x]$  a non-constant polynomial. Show that all points of C are smooth if and only if f is *separable*, i.e., without multiple roots.
- c. Take  $f = x^3 + ax + b$  in b. Show that all points of C are smooth if and only if we have  $4a^3 + 27b^2 \neq 0$ .
- 7. Let C be the cubic curve in  $\mathbb{C}^2$  given by the equation

$$y^2 = x^3 + 2x^2$$
.

- a. Show that (0,0) is the only point of C that is singular.
- b. Show that every line  $y = \lambda x$  through the origin intersects C in at most one other point  $P_{\lambda} \neq (0,0)$ .
- c. Can you parametrize the rational points on C?