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This is an alternative proof of Theorem 3.3 in Michael Stoll’s “Linear Algebra II” (2007).

Lemma 1. Let V be a finite-dimensional vector space over a field F .

a) Let U1, U2 ⊂ V be subspaces of V satisfying U1 ∩ U2 = {0}. Then any basis of U2 can
be extended to a basis of a complementary space of U1 inside V .

b) Let U1, U2, U3 ⊂ V be subspaces of V such that U3 is a complementary space of U1 +U2

inside V , and U2 is a complementary space of U1 inside U1 + U2. Then U2 + U3 is a
complementary space of U1 inside V and the union of any bases for U2 and U3 is a
basis for U2 + U3.

Proof. Exercise. �

Theorem 2. Let V be a finite-dimensional vector space over a field F and set n = dimV .
Let f : V → V be a nilpotent endomorphism. Then V has a basis (v1, . . . , vn) such that for
all i ∈ {1, . . . , n} we have f(vi) = vi+1 or f(vi) = 0.

Proof. Let m be an integer such that fm = 0. Note that we have a chain of inclusions

{0} = ker f0 ⊂ ker f1 ⊂ ker f2 ⊂ · · · ⊂ ker fm−1 ⊂ ker fm = V.

We prove by descending induction that for all j ∈ {0, 1, . . . ,m} there are elements w1, . . . , ws ∈
V and non-negative integers d1, . . . , ds, such that the sequence

(1)
(
w1, f(w1), . . . , f

d1(w1), w2, f(w2), . . . , f
d2(w2), . . . , ws, f(ws), . . . , f

ds(ws)
)

is a basis of a complementary space Xj of ker f j inside V and, if j > 0, the sequence

(2)
(
fd1+1(w1), . . . , f

ds+1(ws)
)

is a basis of a subspace Y ′j of ker f j satisfying Y ′j ∩ ker f j−1 = {0}.
For j = m this is true because we can take ` = 0 and Xj = Y ′j = 0 (the zero space is

a complementary space of V inside V ). Suppose 0 ≤ j < m and suppose we have elements
w1, . . . , ws ∈ V and integers d1, . . . , ds, such that the sequence A of (1) is a basis for a
complementary space Xj+1 of ker f j+1 inside V and the sequence of (2) is a basis of a subspace
Y ′j+1 of ker f j+1 with Y ′j+1∩ker f j = {0}. Using part (a) of Lemma 1, we extend the sequence

(2) to a basis

B =
(
fd1+1(w1), . . . , f

ds+1(ws), ws+1, ws+2, . . . , wt

)
of a complementary space Yj+1 of ker f j inside ker f j+1. We set Xj = Xj+1 + Yj+1. Then by
part (b) of Lemma 1, the space Xj is a complementary space of ker f j inside V , which, after
reordering the elements of A and B, has a basis(

w1, f(w1), . . . , f
e1(w1), w2, f(w2), . . . , f

e2(w2), . . . , wt, f(wt), . . . , f
et(wt)

)
,

1



where ek = dk + 1 for 1 ≤ k ≤ s and ek = 0 for s < k ≤ t. Note that this is exactly (1), with
w1, . . . , ws replaced by w1, . . . , wt and d1, . . . , ds replaced by e1, . . . , et. Suppose j > 0, and
set Y ′j = f(Yj+1). The sequence

C =
(
fe1+1(w1), . . . , f

et+1(wt)
)

equals f(B) and therefore generates Y ′j . We show that the elements in C are linearly inde-
pendent. Suppose λ1, . . . , λt ∈ F are such that

(3)
t∑

k=1

λkf
ek+1(wk) = 0,

and set x =
∑t

k=1 λkf
ek(wk) ∈ Xj . Then (3) says f(x) = 0, so x ∈ Xj ∩ker f ⊂ Xj ∩ker f j =

{0}, so x = 0. Since the elements of B are linearly independent, we get λ1 = · · · = λk = 0,
so the elements of C are also independent. Since Yj+1 is contained in ker f j+1, its image Y ′j
is contained in ker f j . For any y ∈ Y ′j ∩ ker f j−1 there is a y′ ∈ Yj+1 with y = f(y′), which

satisfies f j(y′) = f j−1(y) = 0, which implies y′ ∈ Yj+1 ∩ ker f j = {0}, so we have y′ = 0 and
hence y = 0. We obtain Y ′j ∩ ker f j−1 = 0. This finishes the induction argument.

The statement of the theorem follows, as for j = 0, the only complementary space of
ker f j = ker idV = {0} is V , so we can take (v1, . . . , vn) to be the sequence (1) associated to
j = 0. �


