Linear algebra 2: exercises for Section 9

- **Ex. 9.7.** Let A be an orthogonal $n \times n$ matrix with entries in \mathbb{R} . Show that $\det A = \pm 1$. If A is be an orthogonal 2×2 matrix with entries in \mathbb{R} and $\det A = 1$, show that A is a rotation matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ for some $\theta \in \mathbb{R}$.
- **Ex. 9.8.** For which values of $\alpha \in \mathbb{C}$ is the matrix $\begin{pmatrix} \alpha & \frac{1}{2} \\ \frac{1}{2} & \alpha \end{pmatrix}$ unitary?
- **Ex. 9.9.** Let V be the vector space of continuous complex-valued functions defined on the interval [0,1], with the inner product $\langle f,g\rangle=\int_0^1 f(x)\overline{g(x)}\,dx$. Show that the set $\{x\mapsto e^{2\pi ikx}:k\in\mathbb{Z}\}\subset V$ is orthonormal. Is it a basis of V?
- Ex. 9.10. Show that the matrix of a normal transformation of a 2-dimensional real inner product space with respect to an orthonormal basis has one of the forms

$$\left(\begin{array}{cc} \alpha & \beta \\ -\beta & \alpha \end{array}\right) \quad \text{or} \quad \left(\begin{array}{cc} \alpha & \beta \\ \beta & \delta \end{array}\right).$$

- **Ex. 9.11.** Let V be the vector space of infinitely differentiable functions $f: \mathbb{R} \to \mathbb{C}$ satisfying f(x+2) = f(x) for all $x \in \mathbb{R}$. Consider the inner product on V given by $\langle p,q \rangle = \int_{-1}^{1} p(x) \overline{q(x)} dx$. Show that the operator $D: p \mapsto p''$ is self-adjoint.
- **Ex. 9.12.** Let n be a positive integer. Show that there exists an orthogonal antisymmetric $n \times n$ -matrix with real coefficients if and only if n is even.
- **Ex. 9.13.** Consider \mathbb{R}^n with the standard inner product, and let $V \subset \mathbb{R}^n$ be a subspace. Let A be the $n \times n$ -matrix of orthogonal projection on V. Show that A is symmetric.