Rational points on varieties, part II (surfaces)

Ronald van Luijk
WONDER, November 21, 2013

1. DEL PEZZO SURFACES AND BRAUER-SEVERI VARIETIES

e Del Pezzo surfaces, including classification over separably closed fields [22].

e Cubic surfaces [5, Section V.4], [13, Chapter IV], [22].

e Kodaira Vanishing Theorem for rational surfaces over an algebraically closed field of pos-
itive characteristic.

e Segre-Manin Theorem [13, Theorem 29.4], [22].

e Brauer-Severi varieties with a rational point are trivial [22].

2. EXERCISES

(1) For geometrically rational surfaces, Kodaira’s vanishing theorem also holds in character-
istic p: let X be a geometrically rational surface with canonical divisor Kx and let D be
an ample divisor. Then we have s(D + Kx) = 0.

(a) Let X be a del Pezzo surface of degree d. Show that for all positive integers m we
have ((—mKx) =14 im(m + 1)d.

(b) Suppose d = 4. Show that X is isomorphic with the complete intersection of two
quadric surfaces in P2,

(2) Take your favorite field k and your favorite 6-tuple of points Py,..., Ps € P? in general
position. Let X be the blow up of P? in these six points. As we have seen, the linear
system | — K x| induces an embedding of X into P3. Compute (with computer, probably)
an equation of the image.

(3) Let m: X — P? be the blow up of P? in r points Py, Ps, ..., P,. For each i, let E; C X
denote the exceptional curve above P;.

(a) Use exercise 1 from last week to show that if C C P? is a nice curve of degree d,
and C C X is its strict transform, then on X we have C?=d2— m, where m is the
number of points among P, ..., P. that lie on C.

(b) Conclude that the strict transform of a line through exactly two points and the strict
transform of a smooth conic through exactly five points are exceptional curves on X.
Note that for r = 6, together with E1, ..., Fg, this accounts for all 27 exceptional
curves on X.

(c) For each r € {1,...,8}, find the number of exceptional curves on X, and describe
their images in P2, assuming the points are in general position.

(4) Let ¢: P? --» P2 be the “Cremona transformation”, given by

[:y:z]— [yz:xz: ay]

(a) Show that ¢ is not well defined at the points P, = [1:0:0], P, =[0:1: 0], and
P3;=[0:0:1], but that ©? extends to the identity.

(b) Let m: X — P2 be the blow-up of P? at the points Py, P, P;. Show that ¢ extends
to an automorphism of X in the sense that there exists an automorphism ¢ making
the diagram

X2 x

]P>2 T>P2

commutative.

(5) Pascal’s Theorem states the following. Let P, ..., P be six points on an irreducible conic
I' c P?2. Let Q, R, and S be the three intersection points of the lines P; P, and Py Ps, the
lines P, P3 and Ps; Py, and the lines P3P, and P3P, respectively. Then @, R, and S are
collinear. Prove this theorem.
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