Linear algebra 2: exercises for Chapter 8 (second part)

Ex. 8.7. Let V be the 3-dimensional vector space of polynomials of degree at most 2 with coefficients in \mathbb{R} . For $f, g \in V$ define the bilinear form $\phi: V \times V \to \mathbb{R}$ by

$$\phi(f,g) = \int_{-1}^{1} x f(x)g(x)dx.$$

- 1. Is ϕ non-degenerate or degenerate?
- 2. Give a basis of V for which the matrix associated to ϕ is diagonal.
- 3. Show that V has a 2-dimensional subspace U for which $U \subset U^{\perp}$.

Ex. 8.8. Let e_1, \ldots, e_n be the standard basis of $V = \mathbb{R}^n$, and define a symmetric bilinear form ϕ on V by $\phi(e_i, e_j) = 2$ for all $i, j \in \{1, \ldots, n\}$. Give the signature of ϕ and a diagonalizing basis for ϕ .

Ex. 8.9. Suppose V is a vector space over \mathbb{R} of finite dimension n with a symmetric non-degenerate bilinear form $\phi \colon V \times V \to \mathbb{R}$, and suppose that U is a subspace of V with $U \subset U^{\perp}$. Then show that the dimension of U is at most n/2.

Ex. 8.10. For $x \in \mathbb{R}$ consider the matrix

$$A_x = \left(\begin{array}{cc} x & -1 \\ -1 & x \end{array}\right)$$

- 1. What is the signature of A_1 and A_{-1} ?
- 2. For which x is A_x positive definite?
- 3. For which x is $\begin{pmatrix} x & -1 & 1 \\ -1 & x & 1 \\ 1 & 1 & 1 \end{pmatrix}$ positive definite?

Ex. 8.11. Let V be a vector space over \mathbb{R} , let $b: V \times V \to \mathbb{R}$ be an skew-symmetric bilinear form, and let $x \in V$ be an element that is not in the left kernel of b.

1. Show that there exist $y \in V$ such that b(x,y) = 1 and a linear subspace $U \subset V$ such that $V = \langle x, y \rangle \oplus U$ is an orthogonal direct sum with respect to b.

1

REMARK. The notation $\langle x, y \rangle$ denotes the subspace spanned by x and y, and of course has nothing to do with an inner product.

HINT. Take $U = (x, y)^{\perp} = \{v \in V : b(x, v) = b(y, v) = 0\}.$

2. Conclude that if dim $V < \infty$, then then there exists a basis of V such that the matrix representing b with respect to this basis is a block diagonal matrix with blocks B_1, \ldots, B_l of the form

$$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$$

and zero blocks B_{l+1}, \ldots, B_k .