Linear algebra 2: exercises for Section 7

Ex. 7.1. Let V and W be normed vector spaces over \mathbb{R}. For a linear map $f: V \to W$ let

$$||f|| = \sup_{x \in V, \|x\| = 1} ||f(x)||$$

1. Show that $B(V,W) = \{ f \in \text{Hom}(V,W) : ||f|| < \infty \}$ is a subspace of $\text{Hom}(V,W)$, and that $||\cdot||$ is a norm on $B(V,W)$.

2. Show that $B(V,W) = \text{Hom}(V,W)$ if V is finite dimensional.

3. Taking $V = W$ above, we obtain a norm on $B(V,V)$. Show that $||f \circ g|| \leq ||f|| \cdot ||g||$ for all $f,g \in B(V,V)$.

Ex. 7.2. Consider the rotation map $f: \mathbb{R}^2 \to \mathbb{R}^2$ which rotates the plane by 45 degrees. For any norm on \mathbb{R}^2 the previous exercise defines a norm $||f||$. Show that $||f|| = 1$ when we take the standard euclidean norm $||\cdot||_2$ on \mathbb{R}^2. What is $||f||$ when we take the maximum norm $||\cdot||_\infty$ on \mathbb{R}^2?

Ex. 7.3. Consider $V = \mathbb{R}^n$ with the standard inner product and the norm $||\cdot||_2$. Suppose that $f: V \to V$ is a diagonalizable map whose eigenspaces are orthogonal (i.e., V has an orthogonal basis consisting of eigenvectors of f). Show that $||f||$ as defined in Ex. 7.1 above is equal to the largest absolute value of an eigenvalue of f.

Ex. 7.4. What is the sine of the matrix \(\begin{pmatrix} \pi & \pi \\ 0 & \pi \end{pmatrix} \) ?

Ex. 7.5. Consider the vector space V of polynomial functions $[0,1] \to \mathbb{R}$ with the sup-norm: $||f|| = \sup_{0 \leq x \leq 1} |f(x)|$. Consider the functional $\phi \in V^*$ defined by $\phi(f) = f'(0)$. Show that $\phi \not\in B(V,\mathbb{R})$. [Hint: consider the polynomials $(1-x)^n$ for $n = 1, 2, \ldots$]