STRUCTURE OF NILPOTENT ENDOMORPHISMS

RONALD VAN LUIJK

This is an alternative proof of Theorem 3.3 in Michael Stoll's "Linear Algebra II" (2007).

Lemma 1. Let V be a finite-dimensional vector space over a field F.

- a) Let $U_1, U_2 \subset V$ be subspaces of V satisfying $U_1 \cap U_2 = \{0\}$. Then any basis of U_2 can be extended to a basis of a complementary space of U_1 inside V.
- b) Let $U_1, U_2, U_3 \subset V$ be subspaces of V such that U_3 is a complementary space of $U_1 + U_2$ inside V, and U_2 is a complementary space of U_1 inside $U_1 + U_2$. Then $U_2 + U_3$ is a complementary space of U_1 inside V and the union of any bases for U_2 and U_3 is a basis for $U_2 + U_3$.

Proof. Exercise. \Box

Theorem 2. Let V be a finite-dimensional vector space over a field F and set $n = \dim V$. Let $f: V \to V$ be a nilpotent endomorphism. Then V has a basis (v_1, \ldots, v_n) such that for all $i \in \{1, \ldots, n\}$ we have $f(v_i) = v_{i+1}$ or $f(v_i) = 0$.

Proof. Let m be an integer such that $f^m = 0$. Note that we have a chain of inclusions

$$\{0\} = \ker f^0 \subset \ker f^1 \subset \ker f^2 \subset \cdots \subset \ker f^{m-1} \subset \ker f^m = V.$$

We prove by descending induction that for all $j \in \{0, 1, ..., m\}$ there are elements $w_1, ..., w_s \in V$ and non-negative integers $d_1, ..., d_s$, such that the sequence

$$(1) \qquad (w_1, f(w_1), \dots, f^{d_1}(w_1), w_2, f(w_2), \dots, f^{d_2}(w_2), \dots, w_s, f(w_s), \dots, f^{d_s}(w_s))$$

is a basis of a complementary space X_j of ker f^j inside V and, if j > 0, the sequence

(2)
$$(f^{d_1+1}(w_1), \dots, f^{d_s+1}(w_s))$$

is a basis of a subspace Y'_i of ker f^j satisfying $Y'_i \cap \ker f^{j-1} = \{0\}$.

For j=m this is true because we can take $\ell=0$ and $X_j=Y_j'=0$ (the zero space is a complementary space of V inside V). Suppose $0 \le j < m$ and suppose we have elements $w_1, \ldots, w_s \in V$ and integers d_1, \ldots, d_s , such that the sequence A of (1) is a basis for a complementary space X_{j+1} of ker f^{j+1} inside V and the sequence of (2) is a basis of a subspace Y'_{j+1} of ker f^{j+1} with $Y'_{j+1} \cap \ker f^j = \{0\}$. Using part (a) of Lemma 1, we extend the sequence (2) to a basis

$$B = (f^{d_1+1}(w_1), \dots, f^{d_s+1}(w_s), w_{s+1}, w_{s+2}, \dots, w_t)$$

of a complementary space Y_{j+1} of ker f^j inside ker f^{j+1} . We set $X_j = X_{j+1} + Y_{j+1}$. Then by part (b) of Lemma 1, the space X_j is a complementary space of ker f^j inside V, which, after reordering the elements of A and B, has a basis

$$(w_1, f(w_1), \dots, f^{e_1}(w_1), w_2, f(w_2), \dots, f^{e_2}(w_2), \dots, w_t, f(w_t), \dots, f^{e_t}(w_t)),$$

where $e_k = d_k + 1$ for $1 \le k \le s$ and $e_k = 0$ for $s < k \le t$. Note that this is exactly (1), with w_1, \ldots, w_s replaced by w_1, \ldots, w_t and d_1, \ldots, d_s replaced by e_1, \ldots, e_t . Suppose j > 0, and set $Y'_i = f(Y_{j+1})$. The sequence

$$C = (f^{e_1+1}(w_1), \dots, f^{e_t+1}(w_t))$$

equals f(B) and therefore generates Y'_j . We show that the elements in C are linearly independent. Suppose $\lambda_1, \ldots, \lambda_t \in F$ are such that

(3)
$$\sum_{k=1}^{t} \lambda_k f^{e_k+1}(w_k) = 0,$$

and set $x = \sum_{k=1}^t \lambda_k f^{e_k}(w_k) \in X_j$. Then (3) says f(x) = 0, so $x \in X_j \cap \ker f \subset X_j \cap \ker f^j = \{0\}$, so x = 0. Since the elements of B are linearly independent, we get $\lambda_1 = \cdots = \lambda_k = 0$, so the elements of C are also independent. Since Y_{j+1} is contained in $\ker f^{j+1}$, its image Y'_j is contained in $\ker f^j$. For any $y \in Y'_j \cap \ker f^{j-1}$ there is a $y' \in Y_{j+1}$ with y = f(y'), which satisfies $f^j(y') = f^{j-1}(y) = 0$, which implies $y' \in Y_{j+1} \cap \ker f^j = \{0\}$, so we have y' = 0 and hence y = 0. We obtain $Y'_j \cap \ker f^{j-1} = 0$. This finishes the induction argument.

The statement of the theorem follows, as for j=0, the only complementary space of $\ker f^j = \ker \operatorname{id}_V = \{0\}$ is V, so we can take (v_1, \ldots, v_n) to be the sequence (1) associated to j=0.