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1. Nilpotent endomorphisms

In class we have seen one of the proofs of Theorem 4.3 from the book. Here is
the same proof, but split up into parts, as well as a more elaborate example.

Lemma 1. Let V be a vector space and f : V → V an endomorphism. Suppose
m > 0 is an integer such that fm = 0. If for each j ∈ {0, 1, . . . ,m− 1} we have a
complementary subspace Xj of ker f j inside ker f j+1, then we have

V = X0 ⊕X1 ⊕X2 ⊕ . . .⊕Xm−1.

Proof. Note that we have ker fm = V and ker f0 = {0}. For all j ∈ {0, 1, . . . ,m−1},
we have ker f j+1 = ker f j ⊕Xj , so we find

V = ker fm = ker fm−1 ⊕Xm−1 = (ker fm−2 ⊕Xm−2)⊕Xm−1 =

= ker fm−2 ⊕ (Xm−2 ⊕Xm−1) = · · · = ker f0 ⊕X0 ⊕X1 ⊕ . . .⊕Xm−1 =

= X0 ⊕X1 ⊕ . . .⊕Xm−1.

�

Lemma 2. Let V be a vector space and f : V → V an endomorphism. Let j ≥ 0
be an integer. If (x1, x2, . . . , xk) is a basis of a complementary space of ker f j

inside ker f j+1, then the sequence (f(x1), f(x2), . . . , f(xk)) can be extended to a
basis (f(x1), f(x2), . . . , f(xk), xk+1, . . . , xl) of a complementary space of ker f j−1

inside ker f j.

Proof. Let X denote the subspace generated by (x1, x2, . . . , xk). Then the subspace
generated by (f(x1), f(x2), . . . , f(xk)) is f(X). For every element z ∈ X we have
z ∈ ker f j+1, so we have f(z) ∈ ker f j , and therefore f(X) ⊂ ker f j .

We claim that if any scalars λ1, . . . , λk satisfy
∑k

i=1 λif(xi) ∈ ker f j−1, then we

have λ1 = . . . = λk = 0. Indeed, set z =
∑k

i=1 λixi ∈ X. Then the assumption
of the claim states f(z) ∈ ker f j−1, so z ∈ ker f j . From z ∈ X ∩ ker f j = {0} we
conclude z = 0. Since the elements x1, . . . , xk are linearly independent, we conclude
λ1 = . . . = λk = 0.

The claim implies in particular that the elements f(x1), f(x2), . . . , f(xk) are
linearly independent, so they form a basis for f(X). The claim also implies f(X)∩
ker f j−1 = {0}, so, by Lemma 2.6 from the book, f(X) can be extended to a
complementary space X ′ of ker f j−1 inside ker f j , and the basis for f(X) can be
extended to a basis (f(x1), f(x2), . . . , f(xk), xk+1, . . . , xl) for X ′. �
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Proposition 1. Let V be a finite-dimensional vector space and f : V → V a nilpo-
tent endomorphism. Then there exist elements w1, w2, . . . , ws ∈ V and nonnegative
integers e1, e2, . . . , es such that

(1)
(
w1, f(w1), . . . , fe1(w1), w2, f(w2), . . . , fe2(w2), . . . , ws, f(ws), . . . , f

es(ws)
)

is a basis for V and fei+1(wi) = 0 for all 1 ≤ i ≤ s.

Proof. Let m be a positive integer such that fm = 0. We start by picking a ba-
sis for some complementary subspace Xm−1 of ker fm−1 inside ker fm = V . We
use Lemma 2 recursively for j = m − 1,m − 2, . . . , 2, 1, to obtain a complemen-
tary space Xj of ker f j inside ker f j+1 for each such j, together with bases sat-
isfying that if (x1, . . . , xk) is a basis for Xj , then the basis for Xj−1 starts with
(f(x1), f(x2), . . . , f(xk)).

By Lemma 1, we have V = X0⊕X1⊕X2⊕ . . .⊕Xm−1, so the union of the bases
for the Xj together form a basis for V . If we let w1, . . . , wr be the elements of this
union that are not the image of another element in the union, then we can rearrange
the elements of the union as in (1) for some integers e1, . . . , er. In fact, the integer
ei equals the index j for which wi ∈ Xj . Since we have fei(wi) ∈ X0 = ker f , we
also find fei+1(wi) = 0, which finishes the proof. �

Remark 1. Suppose we are in the setting of the proposition. If we reverse the order
of the elements in the basis in 1, then we obtain a basis B for V , with respect to
which the matrix [f ]BB is a block matrix as in Remark 4.4 of the book.

Remark 2. Note that the blocks have sizes e1 + 1, e2 + 1, . . . , er + 1 (though in
opposite order, if we are precise). To see how many blocks of each size there are,
we note the following. For each integer n ≥ 0, we set rn = dim ker fn. Furthermore,
we set sn = rn−rn−1 and tn = sn−sn+1. Note that ker f j is spanned by the union
of the first j of the elements corresponding to each block, i.e., by

fe1(w1), fe1−1(w1), . . . , fe1−j+1(w1), . . . , fer (wr), fer−1(wr), . . . , fer−j+1(wr),

except that in this sequence we have to leave out those expressions where the
exponent of f is negative. This implies that sn = dim ker fn − dim ker fn−1 is
equal to the number blocks of size at least n. (Roughly said, each block of size
at least n contributes one more element to a basis for ker fn, compared to a basis
for ker fn−1.) We conclude that the number of blocks of size exactly equal to n is
sn − sn+1 = tn.

Remark 3. Note that in terms of the proof of Proposition 1, we have

dimXj = dim ker f j+1 − dim ker f j = rj+1 − rj = sj+1.

Remark 4. In terms of the algorithm in Remark 4.8 in the book, we have Uj =
Xj ⊕Xj+1 ⊕ . . .⊕Xm−1. The elements in step (4) of that algorithm form a basis
for Xj .

Example 1. Consider the real matrix

A =


−5 10 −8 4 1
−4 8 −10 8 2
−3 6 −12 12 3
−2 4 −8 4 10
−1 2 −4 2 5


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We compute

A2 =


0 0 0 −18 36
0 0 0 −36 72
0 0 0 −54 108
0 0 0 −36 72
0 0 0 −18 36

 and A3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

so we can start the algorithm of Remark 4.8 in the book (or, equivalently, the proces
suggested by the proof of Proposition 1 above) with m = 3. The kernel kerA is
generated by

x = (−3, 0, 3, 2, 1) and x′ = (2, 1, 0, 0, 0).

The kernel kerA2 is generated by

e1 = (1, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0), e3 = (0, 0, 1, 0, 0), and y = (0, 0, 0, 2, 1).

Clearly, we have kerA3 = R5. In terms of Remark 2, we find r0 = 0 and r1 = 2
and r2 = 4 and rn = 5 for n ≥ 3; this yields s1 = 2 and s2 = 2 and s3 = 1 and
s4 = 0. Finally, we obtain t1 = 0 and t2 = 1 and t3 = 1, so we already find that
the standard nilpotent form consists of one block of size 2 and one block of size 3.

To find an appropriate basis, we start with picking a complementary space X2

of kerA2 inside kerA3 = R5. Since dim kerA3 − dim kerA2 = 3 − 2 = 1, it
suffices to pick any element of R5 that is not contained in kerA. We choose w1 =
e5 = (0, 0, 0, 0, 1), which gives Aw1 = (1, 2, 3, 10, 5) and A2w1 = 36(1, 2, 3, 2, 1)
en A3w1 = 0. This gives X2 = 〈w1〉. In the next step, we are looking for a
complementary space X1 of kerA inside kerA2 such that f(X2) ⊂ X1. In other
words, we want to extend f(X2) = 〈Aw1〉 to a complementary space of kerA inside
kerA2. In order to do this, we follow the proof of Lemma 2.6 in the book: take a
basis for kerA and for f(X2) and put the elements of these two bases as columns
in a matrix; we also take generators for kerA2 and add these as columns to the
matrix. We obtain 

−3 2 1 1 0 0 0
0 1 2 0 1 0 0
3 0 3 0 0 1 0
2 0 10 0 0 0 2
1 0 5 0 0 0 1

 .

A row echelon form for this matrix is
1 0 5 0 0 0 1
0 1 2 0 1 0 0
0 0 12 0 0 −1 3
0 0 0 1 −2 1 0
0 0 0 0 0 0 0

 ,

which has pivots in the first three columns as expected. Of the last four columns,
only the first contains a pivot, so in order to extend f(X2) to a complementary
space X1 as mentioned, it suffices to add the first generator for kerA2, so we take
w2 = (1, 0, 0, 0, 0), which gives Aw2 = −(5, 4, 3, 2, 1). The last step, namely finding
a complementary space X0 for kerA0 = {0} inside kerA which contains f(X1), is
trivial, as f(X1) is generated by A2w1 and Aw2, so dim f(X1) = 2 = dim kerA, so
we have X0 = f(X1) and we do not need to extend.
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Hence, we obtain a basis B = (A2w1, Aw1, w1, Aw2, w2) (note the order of the
elements). If we denote the standard basis for R5 by E, the basis transformation
matrix

P = [id]BE =


36 1 0 −5 1
72 2 0 −4 0
108 3 0 −3 0
72 10 0 −2 0
36 5 1 −1 0


satisfies

P−1AP =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 .

2. Jordan Normal Form

Small example never give a good idea what is going on, because either you have
very few blocks or very small blocks. So here we present a 10 × 10 matrix of
which we will find the Jordan Normal Form, together with a corresponding basis
transformation. We consider the real matrix

M =



−1 1 −1 1 −1 1 −1 1 −1 1
0 −1 3 −3 3 −3 3 −3 3 −3
0 0 2 0 1 −1 1 −1 1 −1
0 0 0 2 1 −1 1 −1 1 −1
0 0 0 0 2 0 1 −1 1 −1
0 0 0 0 0 2 1 −1 1 −1
0 0 0 0 0 0 2 0 1 −1
0 0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 2


,

which has characteristic polynomial (x + 1)2(x − 2)8. Therefore, we have to deal
with the two generalised eigenspaces

U1 = ker(M + I)2 and U2 = ker(M − 2I)8

of dimensions 2 and 8, respectively. Indeed, by Theorem 5.1 of the book, we have
R10 = U1 ⊕ U2. Let e1, . . . , e10 ∈ R10 denote the standard basis vectors.

We start with the hardest case, namely U2. By definition of U2, the restriction
of M − 2I to U2 is nilpotent, as (M − 2I)8 restricts to 0 on U2. By finding a row
echelon form for (M − 2I)n for 1 ≤ n ≤ 3, we find r1 = dim ker(M − 2I) = 4 and
r2 = dim ker(M − 2I)2 = 7 and r3 = dim ker(M − 2I)3 = 8. For n > 3 we have

8 = dim ker(M − 2I)3 ≤ dim ker(M − 2I)n ≤ dimU2 = 8,
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so we conclude ker(M − 2I)3 = U2 and rn = dim ker(M − 2I)n = 8 for n > 3. This
yields the following table for sn = rn − rn−1 and tn = sn − sn+1.

n rn sn tn
0 0
1 4 4 1
2 7 3 2
3 8 1 1
4 8 0 0
5 8 0 0

We conclude that in any Jordan Normal Form for M , there is one Jordan block for
eigenvalue 2 of size 1, there are two of size 2, and there is one of size 3.

To find a corresponding basis for U2, we consider the filtration

{0} ⊂ ker(M − 2I) ⊂ ker(M − 2I)2 ⊂ ker(M − 2I)3 = U2

and we will construct subspaces X0, X1, X2 with explicit bases C0, C1, C2, respec-
tively, such that

(1) Xj is a complementary space of ker(M − 2I)j inside ker(M − 2I)j+1;
(2) (M − 2I)(Xj) ⊂ Xj−1;
(3) if Cj = (u1, u2, . . . , uk), then Cj−1 starts with the sequence

((M − 2I)u1, (M − 2I)u2, . . . , (M − 2I)uk).

We had already brought (M − 2I)n into row echelon form before and we can use
that to find explicit bases for ker(M − 2I)n for 1 ≤ n ≤ 3. We find

ker(M − 2I) = 〈x1, x2, x3, x4〉,
ker(M − 2I)2 = 〈y1, y2, y3, y4, y5, y6, y7〉,
ker(M − 2I)3 = 〈z1, z2, z3, z4, z5, z6, z7, z8〉,

with

x1 = (0, 1, 0,−1, 0, 0, 0, 0, 0, 0),

x2 = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0),

x3 = (0, 0, 0, 0, 1, 1, 0, 0, 0, 0),

x4 = (0, 0, 0, 0, 0, 0, 1, 1, 0, 0),

y1 = (0, 1, 0, 0, 0, 0, 0, 0, 1, 0),

y2 = (0, 0, 1, 0, 0, 0, 0, 0,−1, 0),

y3 = (0, 0, 0, 1, 0, 0, 0, 0, 1, 0),

y4 = (0, 0, 0, 0, 1, 0, 0, 0,−1, 0),

y5 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 0),

y6 = (0, 0, 0, 0, 0, 0, 1, 0,−1, 0),

y7 = (0, 0, 0, 0, 0, 0, 0, 1, 1, 0),

z1 = (0, 1, 0, 0, 0, 0, 0, 0, 0,−1),

z2 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 1),

z3 = (0, 0, 0, 1, 0, 0, 0, 0, 0,−1),

z4 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 1),

z5 = (0, 0, 0, 0, 0, 1, 0, 0, 0,−1),

z6 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 1),

z7 = (0, 0, 0, 0, 0, 0, 0, 1, 0,−1),

z8 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1).

In step 1, we want a complementary subspace X2 of ker(M − 2I)2 inside ker(M −
2I)3. One way to do this is to put the basis elements y1, . . . , y7 for ker(M − 2I)2

as columns in a matrix, and add the generators z1, . . . , z8 for ker(M −2I)3 as more
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columns to the right:



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 −1 1 −1 1 −1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −1 1 −1 1 −1 1 −1 1


.

The reduced row echelon form for this matrix is



1 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


.

Of the added columns to the right, only the first has a pivot. This implies that
the first of the added generators, namely z1, generates a complementary space of
ker(M − 2I)2 inside ker(M − 2I)3. [Of course, we could have seen this without
any computation. From the last coordinate, we see that no zi is contained in
ker(M − 2I)2, as the last coordinate of all the yi is 0; since ker(M − 2I)2 has
codimension 1 inside ker(M − 2I)3 (meaning the difference of their dimensions is
1), any element in ker(M − 2I)3 that is not contained in ker(M − 2I)2 generates a
complementary space of ker(M − 2I)2 inside ker(M − 2I)3.] So, we take w1 = z1
and X2 = 〈w1〉 and C2 = (w1).

In step 2, we want to extend (M − 2I)(X2), that is, the image of X2 under
multiplication by M − 2I, to a complementary subspace X1 of ker(M − 2I) inside
ker(M − 2I)2. We follow the proof of Lemma 2.6 from the book. First, note that
(M − 2I)(X2) has basis (M − 2I)w1 = (0, 0, 1, 1, 1, 1, 1, 0,−1, 0). We put the basis
elements x1, . . . , x4 for ker(M − 2I) as columns in a matrix, we add (M − 2I)w1 as
a column to the right, and we finally add the generators y1, . . . , y7 for ker(M −2I)2
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as columns to the far right:



0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0
−1 1 0 0 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 −1 1 −1 1 −1 1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0


.

The reduced row echelon form for this matrix is



1 0 0 0 0 0 1 −1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 −1 1
0 0 1 0 0 0 0 0 0 1 −1 1
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1 −1
0 0 0 0 0 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


.

So of the last seven columns, the first and the fourth contain a pivot. This means
that if we add y1 and y4 to (M−2I)w1, then we obtain a basis for a complementary
space of ker(M −2I) inside ker(M −2I)2. Hence, we set w2 = y1 and w3 = y4, and
C1 = ((M − 2I)w1, w2, w3) and we denote the space 〈C1〉 by X1.

In step 3, we construct a complementary space of ker(M−2I)0 inside ker(M−2I).
Since we have (M − 2I)0 = I, we find ker(M − 2I)0 = {0}, so X0 = ker(M − 2I).
We already have the elements f(u) in X0 for u ∈ C1; these equal (M − 2I)2w1 =
(0, 0, 0, 0, 0, 0,−1,−1, 0, 0) and (M − 2I)w2 = (0, 0, 1, 1, 1, 1, 1, 1, 0, 0) and (M −
2I)w3 = (0, 0, 0, 0,−1,−1,−1,−1, 0, 0). We put these as columns in a matrix and
add columns for the generators x1, . . . , x4 for ker(M − 2I).



0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 −1 1 0 0
0 1 −1 0 0 1 0
0 1 −1 0 0 1 0
−1 1 −1 0 0 0 1
−1 1 −1 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.
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The reduced row echelon form for this matrix is

1 0 0 0 0 1 −1
0 1 0 0 1 0 0
0 0 1 0 1 −1 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Since only the first of the right-most four columns has a pivot, it suffices to add x1
to the elements we already had in order to get a basis for ker(M − 2I). In other
words, we set w4 = x1 and C0 = ((M − 2I)2w1, (M − 2I)w2, (M − 2I)w3, w4).
Then C0 is a basis for X0 = ker(M−2I). We now reorder the elements of the bases
C0, C1, C2 for X0, X1, X2 to get a basis

C =
(
(M − 2I)2w1, (M − 2I)w1, w1, (M − 2I)w2, w2, (M − 2I)w3, w3, w4

)
for X0 ⊕X1 ⊕X2 = U2.

We continue with U1. By definition of U1, the restriction of M + I to U1 is
nilpotent, as (M + I)2 restricts to 0 on U1. It is easy to verify that ker(M + I) is
generated by e1, while ker(M + I)2 is generated by e1 and e2. We proceed exactly
the same as for U2, but everything is so much easier in this case, that we leave it
to the reader to identify the analogues of Xj and Cj . The vector e2 generates a
complementary space of ker(M + I) inside ker(M + I)2, so we set w5 = e2. Its
image under M + I is (M + I)w5 = e1, which, as we said, generates ker(M + I).
Together, w5 and (M + I)w5 = e1 form a basis D for the generalised eigenspace
U1.

The bases C and D together yield the basis

B =
(
(B−2I)2w1, (B−2I)w1, w1, (B−2I)w2, w2, (B−2I)w3, w3, w4, (B+I)w5, w5

)
for U1 ⊕ U2 = R10. If we let E denote the standard basis for R10, then the matrix
P = [id]BE (written as P = E [id]B in Delft), has the elements of B as columns, that
is,

P =



0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 0 0 1 0 1
0 1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 −1 0 0
0 1 0 1 0 −1 1 0 0 0
0 1 0 1 0 −1 0 0 0 0
−1 1 0 1 0 −1 0 0 0 0
−1 0 0 1 0 −1 0 0 0 0
0 −1 0 0 1 0 −1 0 0 0
0 0 −1 0 0 0 0 0 0 0


.

We now already know that P−1MP is a matrix in Jordan Normal Form, with
Jordan blocks B(2, 3), B(2, 2), B(2, 2), B(2, 1) and B(−1, 2) in this order along the
diagonal (for this notation, see Theorem 5.2 from the book). Indeed, a simple but
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tedious calculation shows

2 1 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 2 1 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 2 1 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 −1




