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1. PICARD GROUP AND CANONICAL DIVISOR

Cartier divisors [4, Section II.6], [5, Section A2.2].

Moving Lemma [5, Lemma A2.2.5].

Morphism f: X — Y of varieties induces homomorphism f*: PicY — Pic X [5, A2.2.6].
Maps to projective space [4, Section I1.7], [5, Section A3].

Linear systems [4, Section I1.7], [5, Section A3].

Criterion for ¢y being a morphism in terms of linear system L [4, Lemma II.7.8 and
Remark I1.7.8.1], [5, Theorem A3.1.6 (read base points instead of fixed components)].

e Definitions of ample and very ample [5, Section A3.2].

EXERCISES

(1) Let ¢: P} — P} be an automorphism. Show that ¢ is linear, i.e., there is a linear map
¥ € GLy,,11(k) such that the induced automorphism on (k"*! — {0})/k* coincides with ¢.

(2) Let C be a smooth projective curve (irreducible) of genus 4. Let K be a canonical divisor
on C. Assume that K is very ample, which is equivalent to C' not being hyperelliptic
(see [4, Proposition IV.5.2], [5, Exercise A4.2]). Show that the complete linear system |K|
embeds C as the complete intersection of a quadric and a cubic surface in P3. [Hint: use
Riemann-Roch to compute the dimensions ¢(K),¢(2K), ((3K).]

(3) Let C be the image of the morphism

P! — P3, [s:t]— [s2: 5%t st? 1 t3].

Show that the ideal I(C') associated to C can not be generated by two elements, i.e., show
that C' is not a complete intersection.

2. NEXT WEEK

e Criterion for ¢, being a closed immersion in terms of linear system L [4, Remark 11.7.8.2],

[5, Theorem A3.2.1].

Kodaira dimension [4, Section V.6], [5, Section F5.1].

Classification of surfaces [4, Section V.6], [5, F5.1].

General type or very canonical [4, Section V.6], [5, F5.2], [9, Section 1.2].

Bombieri-Lang conjecture [5, Section F5.2], [9, Section I.3].

Extended moving lemma and intersection numbers constant within divisor classes [5,

A2.3.1].

e Intersection pairing on Pic X when X is normal and projective surface [4, Theorem V.1.1],
[5, Section A2.3], [6, Appendix B].

o Self intersection: C - D = degy L(D) ® O¢ restricted to C = D [4, Lemma V.1.3].

e X C P" a surface, H € Div X a hyperplane section, C C X a curve. Then H?> = H - H =
deg X [5, A2.3], and H - C = degC. [4, Exercise V.1.2].

o Adjunction formula 2¢(C) —2 = C - (C + Kx) for smooth curve C' on smooth projective
surface X [4, Proposition V.1.5], [5, Theorem A4.6.2].

e Riemann-Roch for surfaces [4, Theorem V.1.6], [5, Theorem A4.6.3].

e Kodaira Vanishing [4, Remark 11.7.15, Exercise V.4.12], [5, Remark A4.6.3.2].
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