Ex. 8.1. Let V_1, V_2, U, W be vector spaces over a field F, and let $b: V_1 \times V_2 \to U$ be a bilinear map. Show that for each linear map $f: U \to W$ the composition $f \circ b$ is bilinear.

Ex. 8.2. Let V, W be vector spaces over a field F. If $b: V \times V \to W$ is both bilinear and linear, show that b is the zero map.

Ex. 8.3. Give an example of two vector spaces V, W over a field F and a bilinear map $b: V \times V \to W$ for which the image of b is not a subspace of W.

Ex. 8.4. Let V, W be two 2-dimensional subspaces of the standard \mathbb{R}-vector space \mathbb{R}^3. The restriction of the standard inner product $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ to $\mathbb{R}^3 \times W$ is a bilinear map $b: \mathbb{R}^3 \times W \to \mathbb{R}$.

1. What is the left kernel of b? And the right kernel?

2. Let $b': V \times W \to \mathbb{R}$ be the restriction of b to $V \times W$. Show that b' is degenerate if and only if the angle between V and W is 90°.

Ex. 8.5. Let V, W be finite-dimensional vector spaces over a field F and $b: V \times W \to F$ a degenerate bilinear form with left kernel V_0 and right kernel W_0. Show that b induces the non-degenerate bilinear form

$$b': V/V_0 \times W/W_0 \to F, \quad (v + V_0, w + W_0) \mapsto b(v, w).$$

and conclude that $\dim(V/V_0) = \dim(W/W_0)$.

Ex. 8.6. Let V be a vector space over \mathbb{R}, and let $b: V \times V \to \mathbb{R}$ be a symmetric bilinear map. Let the “quadratic form” associated to b be the map $q: V \to \mathbb{R}$ that sends $x \in V$ to $b(x, x)$. Show that b is uniquely determined by q.

Ex. 8.7. Let V be a vector space over \mathbb{R}, and let $b: V \times V \to \mathbb{R}$ be a bilinear map. Show that b can be uniquely written as a sum of a symmetric and a skew-symmetric bilinear form.