Linear algebra 2: exercises for Chapter 2 (Direct sums)

You may use Theorem 3.1 (Cayley-Hamilton) for these exercises. This theorem states that for every square matrix A, we have $P_A(A) = 0$, where P_A is the characteristic polynomial of A.

Ex. 2.1. Let $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ be a rotation around the line through the origin and the point (1,1,1) by 120 degrees. Decompose \mathbb{R}^3 as a direct sum of two subspaces that are each stable under ϕ .

Ex. 2.2. Consider the vector space $V = \mathbb{R}^3$ with the linear map $\phi: V \to V$ given by the matrix

$$\left(\begin{array}{rrrr} -1 & 0 & 1 \\ -2 & -1 & 1 \\ -3 & -1 & 2 \end{array}\right)$$

Decompose \mathbb{R}^3 as a direct sum of two subspaces that are each stable under ϕ .

Ex. 2.3. Same question for

$$\left(\begin{array}{rrrr} 0 & 1 & 1 \\ 5 & -4 & -3 \\ -6 & 6 & 5 \end{array}\right)$$

Ex. 2.4. Consider the vector space $V = \mathbb{R}^4$ with the linear map $\phi: V \to V$ that permutes the standard basis vectors in a cycle of length 4. What is the characteristic polynomial of ϕ ? Decompose \mathbb{R}^4 into a direct sum of 3 subspaces that are all stable under ϕ .

Ex. 2.5. A nonzero endomorphism f of a vector space V is said to be a *projection* if $f^2 = f$. Suppose f is such a projection.

- 1. Show that the image of f is equal to the kernel of $f id_V$, i.e., the eigenspace E_1 at eigenvalue 1.
- 2. Show that V is the direct sum of the kernel E_0 of f and E_1 .
- 3. Show that $f = f_0 \oplus f_1$ where f_0 is the zero-map on E_0 and f_1 is the identity map on E_1 .

Ex. 2.6. An endomorphism f of a vector space V is said to be a *reflection* if f^2 is the identity on V. Suppose f is such a reflection. Show that V is the direct sum of two subspaces U and W for which $f = id_U \oplus (-id_W)$.