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2 CONTENTS

1. Review of Eigenvalues, Eigenvectors and Characteristic Polynomial

We will heavily use most of what was discussed in Linear Algebra I, in particular
the following.

(1) Vector spaces

(2) Subspaces and sums of subspaces

(3) Complementary subspaces

(4) Linear maps, as well as their associated kernels and ranks

(5) Bases of vector spaces (all vector spaces have a basis by Zorn’s Lemma)
(6) Dimension

(7) The isomorphism ¢g: F™ — V associated to a basis B for a vector
space V' of dimension n over a field F'.

) Matrices, and elementary operations on them

) Matrices associated to linear maps

) Determinants

) Cramer’s rule

) Dimension formula for sums of vector spaces

) Dimension formula for linear maps

4) FEigenvalues, eigenvectors, and eigenspaces of endomorphisms
(15) Diagonalizability of endomorphisms
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We finished Linear Algebra I discussing eigenvalues and eigenvectors of endomor-
phisms and square matrices, and the question when they are diagonalizable. For
your convenience, we repeat here the most relevant definitions and results.

Let V be a finite-dimensional F-vector space, dimV =n, and let f : V' — V be
an endomorphism. Then for A € F, the A-eigenspace of f was defined to be

Ex(f)={veV: f(v)=M}=ker(f—Aidy).

The scalar A is an eigenvalue of f if E\(f) # {0}, i.e., if there is 0 # v € V such
that f(v) = Av. Such a vector v is called an eigenvector of f for the eigenvalue .

The eigenvalues are exactly the roots (in F') of the characteristic polynomial of f,

Ps(x) = det(x idy —f),
which is a monic polynomial of degree n with coefficients in F'.

The geometric multiplicity of \ as an eigenvalue of f is defined to be the dimension
of the \-eigenspace, whereas the algebraic multiplicity of A as an eigenvalue of f
is defined to be its multiplicity as a root of the characteristic polynomial.

The endomorphism f is said to be diagonalizable if there exists a basis of V
consisting of eigenvectors of f. The matrix representing f relative to this basis is
then a diagonal matrix, with the various eigenvalues appearing on the diagonal.

Since n X n matrices can be identified with endomorphisms F™ — F™, all notions
and results makes sense for square matrices, too. A matrix A € Mat(n, F) is
diagonalizable if and only if it is similar to a diagonal matrix, i.e., if there is an
invertible matrix P € Mat(n, F) such that P! AP is diagonal.

It is an important fact that the geometric multiplicity of an eigenvalue cannot
exceed its algebraic multiplicity. An endomorphism or square matrix is diagonal-
izable if and only if the sum of the geometric multiplicities of all eigenvalues equals
the dimension of the space. This in turn is equivalent to the two conditions (a)
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the characteristic polynomial is a product of linear factors, and (b) for each eigen-
value, algebraic and geometric multiplicities agree. For example, both conditions
are satisfied if Py is the product of n distinct monic linear factors.

Exercises.
2 —1 4
(1) Are the vectors | =1 |, | 1 |, and | —1 | linearly independent?
—2 1 —4
2 -1 4
(2) Are the vectors [ =1 |, | 1 |, and | —1 | linearly independent?
—2 1 -5
1 —1 1
(3) For which x € R are the vectors |z |, | 0 | and | 1 | linearly depen-
0 1 x
dent?
(4) Compute det(M) for
-3 -1 0 -2
0 -2 0 O
M= 1 0 -1 1
1 10 0
(5) Give the kernel and the image of the map R®> — R? given by = — Az
with
1 -1 1 2 1
A= 2 -1 4 3 3
—1 0 -3 -1 1
(6) For any square matrix M show that rk(M?) < rk(M).

(7) Compute the characteristic polynomial, the complex eigenvalues and the

complex eigenspaces of the matrix ( ) viewed as a matrix over C.

1 0
(8) Find the eigenvalues and eigenspaces of the matrix A = ( _E _18 )
Is A diagonalizable?

(9) Same question for A = ( _?I 1 )

(10) Show that A = < L1 ) is not diagonalizable.

0 1
: 9 9 . 31

(11) Consider the map f: R* — R? given by = — Ax where A = ( 9 0 )
Show that R? has a basis consisting of eigenvectors of f, and given the
matrix of f with respect to this basis. For any positive integer n give a
formula for the matrix representation of f™, first with repect to the basis
of eigenvectors, and then with repect to the standard basis.

(12) Suppose that M is a diagonalizable matrix. Show that M? + M is diag-
onalizable.

(13) Is every 3 x 3 matrix whose characteristic polynomial is X — X diagonal-
izable? Is every 3 x 3 matrix whose characteristic polynomial is X3 — X2
diagonalizable?

(14) Let the map f: R* — R3 be the reflection in the plane z + 2y + z = 0.
What are the eigenvalues and eigenspaces of f?
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(15) What is the characteristic polynomial of the rotation map R® — R3 which
rotates space around the line through the origin and the point (1,2, 3))
by 180 degrees? Same question if we rotate by 90 degrees?

2. Direct Sums of Subspaces

The proof of the Jordan Normal Form Theorem, which is one of our goals, uses the
idea to split the vector space V' into subspaces on which the endomorphism can
be more easily described. In order to make this precise, we introduce the notion
of direct sum of linear subspaces of V.

2.1. Definition. Suppose [ is an index set and U; C V (for i € I) are linear
subspaces of a vector space V satisfying

(1) uin| > U] ={0}

i€\{j}
for all j € I. Then we write ,.; U; for the subspace » .., U; of V', and we call
this sum the (internal) direct sum of the subspaces U;. Whenever we use this
notation, the hypothesis is implied. If I = {1,2,...,n}, then we also write
ULoU@ - -0 U,.

2.2. Lemma. Let V be a vector space, and U; C 'V (for i € I) linear sub-
spaces. Then the following statements are equivalent.

(1) Every v € V' can be written uniquely as v =" _._,; u; with u; € U; for all
i € I (and only finitely many u; # 0).

(2) Xie; Ui =V, and for all j € I, we have Uy N3, 5y Ui = {0}

(3) If we have any basis B; of U; for each i € I, then these bases B; are
pairwise disjoint, and the union |J,c; B; forms a basis of V.

(4) There exists a basis B; of U; for each i € I such that these bases B; are
pairwise disjoint, and the union |J,c; B; forms a basis of V.

i€l

By statement (2) of this lemma, if these conditions are satisfied, then V' is the
direct sum of the subspaces Uj, that is, we have V' = @, , U;.

PRrOOF. “(1) = (2)”: Since every v € V can be written as a sum of elements
of the U;, we have V =Y. U;. Now assume that v € U; N Z#j U;. This gives

ier Vi
two representations of v as v = u; = 3, u;. Since there is only one way of
writing v as a sum of u;’s, this is only possible when v = 0.

“(2) = (3)”: Since the elements of any basis are nonzero, and B; is contained in U;
for all 7, it follows from U; N>, ;4 Ui = {0} that B;N B; = () for all i # j. Let
B = J,c; Bi- Since B; generates U; and ), U; =V, we find that B generates V.
To show that B is linearly independent, consider a linear combination

S =0
i€l beB;
For any fixed j € I, we can write this as

Ujauj: Z)\j7bb:_ZZAi’bBEZUi'

beB, i#j bEB; i#£j
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By (2), this implies that u; = 0. Since B; is a basis of U}, this is only possible when
Ajp = 0 for all b € B;. Since j € I was arbitrary, this shows that all coefficients
vanish.

“(3) = (4)”: This follows by choosing any basis B; for U; (see Remark [2.3)).

“(4) = (1)”: Take a basis B; for U; for each i € I. Write v € V as a linear
combination of the basis elements in | J, B;. Since B; is a basis of U;, we may write
the part of the linear combination coming from B; as w;, which yields v = . u;
with u; € U;. To see that the u; are unique, we note that the u; can be written
as linear combinations of elements in B;; the sum v = ) u; is then a linear
combination of elements in | J, B;, which has to be the same as the original linear
combination, because | J; B; is a basis for V. It follows that indeed all the w; are
uniquely determined. O

2.3. Remark. The proof of the implication (3) = (4) implicitly assumes the
existence of a basis B; for each U;. The existence of a basis B; for U; is clear
when U; is finite-dimensional, but for infinite-dimensional vector spaces this is
more subtle. Using Zorn’s Lemma, which is equivalent to the Axiom of Choice
of Set Theory, one can prove that all vector spaces do indeed have a basis. See
Appendix D of Linear Algebra I, 2015 edition (or later). We will use this more
often.

2.4. Remark. If U; and U, are linear subspaces of the vector space V, then
statement V = U; @ U, is equivalent to U; and U, being complementary subspaces.

2.5. Lemma. Suppose V is a vector space with subspaces U and U’ such that
V=UaU'. IfUy,...,U, are subspaces of U withU = U,®---®U, and U], ..., U.
are subspaces of U with U' = U & --- & U., then we have

V=U,® --oUaU o - oU.

PRrROOF. This follows most easily from part (1) of Lemma [2.2] 0

The converse of this lemma is trivial in the sense that if we have
V=U®& --aUeU&  -aU,

then apparently the r + s subspaces Uy, ..., U,, U], ..., U satisfy the hypothesis
(1), which implies that also the r subspaces Uy, ..., U, satisfy this hypothesis, as
well as the subspaces U7, ..., U.; then also the two subspaces U = U; & --- @ U,
and U' = U] & ... & U! together satisfy the hypothesis and we have V =U & U'".

In other words, we may write
e --aU)eUe---aU)=Uia---aU.aU;&---aU,

in the sense that if all the implied conditions of the form are satisfied for one
side of the equality, then the same holds for the other side, and the (direct) sums
are then equal. In particular, we have U1 ® (Uy @ --- @ U,) =U; & --- D U,.

The following lemma states that if two subspaces intersect each other trivially,
then one can be extended to a complementary space of the other. Its proof also
suggests how we can do the extension explicitly.
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2.6. Lemma. Let U and U’ be subspaces of a finite-dimensional vector space
V' satisfying U N U" = {0}. Then there exists a subspace W C V with U C W
that is a complementary subspace of U in V.

PROOF. Let (uq,...,u,) be a basis for U and (vy,...,vs) a basis for U’. Then
Lemma we have a basis (u1,..., Uy, v1,...,v5) for U+ U = U @ U'. By the
Basis Extension Theorem of Linear Algebra 1, we may extend this to a basis

(Ui, .oy Upy V1, .oy Usy W, ..., wy) for V. We now let W be the subspace generated
by v1,...,vs, w1, ..., wy. Then (vy,...,vs,w1,...,w;) is a basis for W and clearly
W contains U’. By Lemma we conclude that U and W are complementary
spaces. O

Next, we discuss the relation between endomorphisms of V' and endomorphisms
between the U;.

2.7. Lemma and Definition. Let V' be a vector space with linear subspaces
Ui (i € I) such that V. = @,.,;U;. For each i € I, let f; : Uy — U; be an
endomorphism. Then there is a unique endomorphism f : V. — V such that
flu, = fi forallv e I.

We call f the direct sum of the f; and write f = €,; fi-

PROOF. Let v € V. Then we have v = ). u; as above, therefore the only way
to define f is by f(v) = >, fi(u;). This proves uniqueness. Since the u; in the
representation of v above are unique, f is a well-defined map, and it is clear that
f is linear, so f is an endomorphism of V. O

2.8. Remark. If in the situation of Definition 2.7 V' is finite-dimensional and
we choose a basis B of V' that is the concatenation of bases B; of the U;, then
the matrix representing f relative to B will be a block diagonal matrix, where
the diagonal blocks are the matrices representing the f; relative to the bases B; of
the U;. In this finite-dimensional case the number of indices ¢ € I for which Uj; is
nonzero is finite, and it follows that the characteristic polynomial Py equals

Py =] P
icl
In particular, we have det f = [[,., det f;, and Tr f = > ., Tr f; for the determi-
nant and the trace.

2.9. Remark. An endomorphism f: V — V is diagonalizable if and only if
V' is the direct sum of the eigenspaces of f.

2.10. Lemma. Let V' be a vector space with linear subspaces U; (i € 1) such
that V.= @, Ui. Let f: V — V be an endomorphism. Then there are endo-

morphims f;: Uy — U; for i € I such that f = @,c; [i if and only if each U; is
invariant under f (or f-invariant), i.e., f(U;) C U;.

PrOOF. If f =P, fi, then f; = flu,, hence f(U;) = flv,(U;) = fi(U;) C Uy,
Conversely, suppose that f(U;) C U;. Then we can define f; : U; — U; to be
the restriction of f to U;; it is then clear that f; is an endomorphism of U; and
that f equals @, f;, as the two coincide on all the subspaces U;, which together
generate V. U
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2.11. Example. Consider the linear map f: R® — R3 that sends (z,y, 2)
to (y,z,z). This describes rotation over 27 /3 around the line U; = L(a) with
a = (1,1,1). The line U; is point-wise fixed by f, so it is f-invariant. The
orthogonal complement U, = a' is an f-invariant plane, so we have R? = U; ® U,
and f = f1 @ fo with f; = f|v,. The vector v; = a gives a basis for the line U;.
The vectors vy = (1,—1,0) and vz = (—1,0, 1) form a basis (v, v3) for the plane
U,. Putting these two bases together, we obtain a basis B = (vy,v9,v3) for R® and
by the Remark[2.8] the associated matrix [f]2 is a block diagonal matrix. Indeed,

from f(v1) = vy and f(vy) = v3 and f(v3) = —vy — v3 we find
1 0 O
= (0 0 -1
01 —1

Recall that if V' is a vector space over a field F'and f: V' — V is an endomorphism,
then we write

fr=fofo--of.

—_—
More generally, if p= Z?:o a;x' € F|x] is a polynomial, then we define p(f) =
Z?:o a;f*. Note that for two polynomials p,q € Flz], we have (p - q)(f) =
p(f) o q(f). We now come to a relation between splittings of f as a direct
sum and polynomials that vanish on f, that is, polynomials p with p(f) = 0

(where 0 denotes the zero endomorphism). We will see later that this includes the
characteristic and the minimal polynomial of f (see Theorem and Lemma.

We call two polynomials py(x) and po(x) coprime if there are polynomials aq(z)
and as(x) such that ai(z)p;(x) + az(x)pa(x) = 1.

2.12. Lemma. Let V be a vector space and f : V — V' an endomorphism.
Let p(z) = p1(x)p2(z) be a polynomial such that p(f) = 0 and such that pi(z) and
po(x) are coprime. Let U; = ker(pi(f)), fori=1,2. ThenV = U; & U,y and the
U; are f-invariant. In particular, f = fi® fa, where f; = f|u,. Moreover, we have

PROOF. Set K; = im(p2(f)) and K, = im(p:(f)). We first show that K; C Uj
for i =1,2. Let v € K1 = im(p2(f)), so v = (p2(f))(w) for some u € V. Then
(1) (@) = () (21 (W)) = (01 (P 1)) ) = (1)) ) =0,

so K1 = im(p2(f)) C ker(pi(f)) = Ui. The statement for i = 2 follows by
Symmetry.

Now we show that U3 N U, = {0}. So let v € Uy NUs. Then (pi(f))(v) =
(p2(f))(v) = 0. Let a;(z), az(x) be such that a;(z)p;(z) + as(z)ps(x) = 1. Using

idy = 1(f) = (ar(@)p1(z) + az(2)pa()) (f) = ar(f) o pr(f) + aa(f) o p2(f)

we see that
v = (@) (@) ) + (@) (L) @) = (@())O) + (a2())(0) = 0.

Next, we show that K| + Ky = V. Using the same relation above, and the fact
that p;(f) and a;(f) commute, we find for v € V arbitrary that

o= () ((@(N)®) + ) (@) ) € m(pa(£)) +im(pa()) -
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These statements together imply that K; = U; for i = 1,2, and V = U; & Us.
Indeed, let v € U;. We can write v = vy + v9 with v; € K;. Then U; 5 v — v, =
vy € Uy, but Uy NU; = {0}, so v =v; € K.

Finally, we have to show that U; and U, are f-invariant. So let (e.g.) v € Uj.
Since f commutes with p;(f), we have

(D) (1) = () 0 ) = (Fom(£) @) = F((1(N) ) = £©) =0,

(since v € Uy = ker(pi(f))), hence f(v) € U as well. O

2.13. Example. Consider the linear map f: R3> — R3 from Example .
Because f3 = id, we find that the polynomial p = 2® — 1 vanishes on f, that is, we
have p(f) = 0. We can factor p as p = p1ps with py =2 — 1 and py = 22 + z + 1.
The polynomials p; and p, are coprime, as we have

l=—3(x+2)-p1+3 D2

it also follows from Lemma [2.15 We recover U; and U from Example 2.17] as
follows. The linear map p1(f) = f—id sends (z,y, 2) to (y —x,z —y,x — 2), so we
find ker (p1(f)) = L((1,1,1)) = Uy. The linear map po(f) = fo f + f +id sends
(z,y,2) to (x+y+z,24+y+ 2,2+ y+ 2), so we find ker (pi(f)) = Us.

2.14. Proposition. Let V' be a vector space and f : 'V — V an endomor-
phism. Let p(x) = pi(x)pa2(x) - pe(z) be a polynomial such that p(f) = 0 and
such that the factors p;(x) are coprime in pairs. Let U; = ker(pi(f)). Then
V=U®®&- - ®U and the U; are f-invariant. In particular, f = f1® - D fi,
where f; = f

U -

PRrROOF. We proceed by induction on k. The case k = 1 is trivial. So let k > 2,
and denote q(z) = pa(z) -+ - pr(x). Then I claim that p;(z) and ¢(x) are coprime.
To see this, note that by assumption, we can write, for i = 2,... k,

a;(x)p1(x) + bi(x)pi(z) = 1.

Multiplying these equations, we obtain

A(@)pr(z) + ba() - - - by()g(x) = 15

note that all the terms except by(x) - - - bx(x)q(x) that we get when expanding the
product of the left hand sides contains a factor p;(z).

We can then apply Lemma to p(z) = p1(x)q(z) and find that V = U; & U’

and f = f; @ f’ with U; = ker pl(f)), fi = flo,, and U’ = ker(q(f)), = flo.
In particular, ¢(f’) = 0. By induction, we then know that U’ = Uy & - - - & Uy, with

U, = ker(pj(f’)) and f' = fo@--- D fi, where f; = f'|y,, for j = 2,..., k. Finally,
ker(p;(f")) = ker(p;(f)) (since the latter is contained in U’) and f; = f'|lv, = fu,,
so that we obtain the desired conclusion from Lemma 2.5 O

The following little lemma about polynomials is convenient if we want to apply
Lemma 2,12
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2.15. Lemma. If p(z) is a polynomial (over F') and X\ € F such that p(\) #
0, then (x — \)™ and p(x) are coprime for all m > 1.

PrROOF. First, consider m = 1. Let

q(z) = pz)

p(y)

this is a polynomial such that g(A) = 0. Therefore, we can write q(z) = (z—\)r(z)
with some polynomial r(x). This gives us

1
—r(z)(x — \) + ]T)\)p(x) =1.

Now, taking the mth power on both sides, we obtain an equation

(_T(@)m(x — A" +a(x)p(z)=1.
|

Exercises. You may use Theorem [3.1] (Cayley-Hamilton) for these exercises.

(1) Let ¢: R3> — R? be a rotation around the line through the origin and
the point (1,1,1) by 120 degrees. Decompose R? as a direct sum of two
subspaces that are each stable under ¢.

(2) Consider the vector space V = R? with the linear map ¢: V — V given
by the matrix

-1 01
-2 -1 1
-3 -1 2

Decompose R? as a direct sum of two subspaces that are each stable
under ¢.
(3) Same question for

0o 1 1
5 —4 -3
-6 6 5

(4) Consider the vector space V = R* with the linear map ¢: V — V that
permutes the standard basis vectors in a cycle of length 4. What is the
characteristic polynomial of ¢? Decompose R* into a direct sum of 3
subspaces that are all stable under ¢.

(5) A nonzero endomorphism f of a vector space V' is said to be a projection
if f2 = f. Suppose f is such a projection.

(a) Show that the image of f is equal to the kernel of f —idy, i.e., the
eigenspace F, at eigenvalue 1.

(b) Show that V' is the direct sum of the kernel E, of f and E;.

(c¢) Show that f = fo @ f1 where fj is the zero-map on Ey and f; is the
identity map on Fj.

(6) An endomorphism f of a vector space V is said to be a reflection if f?
is the identity on V. Suppose f is such a reflection. Show that V' is the
direct sum of two subspaces U and W for which f = idy &(—idw).
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3. The Cayley-Hamilton Theorem and the Minimal Polynomial

Let A € Mat(n, F'). We know that Mat(n, F') is an F-vector space of dimension n?.
Therefore, the elements I, 4, A2, ..., A" cannot be linearly independent (because
their number exceeds the dimension). If we define p(A) in the obvious way for p
a polynomial with coefficients in F' (as we already did in the previous chapter),
then we can deduce that there is a (non-zero) polynomial p of degree at most n?
such that p(A) = 0 (0 here is the zero matrix). In fact, much more is true.

Consider a diagonal matrix D = diag(A1, Ag, ..., A,). (This notation is supposed
to mean that ), is the (j, j) entry of D; the off-diagonal entries are zero, of course.)
Its characteristic polynomial is

Pp(z)=(x=M)(x—=X) - (z — \y).

Since the diagonal entries are roots of Pp, we also have Pp(D) = 0. More generally,
consider a diagonalizable matrix A. Then there is an invertible matrix ¢) such
that D = Q1 AQ is diagonal. Since (Exercise!) p(Q™'AQ) = Q 'p(A)Q for p a
polynomial, we find

0=Pp(D)=Q 'Pp(A)Q =Q 'Ps(A)Q = P4(4)=0.
(Recall that P4 = Pp — similar matrices have the same characteristic polynomial.)

The following theorem states that this is true for all square matrices (or endomor-
phisms of finite-dimensional vector spaces).

3.1. Theorem (Cayley-Hamilton). Let A € Mat(n, F'). Then P4(A) = 0.

PROOF. Here is a simple, but wrong “proof”. By definition, P4(x) = det(xl—
A), so, plugging in A for z, we have P4(A) = det(Al—A) = det(A—A) = det(0) =
0. (Exercise: find the mistake!)

For the correct proof, we need to consider matrices whose entries are polynomials.
Since polynomials satisfy the field axioms except for the existence of inverses, we
can perform all operations that do not require divisions. This includes addition,
multiplication and determinants; in particular, we can use the adjugate matrix.

Let B = #I — A, then det(B) = P4(z). Let B be the adjugate matrix; then we still
have BB = det(B)I. The entries of B come from determinants of (n—1) x (n—1)
submatrices of B, therefore they are polynomials of degree at most n — 1. We can
then write

B = .’L'n_an,1 + .’L"n_QBn,Q —+ -+ Z'Bl + BO y
and we have the equality (of matrices with polynomial entries)
(2" B, 1 +2" 2B, o+ -+ By)(wl —A) = Py(x)] = (2" +bp_12™ -+ )l

where we have set Py(x) = 2" + b, 12" ' + - -+ by. Expanding the left hand side
and comparing coefficients of like powers of x, we find the relations

anl - [7 anQ - anlA == bnflf, ey BO - BlA == bll, —B()A - bo[ .
We multiply these from the right by A", A»™1 ... A, I, respectively, and add:
B, A" = A"

Bn_QAnil — Bn_lAn = bn_lAnil
B[)A - BlA2 == blA

- B()A == bo]

0 = Pa(A)
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3.2. Remarks.

(1) The reason why we cannot simply plug in A for z in the identity

B (zxl — A) = Ps(x)]

is that whereas x (as a scalar) commutes with the matrices occurring as
coefficients of powers of x, it is not a priori clear that A does so, too.

(2) Another idea of proof (and maybe easier to grasp) is to say that a ‘generic’
matrix is diagonalizable (if we assume F' to be algebraically closed. .. ),
hence the statement holds for ‘most’ matrices. Since it is just a bunch of
polynomial relations between the matrix entries, it then must hold for all
matrices. This can indeed be turned into a proof, but unfortunately, this
requires rather advanced tools from algebra.

(3) Of course, the statement of the theorem remains true for endomorphisms.
Let f : V — V be an endomorphism of the finite-dimensional F-vector
space V, then P¢(f) = 0 (which is the zero endomorphism in this case).
For evaluating the polynomial at f, we have to interpret f” as the n-fold
composition fo fo---o f, and f° = idy.

Our next goal is to define the minimal polynomial of a matrix or endomorphism,
as the monic polynomial of smallest degree that has the matrix or endomorphism
as a “root”. However, we need to know a few more facts about polynomials in
order to see that this definition makes sense.

3.3. Lemma (Polynomial Division). Let f and g be polynomials, with g
monic. Then there are unique polynomials q and r such that r = 0 or deg(r) <
deg(g) and such that

f=q9+r.

PROOF. We first prove existence, by induction on the degree of f. If deg(f) <
deg(g), then we take ¢ = 0 and r = f. So we now assume that m = deg(f) >
deg(g) =n, f =anx™+---+ap. Let f' = f—a,,x™ "g, then (since g = 2" +...
deg(f') < deg(f). By the induction hypothesis, there are ¢’ and r such that
deg(r) < deg(g) or r = 0 and such that f' = ¢'g+r. Then f = (¢ +apx™ ")g+r.
(This proof leads to the well-known algorithm for polynomial long division.)

~—

As to uniqueness, suppose we have f = qg +r = ¢'g + ', with r and ' both of
degree less than deg(g) or zero. Then

(=d)g=r"—r.

If ¢ # ¢, then the degree of the left hand side is at least deg(g), but the degree of
the right hand side is smaller, hence this is not possible. So ¢ = ¢/, and therefore
r =1’ too. O

Taking g = x — «, this provides a different proof for case k = 1 of Example 8.4 of
Linear Algebra I, 2015 edition (or later).
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3.4. Lemma and Definition. Let A € Mat(n, F'). There is a unique monic
polynomial My of minimal degree such that Ma(A) = 0. If p is any polynomial
satisfying p(A) = 0, then p is divisible by M4 (as a polynomial).

This polynomial My is called the minimal (or minimum) polynomial of A. Sim-
ilarly, we define the minimal polynomial M; of an endomorphism f of a finite-
dimensional vector space.

PROOF. It is clear that monic polynomials p with p(A) = 0 exist (by the
Cayley-Hamilton Theorem we can take p = P,4). So there will be such a
polynomial of minimal degree. Now assume p and p’ were two such monic polyno-
mials of (the same) minimal degree with p(A) = p’(A) = 0. Then we would have
(p—p)(A) =p(A) —p'(A) =0. If p # p/, then we can divide p — p’ by its leading
coefficient, leading to a monic polynomial ¢ of smaller degree than p and p’ with
q(A) = 0, contradicting the minimality of the degree.

Now let p be any polynomial such that p(A) = 0. By Lemma , there are
polynomials ¢ and r, deg(r) < deg(M,) or r = 0, such that p = qMy + 7.
Plugging in A, we find that

0 =p(A) = q(A)Ma(A) +1(A) = ¢(A) - 0+ r(A) = r(A).

If r # 0, then deg(r) < deg(My,), but the degree of My is the minimal possible
degree for a polynomial that vanishes on A, so we have a contradiction. Therefore
r =0 and hence p = gM 4. Il

3.5. Remark. In Introductory Algebra, you will learn that the set of polyno-
mials as discussed in the lemma forms an ideal and that the polynomial ring is a
principal ideal domain, which means that every ideal consists of the multiples of
some fixed polynomial. The proof is exactly the same as for the lemma.

By Lemma [3.4] the minimal polynomial divides the characteristic polynomial. As
a simple example, consider the identity matrix I,,. Its characteristic polynomial is
(x — 1)", whereas its minimal polynomial is  — 1. In some sense, this is typical,
as the following result shows.

3.6. Proposition. Let A € Mat(n,F) and A\ € F. If X is a root of the
characteristic polynomial of A, then it is also a root of the minimal polynomial
of A. In other words, both polynomials have the same linear factors.

PROOF. If P4(\) = 0, then A is an eigenvalue of A, so there is 0 # v € F™
such that Av = M. Setting My(z) = apa™ + - - - + ap, we find

0= Ms(A)v = ZajAjv = Zaj)\j'u = Ms(Nv.
=0 =0

(Note that the terms in this chain of equalities are vectors.) Since v # 0, this
implies M4 () = 0.

By Lemma [3.4] we know that each root of M, is a root of P4, and we have just
shown the converse. So both polynomials have the same linear factors. U
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3.7. Remark. If F is algebraically closed (i.e., every non-zero polynomial is
a product of linear factors), this shows that P, is a multiple of My, and M¥% is
a multiple of P4 when k is large enough. In fact, the latter statement is true for
general fields F' (and can be interpreted as saying that both polynomials have the
same irreducible factors). For the proof, one replaces F' by a larger field F” such
that both polynomials split into linear factors over F’. That this can always be
done is shown in Introductory Algebra.

One nice property of the minimal polynomial is that it provides another criterion
for diagonalizability.

3.8. Proposition. Let A € Mat(n, F'). Then A is diagonalizable if and only
if its minimal polynomial M4 is a product of distinct monic linear factors.

PRrROOF. First assume that A is diagonalizable. It is easy to see that similar
matrices have the same minimal polynomial (Exercise), so we can as well assume
that A is already diagonal. But for a diagonal matrix, the minimal polynomial
is just the product of factors z — A\, where A runs through the distinct diagonal
entries. (It is the monic polynomial of smallest degree that has all diagonal entries
as roots.)

Conversely, assume that Ma(z) = (x — Ay) -+ (z — Ap,) with Aq,... N\, € F
distinct. The polynomials ¢; = x — A; (with 1 <14 < m) are pairwise coprime, so
by Proposition the eigenspaces

U; = E),(A) = ker(A — N\ 1) = ker ¢;(A)

satisfy F" = Uy @ - - @ Uy,. This implies n = )", dim E},(A), which in turn (by
Corollary 11.24 of Linear Algebra I, 2015 edition) implies that A is diagonalizable.
O

3.9. Example. Consider the matrix

1
A=10
0

O = =
—_ = =

Is it diagonalizable?

Its characteristic polynomial is clearly Pa(x) = (z—1)3, so its minimal polynomial
must be (x —1)™ for some m < 3. Since A—1 # 0, m > 1 (in fact, m = 3), hence
A is not diagonalizable.

On the other hand, the matrix (for F' = R, say)

1 2 3
B=10 4 5
0 0 6

has Mp(z) = Pp(z) = (x — 1)(x — 4)(z — 6); therefore, B is diagonalizable.

Exercise: what happens for fields F' of small characteristic?

3.10. Remark. Let f: V — V be an endomorphism of a finite-dimensional
vector space V' with basis B. Then f is diagonalizable if and only if the matrix
A = [f]B is. Furthermore, the characteristic and minimal polynomial of f are
the same as those of the matrix A. Therefore, Lemma [3.4] and Propositions
and [3.8| also hold for f instead of A. (See also part (3)) of Remark [3.2])
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3.11. Corollary. Let f: V — V be a diagonalizable endomorphism of a
finite-dimensional vector space V. Let U C V be an f-invariant subspace. Then
the restriction f|y is also diagonalizable.

PROOF. By Proposition [3.8 the minimal polynomial My of f is the product
of distinct linear factors. The endomorphism M;(f|y) is the restriction to U of
M(f) = 0, so the minimal polynomial of f|; divides My by Lemma , and is
therefore also the product of distinct linear factors. Proposition then implies
that f|y is diagonalizable. O

Exercises.

(1) What is the remainder when one divides the polynomial z°+z by z%+1?
(2) Give the minimal polynomial and the characteristic polynomial of the

matrices
2 =3 3 0 -1 3
3 -4 3 |, 1 -2 3
3 =3 2 3 =3 2

(3) Suppose that a 2 x 2 matrix A has two distinct eigenvalues A and p. Show
that the image of the matrix A — AI is the eigenspace with eigenvalue p.

00 =3
(4) Is the matrix { 1 0 0 | diagonalizable over R? And over C?
01 O

(5) If f: R® — R3 is the projection on a plane through the origin, what
is the minimum polynomial of f? What is the minimum polynomial of
relection in a plane through the origin?

(6) Compute the characteristic polynomial of the matrix

1 -9 4
A= 1 -4 1
1 =7 3

Compute A3 (use Cayley-Hamilton!)

(7) Let V be the 4 dimensional vector space of polynomial functions R — R of
degree at most 3. Let T': V' — V be the map that sends a polynomial p to
its derivative T'(p) = p’. Show that 7" is a linear map. Is T’ diagonalizable?

(8) For each a € R, determine the characteristic and minimal polynomials of

l—-a « 0
As=| 2—a a—-1 «
0 0 -1
For which values of « is A, diagonalizable?
(9) Let M be a square matrix satisfying M3 = M. What can you say about
the eigenvalues of M7 Show that M is diagonalizable.

4. The Structure of Nilpotent Endomorphisms

4.1. Definition. A matrix A € Mat(n, F) is said to be nilpotent, if A™ =0
for some m > 1. Similarly, if V' is a finite-dimensional vector space and f : V — V
is an endomorphism, then f is said to be nilpotent if f™ = fo fo---0o f =0 for

—_—

m times
some m > 1.
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It follows that the minimal polynomial of A or f is of the form z™, where m is
the smallest number that has the property required in the definition.

4.2. Proposition. A nilpotent matriz or endomorphism is diagonalizable if
and only if it is zero.

PROOF. The minimal polynomial is ™. Proposition then implies that
the matrix or endomorphism is diagonalizable if and only if m = 1. But then
the minimal polynomial is x, which means that the matrix or endomorphism is
Z€ro. U

Theorem tells us more about the structure of nilpotent endomorphisms. It is
the main ingredient to proving the existence of the Jordan Normal Form. We first
state some lemmas that will be useful for the proof of Theorem [4.8]

4.3. Lemma. Let V' be a vector space and f:V — V an endomorphism.
Suppose m > 0 is an integer such that f™ = 0. If for each j € {1,2,...,m} we
have a complementary subspace X; of ker fi=1 inside ker f7, then we have

V=X10Xo® & Xpn.

PROOF. Note that we have ker f = V and ker f* = {0}. For all j €
{1,...,m}, we have ker f/ = ker f/~! & X, so we find

V=kerf"=ker f" ' ® X, = (ker f[" 2D X;n1) DX, =
=ker " 2R X1 BXp=--=ker X0 X P... DX, =
=X1PXo®D...®X,,.
]

4.4. Lemma. Let f: V — W be a linear map of vector spaces, and X C V
and Y C W subspaces such that X N f~Y(Y) = {0}. Then f restricts to an
injective map X — W, and we have f(X)NY = {0}.

PROOF. The kernel of the restriction f = flx: X — W satisfies

ker f = X Nker f ¢ X N f7Y(Y) = {0},

so f is injective. The last part of the statement follows from the fact that, more
generally, the restriction XN f~HY) — f(X)NY of f is surjective (the verification
of this fact is left as an exercise for the reader). g

4.5. Lemma. Let V be a vector space and f:V —V an endomorphism. Let
J =1 be an integer. If X is a complementary space of ker f7 inside ker fi*L then
[ restricts to an injective map X — ker f7 and we have f(X)Nker f7=1 = {0}.

PROOF. Note that for every i > 0, we have f~!(ker f*) = ker f™!. For i = j,
this implies that f restricts to a linear map f’: ker fi7*1 — ker f7. Fori = j — 1
and Y = ker f771 it implies f~}(Y) = ker f7, so we get

XNnf~HY)c XnfHYy)={o}.

Hence, the statement follows directly from Lemma [4.4] applied to f/, X, and Y.
O
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4.6. Remark. In terms of quotient spaces, Lemma 4.4] can be phrased by say-
ing that f induces an injective map V/f~}(Y) — W/Y, which follows from one of
the isomorphism theorems (analogous to those from group theory), applied to the
linear map V — W/Y with kernel f~!(Y’). Similarly, Lemma [4.5 can be phrased
by saying that f induces an injective map ker f/*!/ker f7 < ker f7/ker fi1,

4.7. Remark. Lemmas[2.6l and [4.5] together show that, under the conditions
of Lemma , we can extend f(X) to a complementary space X’ of ker f7~!
inside ker f/. Then f restricts to an injective map X <« X', and we can apply
Lemma to X’ (if j > 1). If moreover, m > 0 is an integer such that f™ = 0,
then this allows us to recursively define a sequence X,,, ..., Xs, X; of subspaces
as in Lemma with the extra property that f restricts to an injective map
X; = Xj_; for 1 < 7 < m. This is the main idea for the proof of Theorem ,
which also keeps track of bases for the subspaces.

4.8. Theorem. Let V be an F-vector space, dimV =mn, and let f : V — V
be a nilpotent endomorphism. Then V' has a basis (v1,va, ..., v,) such that f(v;)
is either zero or vjyq.

PROOF. Let m be a positive integer such that f™ = 0. In each of m steps,

numbered j = m,m — 1,...,2,1, we will construct an integer ¢; and vectors
wj1, ..., Wy, € ker f7 such that the elements
(2) (fk_j(wkl))jgkgm

1<i<ty,

form a basis for a complementary space X; of ker f/~! inside ker f/. For j = m,
we take any basis (W1, . .., Wy, ) for a complementary subspace X, of ker f™~1
inside ker f™ = V. Assume 1 < j < m and suppose that we have already
constructed integers and vectors as above in all steps m,m —1,...,5 + 1. Then
the elements
(3) (S (wh) ) j+1 <hzim
1<I<ty,

form a basis for a complementary space X j+1 of ker f7 inside ker f/*!. The map f
restricts to an injective map X;;; — ker f/ by Lemma This implies that the
images
(4) (fk_j (wkl))j+1§k§m

1<1<ty,
of the elements in form a basis for the subspace f(X;41) C ker f7 (for linear
independence, see Lemma 7.13 of Linear Algebra I, 2015 edition (or later)), which
satisfies f(X;41) Nker f7~1 = {0}, again by Lemma . By Lemma we can
extend the basis for f (Xj1+1) to a basis for a complementary subspace X
of ker f7=! inside ker f7; we denote the added basis vectors by wji, wja, ... s Wit -
Adding these elements to gives , with the new elements corresponding to
k=j.
By Lemma , we have V =X, ® Xo @ ... ® X,,, so the bases for the X; are

disjoint and their union forms a basis for V' (see Lemma . Writing ¢« = k — j,
this union consists of the elements

(5) (fi("wkz)) 1<k<m -
1<i<ty
0<i<k
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Note that for any indices 1 < k < m and 1 < [ < t;, we have wy; € ker f*, so
F(f* Y ww)) = 0. Hence, if we order the elements of (5] lexicographically by their
index triples (k,[,%), then we obtain a basis as mentioned in the theorem. ]

4.9. Remark. If (vy,...,v,) is a basis as in Theorem then the matrix
A = (a;;) representing f with respect to (v,, ..., vs,v1), has all entries zero except
ajjs1 = 1if f(vn—j) = vp1—j. Therefore A is a block diagonal matriz

Byl o]0
. 0 ?2 .10
0]10]--|By

where for each 7 there is an integer m > 1 such that the i-th block B; is the m xm
block

010 - 0
0O 01 - 0
Bm)=1: 1+ + -~
000 --- 1
000 --- 0

with all zeroes except for ones just above the diagonal. Note that we reversed
the order of the basis elements! Also note that B(m)™ = 0, and for each integer
1 < s < m, the matrix B(m)® is the m X m matrix with all zeroes, except for ones
on the diagonal that is s positions above the main diagonal.

4.10. Corollary. FEvery nilpotent matriz is similar to a matrix of the form
Just described.

PROOF. This is clear from our discussion. O

4.11. Corollary. A matriz A € Mat(n, F') is nilpotent if and only if its char-
acteristic polynomial is Py(x) = x™.

PROOF. If P4(z) = 2", then A" = 0 by the Cayley-Hamilton Theorem [3.1]
hence A is nilpotent. Conversely, if A is nilpotent, then it is similar to a matrix
of the form above, which visibly has characteristic polynomial x". O

4.12. Remark. The statement of Corollary would also follow from the
fact that Ps(z) divides some power of M4(z) = 2™, see Remark [3.7 However, we
have proved this only in the case that P4(z) splits into linear factors (which we
know is true, but only after the fact).

4.13. Example. Consider

3 4 —7
A=11 2 —3| € Mat(3,R).
2 3 =5
We find
-1 -1 2
A2=[-1 -1 2

-1 -1 2
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and A® = 0, so A is nilpotent. Let us find a basis as given in Theorem .
The first step in the process comes down to finding a complementary subspace of
ker(A%) = L((2,0,1)7,(—1,1,0) ") within ker A* = R3. We can take (1,0,0)", for
example, as the basis of a complement. This will be ws; in the notation of the proof
of Theorem . We then have Aws; = (3,1,2)" and A%ws3 = (—1,—1,-1)T, and
these three already form a basis B = (A%ws;, Awsy, ws;). With

-1 3 1
Q=I[dE=-110
-1 20

we obtain

OO =
S = O

0
QAQ = [id]5 - [falp - [i]E = [fal} = 8

The following proposition tells us how many blocks of each size to expect.

4.14. Proposition. Let f: V — V be a nilpotent endomorphism of a finite-
dimensional vector space V. Let B = (v,,...,v1) be a basis for V such that its
reverse is a basis as in Theorem . Let A = [f]2 be the associated matrix. For
every integer j > 0 we set r; = dimker f7, and for every integer j > 1 we set
sj =1;—rj_1 and t; = s; — sj.1. Then for every integer j > 1 there are exactly t;
blocks of the form B(j) of size j x j along the diagonal of A.

PROOF. The matrix A is described in Remark [£.9] Let mq,ma,...,my > 0 be
integers such that the blocks along the diagonal of A are B(my), ..., B(my). For
each integer j > 0, the matrix A7 is a block matrix with blocks B(m4)?, ..., B(my)’
along the diagonal. Therefore, the matrix A7 is in row echelon form, and for every 1,
the first min(m;, j) columns corresponding to the i-th block B(m;)? do not contain
a pivot, while the other columns do contain pivots. Hence, the kernel of A’ has
dimension

k
rj = Z min(m;, j)
i=1

and we find
k
8 =T, —Tj_1= Z (min(mi,j) — min(m;, j — 1))
i=1
As for integers a,b the value min(a,b) — min(a,b — 1) equals 0 for a < b and it
equals 1 otherwise, we conclude that s; equals the number of blocks of size at
least j. Therefore, the number of blocks of size exactly j is s; — s;4.1 = t;. 0

4.15. Remark. The t; from the proof of Theorem are the same as the
t, from the proof of Proposition [4.14] Indeed, for fixed integers 1 < k& < m and
1 <1 < tg, with ¢ as in the proof of Theorem , the k elements f'(wy) with
0<i1<kin form a basis of a subspace that corresponds to a block of size
k x k, so there are t;, such blocks. Moreover, with 7 and s, as in Proposition [.14]
the proof of Theorem shows

dim X}, = dimker f* — dimker f*' = r), — 11 = sp.
This also implies for #;, as defined in the proof of Theorem (4.8 that we have
tk = dlka — dim f(Xk—i-l) = dlIIle — dika_H = Sk — Skg41-
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While this seems to give another proof of Proposition this argument a priori
only holds for bases that are obtained as in the proof of Theorem[4.8 It is however
not hard to show that every basis as mentioned in Theorem can indeed be
obtained through the construction in the proof of Theorem [4.8] so it does yield a
second proof.

4.16. Example. In Example 4.13] we have tk A = 2 and rk A? = 1 and
A3 =0, so we get the following table.

J| 7| S|t
010
1117110
2121110
313111
4131010
51310

We conclude, as we have seen in the example above, that there is an invertible
matrix @ such that Q' AQ consists of one block B(3).

4.17. Corollary. Let A, A" € Mat(n, F') be two nilpotent matrices. Then A
and A’ are similar if and only if for each integer 1 < j < n we have dimker A7 =
dim ker A",

PROOF. For every integer j > 0, and every square matrix M, set r;(M) =
ker M7. For j > 1, also set s;(M) = r;(M) —r;_1(M) and t;(M) = s;(M) —
sj+1(M). Of course, if A and A’ are similar, then r;(A) = r;(A’) for each j.
Conversely, suppose that for each integer 1 < j < n we have r;(A) = r;(4’). By
Cayley-Hamilton, we have A" = A™ =0, so for j > n we have r;(A) = r;(A’) as
well, as both equal n. For j = 0 both equal 0, so we have r;(A) = r;(A4’) for all
J > 0. This implies that for all 7 > 1 we have s;(A4) = s;(A") and t;(A) = t;(4),
so by Proposition both A and A" are similar to a block diagonal matrix with
tj(A) = t;(A4’) blocks of the form B(j) along the diagonal for every j > 1. Any
two such matrices are similar to each other; in fact they can be obtained from
each other by a permutation of the basis. By transitivity of similarity, also A and
A’ are similar. O

4.18. Example. Consider the real matrix

-5 10 -8 4 1
-4 8 —-10 8 2
A=1-3 6 -12 12 3
-2 4 -8 4 10
-1 2 -4 2 5

and the linear map f = f4: R% — R associated to it. We compute

000 —18 36 00000
000 —36 72 00000
A’=10 0 0 —54 108 and A*=|[0 0 0 0 O,
000 —36 72 00000
000 —18 36 00000

so for m = 3 we have A™ = 0. The kernel ker A is generated by
xr=1(-3,0,3,2,1) and ' =(2,1,0,0,0).
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(We urge the reader to verify this, either by bringing A into row echelon form
by elementary row operations, or by verifying that A has rank 3, concluding
that ker A has dimension 2, and checking that x and 2’ are linearly independent
elements contained in ker A.) The kernel ker A? is generated by

€1 = (170707070)7 €2 = (07 170707 0)7 €3 = <O707 17070)7 and Y= (070707 27 1)

Clearly, we have ker A> = R®. In terms of Proposition [4.14] with r; = dimker A7,
we find 7o = 0 and ry = 2 and r, = 4 and r,, = 5 for n > 3; this yields s; = 2 and
s9 = 2 and s3 = 1 and s4, = 0. Finally, we obtain t; = 0 and t; = 1 and t3 = 1,
so we already find that the standard nilpotent form consists of one block of size 2
and one block of size 3.

To find an appropriate basis, we start with step j = m = 3 (as in the proof of
Theorem by picking a complementary space X3 of ker A% inside ker A% = R5.
Since dimker A*> — dimker A2 = 5 — 4 = 1, it suffices to pick any element of
R® that is not contained in ker A%2. We choose wsz; = e5 = (0,0,0,0,1), which
gives Awz; = (1,2,3,10,5) and A%w3 = 36(1,2,3,2,1) and A3ws = 0. We
take X3 = (ws;). In the next step (j = 2), we extend f(X3) C ker A% to a
complementary space X, of ker A inside ker A2. In order to do this, we follow the
proof of Lemma [2.6} take a basis for ker A and for f(X3) and put the elements
of these two bases as columns in a matrix; we also take generators for ker A? and
add these as columns to the matrix. We obtain

-3 211000
0O 1/2(0 100
3 030010
2 0]10({0 0 0 2
1 050 0 01

A row echelon form for this matrix is
1 0[50 0 0 1
0O 120 1 0 O
0 0120 0 -1 3 |,
0 0/0|1 =2 1 O
0O 0/L0j0O O O O

which has pivots in the first three columns as expected. Of the last four columns,
only the first contains a pivot, so in order to extend f(X3) to a complementary
space X, as mentioned, it suffices to add the first generator for ker A2, so we take
wy; = (1,0,0,0,0), which gives Awy; = —(5,4,3,2,1). The last step (j = 1),
namely finding a complementary space X; for ker A = {0} inside ker A that
contains f(X5), turns out to be trivial. Indeed, f(X5) is generated by A%ws; and
Awsy, so dim f(Xs) =2 = dimker A, so we have X; = f(X3) and we do not need
to extend.

Hence, we obtain a basis B = (A%ws1, Awsy, w31, Awar, we;) (note the order of the
elements). If we denote the standard basis for R®> by E, the basis transformation
matrix

36 1 0 =5 1
72 2 0 -4 0
P=[d%=1]108 3 0 -3 0
72 10 0 =2 0
36 5 1 —-10
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satisfies

PT'AP = [fal} =

S OO OO
SO OO
OO o~ O
OO OO
o= O OO

4.19. Example. From small examples one does not always get a good idea
of the general case, so we now do a bigger example. If the reader wishes to verify
the calculations, we recommend using a computer.

Let M be the 11 x 11 real matrix

14 15 0 g§ —40 32 -2 =72 -8 0 -20
-29 -34 -7 —-16 55 —-64 14 137 16 0 31
6 10 2 4 =18 16 -2 =33 -5 0 —-10
-3 -2 2 -1 =10 0 -2 3 0 1 -6
-6 -7 0 -4 24 -15 -1 34 4 0 12
M= 14 7T -4 6 =28 24 5 —56 —4 0 —12
-3 -4 -1 -2 9 -8 2 17 2 0 5
10 T =2 5 =26 20 2 —46 -4 0 —12
—67 —77 —-14 -38 130 —148 30 319 36 1 72
-53 =54 -2 =28 102 —-108 10 241 26 1 52
1215 2 § —42 30 -1 —-66 -8 0 —22

One checks that M* = 0, so M is nilpotent.

Moreover, one checks that M, M?, and M? have rank 7,4, and 1, respectively.
This gives the following table.

JIri|silt
00
1141411
2171310
3110 3| 2
4111111
51111010
611110

We conclude that there is an invertible matrix @) such that Q 'MQ is a block
matrix consisting of one block B(1), two blocks B(3), and one block B(4) along
its diagonal.

To find such a matrix @), we will construct a basis (vy,vg, ..., v11) asin Theorem
following the proof of that theorem. We note that M™ = 0 for m = 4, so we start
with j = m = 4. We want to pick a basis for a complementary space X, of ker M3
inside ker M* = R given that we have dim ker M? = 10, we find dim X, = 1, so
it suffices to find one vector wy; € R that is not contained in ker M3. The 3-rd,
7-th, and 10-th column of M? are the only zero columns, so the standard basis
vector e; is not contained in ker M3 for i € {3,7,10}. Because the fourth column
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of M3 contains relatively small numbers, we choose wy; = e4. This gives

0 8 4 1
0 —16 -7 -2
0 4 3 0
1 -1 0 -2
0 —4 -2 0
Wy = 0 s Mw41 = 6 s M2w41 = 0 s M3w41 = 2
0 -2 -1 0
0 D 1 1
0 —38 —15 -5
0 —28 —11 —6
0 8 4 0

These vectors correspond to a block of the form B(4). To check consistency, one
could verify that indeed the last vector is contained in the kernel of M.

We continue with j = 3. We want to pick a basis for some complementary space
X3 of ker M? inside ker M3 that contains M*~Jw,; = Muwy; (this is indeed the
only vector of the four that we already found that is contained in ker M? but not
in ker M?). We do this following the proof of Lemma . One computes that the
kernel ker M? is generated by the columns of the matrix

1 0 0O 0 0 0 O
0 1 0O 0 0 0 O
0 0 1 0 0 0 O
0 0 0o 1 0 0 O
0 0 0O 0 1 0 O
Ky = 0 0 0O 0 0 1 O
2 3 0o 0 0 0 4
4 5 -1 0 -1 0 7
-32 —-41 9 1 9 4 -61
-7 =7 1 1 1 0 —-11
-1 -1 0 0 -2 0 -1

Moreover, the kernel ker M? is generated by the columns of the matrix

1000 0 00 O 0 O
0100 0 00O O 0 O
0010 0 00 0O 0 O
o001 0 00 0 0 O
o000 1 00 0 0 O
Ks=|1000O0 O 10 0 0 O
o000 0 01 0 0 0
0000 0 OO0 1T 0 0
o001 0 00 1 2 0
0000 O OO0 O 0 1
1100 -220 -5 -120

Lemma tells us that in order to extend Mwy; to a basis of a complementary
space of ker M? inside ker M?, we take the columns of K, together with one column
Muw,;, and extend this to a basis of ker M? by adding some of the columns of K.
We do this by taking the extended matrix

(K2|MUJ41‘K3)
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and using elementary row operations to bring this into (reduced) row echelon form.
This yields

1 000O0O0O0O0O0O0-18 7 —-18 -4 24 -15 2 -7
01000O0O0O0jOj0O3 36 -12 36 &8 =50 28 —4 12
6oo01o0o0o0°o0j0j0 2 -7 4 -8 0 10 =12 0 —4
0001O0O0O0(0]0 2 3 1 3 2 -5 -2 -1 0
oo0o06o01o0o00/03 10 -2 1 4 =156 2 =2 2
0ooo0o0010(0/j03 =12 6 -12 1 15 -—-18 0 —6
6o0o0o00O01}(0/00 -16 6 -16 -2 22 17 1 -6
0000O0OO0OGO0O]1/0 2 3 0 3 2 -5 -2 -1 0
000O0O0OO0OGO0OjOI1T 4 2 1 2 4 -4 -9 -2 -1
000O0O0O0O0Ol0]0 5 2 2 2 4 -5 —-10 -2 =2
000O0O0OO0O0O[0O]0OO0 O 0 0 0 0 0 0 0

Since the first two columns of the right part of this matrix are the ones that
contain a pivot, we see that we may add the corresponding first two columns of
K3 to Mwy; to obtain a complementary space of ker M? inside ker M?3. The first
two columns of K3 are w3; = e; + e1; and wss = e5 + €11, so we find

X3 = L(Mw41, Wsi, w32)-

Note as a consistency check that indeed we have dim X3-+dim ker M? = dim ker M3,
that is, 3+ 7 = 10. For 1 <[ < 2, the vectors ws;, Mws;, M*ws; span a subspace
that corresponds to a block of the form B(3).

We proceed with j = 2. We want to pick a basis for some complementary space X,
of ker M inside ker M? that contains M*Jwy = M?wsy and M>Jws; = Mws;
and M3 Jwsy = Muwss (these are indeed the only vectors of the ten that we
found so far that are contained in ker M? but not in ker M). From dim X, =
ker M? — dimker M = 7 — 4 = 3, we find that the linearly independent vectors
M?wy, and Mws, and Mwss already span X5. This corresponds to the fact that
there are no blocks of the form B(2), as we had already seen.

Finally, for j = 1, we want to pick a basis for some complementary space X;
of ker M® = ker I;; = {0} inside ker M that contains M* 7w, = M?3w4 and
M3 Iws = M?ws, and M> 7wz = M?ws, (these are indeed the vectors among
those that we found so far that are contained in ker M but not in ker M° = {0}).
We do this by writing down an extended matrix with M3ws and M?ws; and
M?w35 as columns on the left, and four generators for ker M on the right, say

1 -2 -1 1 0 0 O
-2 4 2 2 4 0 O
0o -1 1 0o 0 1 O
-2 4 2 |-4 =2 0 O
0 2 3 0O 0 0 1
2 -6 =10 0 -2 =2 =2
0 0 0 0O 0 0 O
1 3 -5]0 -1 -1 -1
-5 11 9 4 9 1 1
-6 13 10 -3 3 1 1
0O 4 -6|]-1 -1 0 =2
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Note that here we have no columns coming from a basis for ker MY = {0}. The
associated reduced row echelon form is

10 2/0 -1 01
01 4{0 0 11
00 5[0 0 21
0001 1 0O
00 0[O0 O 0O
00 0[{0 0 0O
00 0[{0 0 0O
00 0[O0 O 0O
00 0[O0 O 0O
00 0[O0 O 0O
00 0[O0 O 0O

Since the first column on the right is the only column on the right with a pivot,
we add only the first of the four chosen generators for ker M, so

W11 =

We conclude that
2 2 2 3
(wn,’wzl,MUJsl,M w31, Waz, Mwsg, M wsa, w1, Mwyy, M wyy, M w41)

is a basis as in Theorem [4.8] Putting the eleven vectors in reverse order, we obtain
the basis B. If we let E denote the standard basis, and we set

1 4 8 0 -1 =50 -2 -6 1 1
—2 -7 160 2 -31 4 2 0 2
0 3 4 0 1 0 0 -1 —4 0 0
2 0 -1 1 2 -80 4 -9 0 —4
0 -2 -4 0 3 5 0 2 6 0 0
Q=[d%=]2 0 6 0 -10 -50 -6 2 0 0],
0 -1 -2 0 0 1 00 2 0 0
1 1 5 0 -5 =50 -3 -2 0 0
5 -15 =38 0 9 —50 11 5 0 4
—6 —11 -28 0 10 -2 0 13 —1 0 -3
0 4 8 0 —6 -7 1 —4 —10 1 —1
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then we find
01 000O0OO0OO0OO0OTG OO
001 0O0O0OO0OO0OO0OTG 0D O
0O000O1O0O0O0O0O0OTUO0O
0O000O0OO0OO0OO0OO0OTU O0OO0O0
0O 00OO0OO0OT1O0O0OTUO0OTO0OO
Q' MQ = [id5[fulEidIE = [fulZ={0 00 000100 00
0O000OO0OO0OO0OOODOTU 0O
0 00O0O0OOOODTI1O0OO®O
0 00OO0O0OOOODOT1P®O
0 00O0O0OO0OOODOT OO
0O 00O0O0OO0OOODOTU 0O

Exercises.

(1) Let A be a nilpotent n x n matrix. Show that id,, +A is invertible.

(2) Let A be a nilpotent n x n matrix. Show that A" = 0.

(3) Let N be a 9 x 9 matrix for which N3 = 0. Suppose that N? has rank 3.
Prove that N has rank 6.

(4) Let N be a 12 x 12 matrix for which N* = 0.

(a) Show that the kernel of N? contains the image of N2

(b) Show that the rank of IV is at most 9.

(c) Show that the rank of N is equal to 9 if the kernel of N? is equal to
the image of N2.

(5) Let A be a square matrix over any field. Suppose that r > 0 is an integer
for which dimker A" = dim ker A"*!. Show that for every integer s > r
we have ker A" = ker A°.

(6) For which = € R is the following matrix nilpotent?

2z —1
4 -1 -3
> 2 3
(7) For each of the matrices
4 —4 12 2 0 B8
1 -1 3 01 1
-1 1 =3 -1 1 =3

give a basis of R? for which the matrix sends each basis vector either to
0 or to the next basis vector in the basis.
(8) Do the same for the matrix

1 1.0 O
-5 -2 2 -1
-3 0 2 -1
-5 =2 2 -1

5. The Jordan Normal Form Theorem

In this section, we will formulate and prove the Jordan Normal Form Theorem,
which will tell us that any matrix whose characteristic polynomial is a product of
linear factors is similar to a matrix of a very special near-diagonal form.

Now we can feed this into Prop. [2.14
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5.1. Theorem. LetV be a finite-dimensional vector space, and let f : V — V
be an endomorphism whose characteristic polynomial splits into linear factors:

Pr(x) = (. — A)™ - (x = Ap)™,
where the \; are distinct. Then for the generalised \;-eigenspaces
Ui = ker(f — )\z 1d\/)mZ

of f we have V=U,®---@®Uy and f = fly, ®- - ® f|u,. Moreover, dimU; = m,,
and for all 1 > m; we have ker(f — \;idy)! = U;.

PROOF. Write Pf(x) =p1(z) - pr(x) with p;(x) = (x— \;)™. By the Cayley-
Hamilton Theorem [.1} we know that P;(f) = 0. By Lemma [2.15] we know that
the p;(z) are coprime in pairs. The first result then follows from Prop. [2.14l Set
fi = flu,. For the dimension of U;, we note that the characteristic polynomlal P,
of f; is a divisor of P that only has \; as eigenvalue, as f; — A;idy, is nilpotent.
By Remark 2.8 we have Py = [, Py,, so we conclude P, = (z — \;)™, which
implies dim U; = m;. Fix an index j. Note that for all i # j we have

det(Asidy, —fi) = Pr(A) = (A = )™ £0,

so fi — Ajidy,: Uy — U; is an isomorphism. If we take the direct sum over all
1 # 7, then we find that f — A;idy restricts to an automorphism of P, 4 Ui,
and therefore so does every power of it. In particular, the rank of (f — \;idy)’
is at least >, dimU; = 3 ., m; = n —my, with n = dimV. Hence, the
dimension of its kernel is at most m;. This implies that for [ > m;, the inclusion
U; C ker(f — );jidy)" is an equality. d

5.2. Theorem (Jordan Normal Form). LetV be a finite-dimensional vec-
tor space, and let f : V — V be an endomorphism whose characteristic polynomaial
splits into linear factors:

Py(x) = (2 = A)™ - (2 = )™,

where the \; are distinct. Then there is a basis of V' such that the matriz repre-
senting f with respect to that basis is a block diagonal matrix with blocks of the
form

A1 0 -~ 00
00X 1 -+ 00
00X -+ 00

BAm)=1|. . . . . .| €Mat(m,F)
000 -~ X1
000 -~ 0 X

where X\ € {\1,..., A}

ProOOF. We keep the notations of Theorem . We know that on U;, (f —
Aiid)™ = 0, so fly, = Niidy, + ¢;, where g = 0, i.e., g; is nilpotent. By
Theorem [4.8] there is a basis of U; such that g; is represented by a block diagonal
matrix B; with blocks of the form B(0,m) (such that the sum of the m’s is m;).
Therefore, f|y, is represented by B; + \ilqimy,, which is a block diagonal matrix
composed of blocks B(A;, m) (with the same m’s as before). The basis of V' that is
the concatenation of the various bases of the U; then does what we want, compare

Remark 2.8 O
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We say that a matrix is in Jordan normal form if it is a diagonal block matrix
with all blocks along the diagonal of the form B(\,m) for some A € F' and some
integer m > 0.

5.3. Remark. Let V, f, and A,..., A\ € F be as in Theorem [5.2] Let B be
a basis as is claimed to exist, and let A = [f]5 be the matrix associated to f with
respect to B. Take any element A € F. For every integer j > 0 we set 7;(\) =
dimker(f — Aidy)?, and for every integer j > 1 we set s;(\) = r;(\) — r;_1(\)
and ¢;(A) = 5;(A) — s;41(A). Then for every integer j > 1 there are exactly ¢;(\)
blocks of the form B(J, j) along the diagonal of A.

Indeed, for A not a root of the characteristic polynomial P, we get r;j(A) =
s;(A) =t;(A) =0 for all j, and no blocks of the form B(A, j) for any j. If A =\,
for some ¢, then in terms of the notation of the proof of Theorem we can apply
Proposition to the nilpotent endomorphisn g; = f|y, — Aidy,, which satisfies
gi"" = 0. Note that for every integer j > 0 the kernel ker(f — \;idy)? is contained
in ker(f — \;idy)™ = U; by Theorem [5.1l Hence this kernel equals ker g7, and we
find r;()\;) = dimker g/. Proposition then states that there are ¢;()\;) blocks
of the form B(0,7) in a diagonal block matrix for g;, and these blocks correspond
to blocks in A of the form B(\;, j).

5.4. Corollary. Let A, A’ € Mat(n, F') be two square matrices such that the
characteristic polynomial of A splits into linear factors, that is,

Pa(x) = (x = X)™ o (2 — Ap)™ .

Then A and A’ are similar if and only if for each index 1 < i < k and each integer
1 < j < m; we have dimker(A — \;I)7 = dimker(A" — \;1).

PrROOF. If A and A’ are similar, then the claimed equality of dimensions holds.
For the converse, assume that for every index 1 < ¢ < k and for each integer
1 < j < m; we have dimker(A — \;1)? = dimker(A’ — A\;J)?. Then in particular,
this holds for j = m;. Since ker(A — \;)™ is the generalised eigenspace associated
to \; for A, we find that for each ¢, the dimension of the generalised eigenspace
associated to \; is at least as large for A" as for A. Since the sum of the dimensions
of all generalised eigenspaces for A and for A" are both equal to n, we find that
equality holds for each 7, and furthermore, A’ has no other eigenvalues. It follows
that the characteristic polynomials of A and A’ are the same. From Remark
we conclude that A and A’ are both similar to a block diagonal matrices B and B’,
respectively, where B and B’ have the same blocks along the diagonal. For details,
compare to the proof of Corollary [£.17, Then B and B’ are similar, as they can
be obtained from each other by a permutation of the basis. So by transitivity of
similarity, also A and A’ are similar. U

Here is a less precise, but for many applications sufficient version of Theorem [5.2]

5.5. Corollary. Let V' be a finite-dimensional vector space, and let f :V —
V' be an endomorphism whose characteristic polynomial splits into linear factors,
as above. Then we can write f = d + n, with endomorphisms d and n of V, such
that d is diagonalizable, n is nilpotent, and d and n commute: don =nod.

Proor. We just take d to be the endomorphism corresponding to the ‘diagonal
part’ of the matrix given in Theorem and n to be that corresponding to the
‘nilpotent part’ (obtained by setting all diagonal entries equal to zero). Since the
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two parts commute within each ‘Jordan block,” the two endomorphisms commute.
O

5.6. Example. Let us compute the Jordan Normal Form and a suitable basis
for the endomorphism f : R® — R? given by the matrix

0 10
A=10 0 1
-4 0 3
We first compute the characteristic polynomial:
r —1 0
Pi(x)=10 = -1 |=2*(z-3)+4=2"-3"+4=(v—-2)>%x+1).
4 0 x—-3

We see that it splits into linear factors, which is good. We now have to find the
generalised eigenspaces. The eigenvalue —1 has algebraic multiplicity 1, so its
generalised eigenspace has dimension 1. It is therefore equal to the eigenspace

1 10
E(fy=ker | 0 1 1|=L((1,-1,1)"),
—4 0 4

so for a basis we can choose v = (1,—1,1)". The other eigenspace is

-2 1 0
Es(f)=ker | 0 -2 1| =0L((1,2,4)7).
-4 0 1

This space has only dimension 1, so f is not diagonalizable, and we have to look
at the generalised eigenspace:

4 -4 1
ker((f —2id)?) =ker [ -4 4 —1] =L((1,1,0)",(1,0,—4)7).
4 -4 1

To construct a basis for this generalised eigenspace, we follow the proof of The-
orem [4.8 applied to the nilpotent endomorphism that is f — 2id restricted to
its generalised eigenspace. We start with a basis for a complementary space of
ker(f — 2id) inside ker(f — 2id)?. Such a complementary space has dimension
dim ker(f — 2id)? — dimker(f —2id) =2 — 1 = 1, so we can take any element in
ker(f — 2id)? that is not contained in ker(f — 2id), say wo; = (1,1,0)". As basis
for this generalised eigenspace, we then obtain (way, (f — 2id)(wa;)). Reversing
the order, and adding the basis (v) for the generalised eigenspace for A = —1, we
get a basis

B = ((f - 21d)<w21)7 W21, U) = <_17 _27 _4)T7 (17 17 0)T7 (17 _17 1)T )
for R3. With

11 1
P=idg=1-21 -1
4 0 1
we obtain
21 0
(falB = [(id)E - [faZ-[id]B=P 4P =0 2 0
00 —1
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As mentioned in Example [4.19] from small examples one does not always get an
idea of the general case, so at the end of this chapter, we will do some bigger
examples.

5.7. Application. One important application of the Jordan Normal Form
Theorem is to the explicit solution of systems of linear first-order differential equa-
tions with constant coefficients. Such a system can be written

Sty = A-y(r).

where y is a vector-valued function and A is a matrix. One can then show (Exer-
cise) that there is a unique solution with y(0) = yo for any specified initial value yj,
and it is given by

y(t) = exp(tA) - yo
with the matrix exponential

[e.9] n

t
exp(tA) = —A".
n!
n=0
If A is in Jordan Normal Form, the exponental can be easily determined. In
general, A can be transformed into Jordan Normal Form, the exponential can be

evaluated for the transformed matrix, then we can transform it back — note that

exp(tP 'AP) = P lexp(tA)P.

5.8. Remark. Writing an endomorphism f: V — V as f = n + d with d
diagonalizable and n nilpotent and d o n = n o d is very useful for computing
powers of f, as for every positive integer k, we have

k - k k—i, @
g (e

=0

and if n" = 0 for some integer m, then all terms with ¢ > m vanish.

5.9. Remark. What can we do when the characteristic polynomial does not
split into linear factors (which is possible when the field F' is not algebraically
closed)? In this case, we have to use a weaker notion than that of diagonalizability.
Define the endomorphism f : V. — V to be semi-simple if every f-invariant
subspace U C V has an f-invariant complementary subspace in V. One can show
(exercise) that if the characteristic polynomial of f splits into linear factors, then
f is semi-simple if and only if it is diagonalizable. The general version of the
Jordan Normal Form Theorem then is as follows.

Let V' be a finite-dimensional vector space, f :'V — V' an endomorphism. Then
f = s+ n with endomorphisms s and n of V' such that s is semi-simple, n 1is
nilpotent, and son =no s.

Unfortunately, we do not have the means and time to prove this result here.

However, we can state the result we get over F' = R.
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5.10. Theorem (Real Jordan Normal Form). LetV be a finite-dimensional
real vector space, f : V. — V an endomorphism. Then there is a basis of V such

that the matriz representing f with respect to this basis is a block diagonal matrix
with blocks of the form B(A,m) and of the form (with > 0)

A —p 10 -+~ 0 0 0 O
g A 0 1 -~ 0 0 0 0
0 0 A —p 0 0 0 0
0 0 u A 0 0 0 0
B'\pm)=|{: =+ + + -~ 1 1 | €Mat(R,2m).

0 0 0 0 AN o—p 1

0 0 0 0 L A0

0 0 0 0 0 0 XN —u
0 0 0 0 0 0 o X

Blocks B(X\,m) occur for eigenvalues \ of f; blocks B'(\, i, m) occur if Ps(x) is
divisible by x* — 2 x + \? + p2.

PROOF. Here is a sketch that gives the main ideas. First choose any basis
B = (1,...,2,) for V, so that pp: R* — V given by (A,...,\,) = D>, Nz
is an isomorphism. Identifying V' with R™ through this isomorphism reduces the
problem to the case V' = R", which is naturally contained in C", and f: R* — R"
being given by a real n X n matrix A.

Over C, the characteristic polynomial Py = P4 will split into linear factors. Some
of them will be of the form x — A with A\ € R, the others will be of the form
x — (A + pi) with A, € R and p # 0. These latter ones occur in pairs

(x— A+ pi))(x — (N — p3)) = 2% — 2 2 + N2 + 12,

If vy,...,v, € C"is a basis of the generalised eigenspace (over C) for the eigen-
value A + i, then vy, ..., 7, is a basis of the generalised eigenspace for the eigen-
value \ — ui, where v denotes the vector obtained from v € C" by replacing each
coordinate with its complex conjugate. If we now consider

(v1 +v1),0(v1 — 1), oy (U + O, 8V, — Oa)

then these vectors are in R” and form a basis of the sum of the two generalised
eigenspaces. If (vq,...,v,,) gives rise to a Jordan block B(A+ pi, m), then we have

floi +0;) = fvg) + f(vi) = fvs) + fwi)
= (A pd)v; + vy + (A = pi)0; + V)
= Avi + i) + pi(vi — ;) + v}y + V],
Flios — 1)) = if ) — if(5) = i (w) — i T
= i(A + pi)v; + )y — (N — pi)v; — ivl_,
= Xi(v; — U;) — p(vi + 0;) + i(vj_y — v]_)),

forvi ; =0ifi=1and v, ; = v,y if i > 1, so the new basis gives rise to a block
of the form B'(\, pu,m). 0
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5.11. Theorem. LetV be a finite-dimensional vector space, f1,...,fr:V —
V' diagonalizable endomorphisms that commute in pairs. Then fi,..., fr are si-
multaneously diagonalizable, i.e., there is a basis of V' consisting of vectors that
are eigenvectors for all the f; at the same time. In particular, any linear combi-
nation of the f; is again diagonalizable.

Proor. First note that if f and g are commuting endomorphisms and v is a
A-eigenvector of f, then g(v) is again a A-eigenvector of f (or zero):

fl9(v) = g(f(v)) = g(Av) = Ag(v).
We now proceed by induction on k. For k = 1, there is nothing to prove. So assume
k > 2. We can write V = U, & - - - @ U;, where the U; are the nontrivial eigenspaces
of fr. By the observation just made, we have splittings, for j =1,...,k — 1,
=Yoo f](“ with ff) - U; — U,

J

By Corollary [3.11} the restrictions fj@: U; — U,; are diagonalizable, so by the

induction hypothesis, fl(i)7 ceey félzl are simultaneously diagonalizable on U;, for
each 7. Since U; consists of eigenvectors of fi, any basis of U; that consists of
eigenvectors for all the f; with j < k, will also consist of eigenvectors for all the
f; with j <k, that is, including j = k. To get a suitable basis of V', we take the
concatenation of the bases of the various U;. O

To finish this section, here is a uniqueness statement related to Corollary

5.12. Theorem. The diagonalizable and nilpotent parts of f in Corollary[5.5
are uniquely determined.

PROOF. Let f = d+n = d + n’, where d and n are constructed as in the
Jordan Normal Form Theorem and don=nod, and d on’ =n’od. Then
d" and n’ commute with f (d' o f =d od +d on' =d od +n'od = fod,
same for n’). Now let g be any endomorphism commuting with f, and consider
v e U; =ker((f — A;jid)™). Then

(f = A;id)™ (g(v)) = g((f = A;id)™ (v)) = g(0) =0,

so g(v) € Uj, ie., U; is g-invariant. So g = g1 @ --- @ g; splits as a direct sum
of endomorphisms of the generalised eigenspaces U; of f. Since on Uj, we have
flu, = Ajid+n|y, and g commutes with f, we find that g; commutes with n[y,
for all j, hence g commutes with n (and also with d).

Applying this to d’ and n/, we see that d and d' commute, and that n and n’
commute. We can write

d—d =n"—n;
then the right hand side is nilpotent (for this we need that n and n’ commute!).

By Theorem [5.11] the left hand side is diagonalizable, so from Proposition [£.2] we
conclude d —d' =n’ —n =0, that is, d = d and n’ = n. O

As promised, we will now give some bigger examples of matrices that we will put
in Jordan normal form.
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5.13. Example. Consider the matrix

2 3 3 3 3
0 -1 0 -1 -1
A=|0 0 -1 1 O
0o 0 0 -1 1
o o0 0 0 -1

We want an invertible matrix () and a matrix J in Jordan normal form such
that A = QJQ™!. The characteristic polynomial of A is (z — 2)(z + 1), so the
eigenvalues are 2 and —1. The dimensions of the generalised eigenspaces equal the
algebraic multiplicities, so they equal 1 and 4, respectively.

The dimension of the eigenspace associated to an eigenvalue is at least 1, so for
the eigenvalue A = 2 the associated eigenspace ker(A — 2I) is the whole gener-
alised eigenspace, as both have dimension 1. The element e; is contained in the
eigenspace, so e; generates this subspace.

For the eigenvalue A\ = —1, we follow the proof of Theorem (as A+ 1 is

nilpotent on the generalised eigenspace for A = —1). We have
333 3 3 9999 9
000 -1 -1 0000 —1
A+I=]1000 1 0|, (A+I)*=1000 0 1
000 0 1 0000 O
000 0 0 0000 O
and
27 27 27 27 27
0O 0 0 0 O
(A+I*=| 0 0 0 0 O
0O 0 0 0 O
0O 0 0 0 O

Because (A+1)3 has rank 1 we have dim ker(A+1)% = 5—1 = 4. As the generalised
eigenspace has dimension 4, the subspace U = ker(A+ I)? is the whole generalised
eigenspace. For each n = 1,2, 3, the kernel ker(A + I)" is easy to determine, since
(A+1I)" is already in row echelon form. We find

ker(A+1)=L((-1,1,0,0,0),(-1,0,1,0,0)),
ker(A+I)* = L((-1,1,0,0,0),(—1,0,1,0,0),(-1,0,0,1,0)),
ker(A+1)* = L((-1,1,0,0,0),(-1,0,1,0,0),(-1,0,0,1,0), (—1,0,0,0,1)).

For the dimension 7,(—1) = dim(A+ I)™ we have r;(—1) = 2 and r3(—1) = 3 and
r3(—1) = 4. We get s1(—1) = 2 and s3(—1) = 1 and s3(—1) = 1. We also get
t1(—1) = 1 and t5(—1) = 0 and ¢3(—1) = 1, so there are two Jordan blocks, one
of size 1 x 1 and one of size 3 x 3.

For the largest block, we choose a complementary subspace of ker(A + I)? inside
ker(A + I)3; this complementary space has dimension s3 = r3 — 79 = 1, so it
suffices to pick one vector: a vector in ker(A + I)3 \ ker(A + I)?, so for example
ws; = (—1,0,0,0,1). The other two vectors associated to the 3 x 3 block are
(A+ DNws; = (0,—1,0,1,0) and (A + I)*ws3 = (0,—1,1,0,0).

Any complementary subspace for ker(A + I) inside ker(A + I)? has dimension
Sg =19 —11 = 1 as well, so (A + I)ws; already generates such a complementary
space. A complementary subspace for ker(A + I)° = {0} inside ker(A + I) is
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equal to ker(A + I), which has dimension 2; we already have a vector, namely
(A+I)*ws3 = (0,—1,1,0,0), so in order to generate ker(A + I), it suffices to add
a vector from ker(A + I) that is not a multiple of (A + I)?ws;. For example, we
may choose wy; = (—1,1,0,0,0). This vector corresponds to the 1 x 1 blok.

The vectors ey, (A + I)%ws, (A + Iwsy, w3;, wy; form a basis B. If we put the
vectors in this order in a matrix, then we get

_ o O O
ool -

where F is the standard basis. The associated Jordan normal form is then

2 0 0 0 0
0 -1 1 0 0
J=[fae=10 0 -1 1 0
0 0 0 -1 0
0o 0 0 0 —1

Indeed, one verifies QJQ ™' = [id]2 - [fa]5 - [id]& = [f4]5 = A.

5.14. Example. We consider the real matrix

11 -1 1 -1 1 -1 1 -1 1
0 -1 3 -3 3 -3 3 -3 3 -3
0o 0 2 0 1 -1 1 -1 1 -1
0o 0 0 2 1 -1 1 -1 1 -1
v_lo o 0o 0 2 0 1 11 <
o 0 0 0 0 2 1 -1 1 —1|"
0o 0 0 0 0 0 2 0 1 -1
0o 0 0 0 0 0 0 2 1 0
o 0 0 0 0O 0 0 0 2 1
0o 0 0 0 0O 0 0 0 0 2

which has characteristic polynomial (z + 1)?(z — 2)®. Therefore, we have to deal
with the two generalised eigenspaces

Uy =ker(M+1)> and U, =ker(M — 2I)®

of dimensions 2 and 8, respectively. Indeed, by Theorem , we have R0 =
U, @ Us,. Let eq,..., e € R'Y denote the standard basis vectors.

We start with the larger case, namely U;. By definition of Us, the restriction of
fa—2r to Us is nilpotent, as f§; ,; restricts to 0 on U,. By finding a row echelon
form for (M — 2I)" for 1 < n < 3, we find r,(2) = dimker(M — 2[) = 4 and
r2(2) = dimker(M — 2I)? = 7 and r3(2) = dimker(M — 2I)3 = 8. For n > 3 we
have

8 = dimker(M — 2I)* < dimker(M — 2I)" < dim U, = 8,

so we conclude ker(M — 2I)3 = U, and r,,(2) = dimker(M — 2I)" = 8 for n > 3.
This yields the following table for s,(2) = r,(2) — r,-1(2) and ¢,(2) = s,(2) —
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Sn+1(2).

1| (@) [ $0(2) | £(2)
0| O

1] 4 4 1
2 7 3 2
3| 8 1 1
41 8 0 0
5| 8 0 0

We conclude that in any Jordan Normal Form for M, there is one Jordan block
for eigenvalue 2 of size 1, there are two of size 2, and there is one of size 3.

As mentioned before, the restriction of fy;_or to Us is nilpotent by definition of Us,.
In fact, we have (far_ar|r,)® = 0. To find a suitable basis for Us, we follow the
proof of Theorem [4.8] applied to this nilpotent endomorphism of U,. We consider
the filtration

{0} C ker(M — 2I) C ker(M — 2I)* C ker(M — 2I)% = U,

and we will choose integers ti,ta,t3 > 0 (which should turn out to be the values
t;(2) from the table above) and elements wj € ker(M — 27)7 with 1 < j < 3 and
1 <1 <t; such that for each index 1 < j < 3 the sequence

k<3

(M = 20" (wi)) ;<
1<I<ty,
is a basis for a complementary subspace X; of ker(M —2I)7~! inside ker(M —2I).

We had already brought (M — 27)™ into row echelon form before and we can use
that to find explicit bases for ker(M — 2I)™ for 1 < n < 3. We find

ker(M — 2I) = (w1, x2, T3, T4),
ker(M — 21)* = (y1, Y2, Y3, Ya, Us, Y6: Y7)
ker(M — 2I)° = (21, 2, 23, 24, 25, %6, 27, 28);
with
O, 1707070707 070707 _1)7

1 =
Y1 = (07170507 07070707170)7 ' (
Z2 = (anv 170707()’ 070707 1)a
Y2 = (0)07 17()’ 0)070707 _17())7
€Ty = (07 1707 _1707070707070)7 Z3 = <070707 170707 070707 _1)7
Ys = (070707 1707070707 170)7
7o = (0,0,1,1,0,0,0,0,0,0), 2 = (0,0,0,0,1,0,0,0,0,1),
Ys = (0707070a 1707070a _1a0>7
T3 = (070707 07 17 1707 07070)7 Z5 = (0707070707 17070707 _1)7
Ys = (07070707 07 170707 170)7
21 = (0,0,0,0,0,0,1,1,0,0), 2 = (0,0,0,0,0,0,1,0,0,1),
Yo = (0707070a 0707 17()’ _1a0)7
27 = <07070707070a 07 1707 _1)7
Yr = (07070707 07070717170)7 (
z8 =

0,0,0,0,0,0,0,0,1,1).

In the first step, corresponding to j = m in the notation of the proof of Theo-
rem , we want a complementary subspace X3 of ker(M —21)? inside the subspace
ker(M — 2I)3 = U,. One way to do this is to put the basis elements v, ..., y;
for ker(M — 2I)? as columns in a matrix, and add the generators zi,...,zg for
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ker(M — 2I)3 as more columns to the right:

O 0 oo0 0 0[]0 0O O0OOTO0OO0OO0OO0
1 0 0 0 OO 0,1 0 0O O O O OO0
O 1.0 0 0O 0O O[]0 1 O O O 0 0 O
o 0o 1.0 0 0 0[]0 0O 1T 0 0 0 0 O
o 0 o1 060 00 0 O0OT1T 00 00
o 0 0o o1 000 0 0 0 1T 0 00
o 0 oo 01 0,0 0 0 0 0 1 00
o 0 oo0O0 1;]0 0 0 0 0 o0 1 0
1 -11-11-11,0 0 0 0 0 O 0 1
o 0o 0o 0o o 00f-=11T -11-11 -11
The reduced row echelon form for this matrix is
1 0000O0OO0OO0OT1 -1 1 -1 1 -1 1
o1 o000O0O0O0O 1 O O O 0O O0 O
oo1oo0oo0oo0/0 0 1 O 0 0 0 0
Oooo1ooof0o 0o 0o 1 0 0 0 0
Ooooo0o1oofjo o 0o 0 1 0 0 0
Ooooo0oo0o1o0f0 0 0 0 0 1 0 o0
Oooo0oo0oo0oo01j0 0 0 O O o0 1 0
ooooo0o0o0f7 =117 -1 1 -1 1 -1
Ooo0oo0oo0oo0oo0oo0/0 0 0 O O 0 0 o0
Oooo0oo0oo0oo0oo0/0 0 O O O 0 0 0

Of the added columns to the right, only the first has a pivot. This implies that
the first of the added generators, namely z;, generates a complementary space of
ker(M — 2I)? inside ker(M — 2I)3. [Of course, we could have seen this without
any computation. From the last coordinate, we see that no z; is contained in
ker(M — 2I)?, as the last coordinate of all the y; is 0; since ker(M — 2I)? has
codimension 1 inside ker(M — 2I)? (meaning the difference of their dimensions
is 1), any element in ker(M — 27)3 that is not contained in ker(M — 21)? generates
a complementary space of ker(M — 21)? inside ker(M — 2I)3.] So, we take t3 = 1
and wg; = 21 and X3 = (ws).

The second step corresponds to j = 2. We want to extend (M — 21)(X3), that is,
the image of X3 under multiplication by M — 21, to a complementary subspace X,
of ker(M — 2I) inside ker(M — 2I)2. We follow the proof of Lemma First,
note that (M — 2I)(X3) has basis (M — 2[)ws; = (0,0,1,1,1,1,1,0,—1,0). We
put the basis elements z1, ..., x4 for ker(M — 2I) as columns in a matrix, we add
(M — 21 )ws; as a column to the right, and we finally add the generators y1, ..., y;
for ker(M — 21)* as columns to the far right:

0o 00000 O O O O 0 O
1 00001 0 0 0 0 0 O
0o 10010 1 0 0 0 0 O
-1100} 10 0 1 0 0 0 O
0o 01010 0 O 1 0 0 O
0o 01010 0 O O 1 0 O
0O 00110 0 O O O 1 O
0o 001{0(0 O O O O O 1
o 000{-1|1 -1 1 -1 1 -1 1
0o 00000 O O O O O O
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The reduced row echelon form for this matrix is
1

—_
o
o
o
o
I
—_
o

OO OO OO OO
DO O OO OO
o O O
[N e Nl NN Na)
SO OO O oo

[N elNoloNoNollS
SO O oo R OO

S OO DODDODO O OO
SO OO OO O
o O OO

)
o
)
)
o
o
)
)
)

So of the last seven columns, the first and the fourth contain a pivot. This means
that if we add y; and y4 to (M —21)ws;, then we obtain a basis for a complementary
space Xs of ker(M — 2I) inside ker(M — 2I)?. Hence, we set t, = 2 and wa; = ¥,
and wqy = y4 and we denote the space (M — 21)wsy, way, was) by Xo.

In the step corresponding to j = 1, we extend (M — 21)(X5) to a complementary
space X of ker(M — 21)? inside ker(M — 2I). Since we have (M — 2I)° = I,
we find ker(M — 21)° = {0}, so X; = ker(M — 2I). Note that (M — 2I)(X>) is
generated by

(M —2I)*ws = (0,0,0,0,0,0,—1,—1,0,0),

(M — 2D)ws, = (0,0,1,1,1,1,1,1,0,0),

(M — 2@ )ws, = (0,0,0,0, —1, —1,—1,—1,0,0).

We put these as columns in a matrix and add columns for the generators x1, ..., x4
for ker(M — 21).

0 0 00 0O0O
0 0 01 0O0O
0 1 00 100
01 0|-1 100
0 1 =10 010
01 =10 010
-11 -1]0 001
-11 -1]0 001
0 0 00 O0O0O
0 0 00 0O0O

The reduced row echelon form for this matrix is

@)

o

o

o

O =
|

—_

SO OO OO OO

[N elolNolololall S
[N elololoBall ™
SO o oo+~ OO

OOOOOO'

DO DD DODDODDODO
DD DODDODDODDODOoO OO

o
o
o
o

0

Since only the first of the right-most four columns has a pivot, it suffices to add x;
to the elements we already had in order to get a basis for ker(M — 27). In other
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words, we set t; = 1 and wy; = x; and let X; be the subspace generated by
( (M — 21)*ws1, (M — 21wy, (M — 21)way, wyy ) .
We now reorder the elements of the bases for X, X5, X3 to get a basis
C = (M = 21)ws1, (M — 21wy, w1, (M — 21 )wa, waa, (M — 21 )way, way, w1y

for the generalised eigenspace X; & X @ X3 = Us. Note that indeed the integers
t; coincide with the integers ¢;(2) in the table above.

We continue with the generalised eigenspace U;. By definition of Uy, the restriction
of M + I to Uy is nilpotent, as (M + I)? restricts to 0 on Uj. It is easy to verify
that ker(M + I) is generated by e;, while ker(M + I)? is generated by e; and es.
We proceed exactly the same as for U, but everything is much easier in this case.
The vector ey generates a complementary space of ker(M + I) inside ker(M + I)?,
so we set vy = ey. Its image under M + I is (M + I)vy; = ey, which, as we said,
generates ker(M + I). Together, vy, and (M + I)vg; = e; form a basis D for the
generalised eigenspace Uj.

The bases C' and D together yield the basis
B = ((M—=2I)*ws1, (M —=2I)ws1, w31, (M—21)waa, waz, (M—21)war, war, wi1, (M~+I)var, va1)

for U; @ Uy, = R19. If we let E denote the standard basis for R!?, then the matrix
P = [id]Z has the elements of B as columns, that is,

o 0o o o0 o0 00 0 10

o o 1 0 0 01 1 01

o 1 0 O o0 10 0 0O

o 1 0 0 o0 10 —-1200

s |0 1 0 -1 1 100 00

0o 1 0 -1 0 1 0 0 00

-1 1 0 -1 0 10 0 00

-10 0 -1 0 10 0 0O

0O -1 0 0 -1 01 0 0O

o 0 -1 0 0 00 0 0O
We now already know that [fi]B = [d]E[fy]E[id]E = P7'MP is a matrix
in Jordan Normal Form, with Jordan blocks B(2,3), B(2,2), B(2,2), B(2,1) and

B(—1,2) in this order along the diagonal (for this notation, see Theorem [5.2)).
Indeed, a simple but tedious calculation shows

21 0000O0O0 0O O
02100000 0 O
002000O0O0 0 O
00021000 0 O

1 00002000 0 O
pPoMP = 0000O021O0 0 O
0000O0O02¢0 0 O
0000O0OO0OO0Z2 0 O
0000O0OO0OO0O0-1 1
0000O0O0OO0OO0O O -1

Exercises.

(1) In each of the following cases indicate whether there exists a real 4 x 4-
matrix A with the given properties. Here I denotes the 4 x 4 identity
matrix.
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) A? =0 and A has rank 1;
) A? =0 and A has rank 2;
) A2 =0 and A has rank 3;
) A has rank 2, and A — I has rank 1;
)

(f) A has rank 2, and A — [ has rank 3.

(2) Let V be a finite-dimensional vector space over any field F'. Let f be an
endomorphism of V', and let A € F' be any scalar. Suppose r > 0 is an
integer satisfying rk(f — Midy)” = rk(f — Aidy)""!. Show that for all
s > r we have im(f — Aidy)" = im(f — Aidy)®.

(3) For the following matrices A, B give their Jordan normal forms, and
decide if they are similar.

200 0 2.0 0 —2
022 0 121 0
A=1119 B=1¢9 02 o2
002 2 000 2

(4) Give the Jordan normal form of the matrix

2 20 -1
0 00 1
1 5 2 =2
0 -4 0 4

(5) Give the Jordan normal form of the matrix

1 010

1110

0010

00 11

(6) Let A be the 3 x 3 matrix

1 1 2

A=1 01 3

0 0 1

Compute A0,
(7) Consider the matrix A = ( _1 451 .
(a) Give the eigenvalues and eigenspaces of A.
(b) Give a diagonal matrix D and a nilpotent matrix N for which D +
N =Aand DN = ND.
(c) Give a formula for A™ when n =1,2,3,...
(8) For the matrix

2 11
A=1011
001
give a diagonalizable matix D and a nilpotent matrix N so that A = D+ N
and ND = DN.
2 1 -1
(9) Fr A= 0 4 —2 | compute the matrix e”.

02 0
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(10) Let ¢: R® — R3 be the linear map given by ¢(x) = Ax where A is the
matrix

310
0 30
001

We proved in class that generalised eigenspaces for ¢ are ¢-invariant.
What are these spaces in this case? Give all other ¢-invariant subspaces
of R3.

(11) Compute the characteristic polynomial of the matrix

1 -2 2 -2
1 -1 2 0
A=19 o 1 2
0 0 -1 1

Does A have a Jordan normal form as 4 x 4 matrix over R? What is the
Jordan normal form of A as a 4 x 4 matrix over C?

(12) Suppose that for a 20x 20 matrix A the rank of A* fori = 0,1,...9is given
by the sequence 20,15,11,7,5,3,1,0,0,0. What sizes are the Jordan-
blocks in the Jordan normal form of A? Can you prove the formula you
use for all matrices whose characteristic polynomial is a product of linear
polynomials?

6. The Dual Vector Space
6.1. Definition. Let V' be an F-vector space. A linear form or linear func-
tional on V is a linear map ¢ : V — F.
The dual vector space of V' is V* = Hom(V, F), the vector space of all linear forms

on V.

Recall how the vector space structure on V* = Hom(V, F') is defined: for ¢, ¢ € V*
and A\, u € F', we have, forv € V|

(AD + pah)(v) = Ap(v) + pab(v) .

6.2. Example. Consider the standard example V' = F™. Then the coordinate
maps
P (X1, .., X)) Ty

are linear forms on V.

The following result is important.

6.3. Proposition and Definition. LetV be a finite-dimensional vector space

with basis (v, ...,v,). Then V* has a unique basis (vy,...,v}) such that
1 ifi=j
U’L (U]) {O fol %‘7

This basis (v, ...,v}) of V*is called the dual basis of (vy, ..., v,) or the basis dual
to (vi,...,vp).
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PROOF. Since linear maps are uniquely determined by their images on a basis,
there certainly exist unique linear forms v} € V* with v}(v;) = d;;. We have to
show that they form a basis of V*. First, it is easy to see that they are linearly
independent, by applying a linear combination to the basis vectors v;:

0= ()\17); + e+ )\nU;)(Uj) = )\151]‘ + -+ >\n5n] = )\j .
It remains to show that the v} generate V*. So let ¢ € V*. Then

¢ = d(v)v] + -+ + d(vn)vy,
since both sides take the same values on the basis vy, ..., v,. Ul

It is important to keep in mind that the dual basis vectors depend on all of
v1,...,V, — the notation v} is not intended to imply that v} depends only on v;!

Note that for ¢ € V* we have

¢ = Z ¢(’Uj>v; 5
j=1
and for v € V', we have

v = Z v (v)v;
i=1
(write v = Aoy + -+ - + Ay, then v (v) = ;).

6.4. Example. Consider V = F" with the canonical basis F = (eq,...,€e,).
Then the dual basis is P = (py, ..., p,) consisting of the coordinate maps from in

Example [6.2]
6.5. Corollary. IfV is finite-dimensional, then dimV* = dim V.

Proor. Clear from Prop. (6.3 U

6.6. Remark. The statement in Corollary is actually an equivalence, if
we define dimension to be the cardinality of a basis. If V' has infinite dimension,
then the dimension of V* is “even more infinite”. This is related to the following
fact. Let B be a basis of V. Then the power set of B, i.e., the set of all subsets
of B, has larger cardinality than B. To each subset S of B, we can associate an
element ¢g € V* such that ¥g(b) = 1 for b € S and ¢5(b) = 0 for b € B\ S.
Now there are certainly linear relations between the g, but one can show that
no subset of {15 : S C B} whose cardinality is that of B can generate all the 1)g.
Therefore any basis of V* must be of strictly larger cardinality than B.

Note that again, we are implicitly assuming that every vector space has a basis
(cf. Remark . Also, we are using the fact that for any basis B = (v;);er of V
and any collection C' = (w;);e; of elements in a vector space W, there is a linear
map ¢: V — W that sends v; to w; for each ¢ € I. Indeed, this follows from the
fact that the map ¢p: F') — V that sends (\;)ies to Y, \iv; is an isomorphism,
so the map ¢: V — W is oo o p5'. See Exercises 3.1.9, 4.4.7 of Linear Algebra I,
2018 edition, also to recall that (I denotes the vector space of all functions from
I — F that are zero for all but finitely many elements of .

6.7. Example. If VV = L(sin, cos) (a linear subspace of the real vector space
of real-valued functions on R), then the basis dual to sin,cos is given by the
functionals f — f(7/2), f — f(0).
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6.8. Theorem. Let V' be a vector space and V** = (V*)* its bidual. Then the
map oy V. — V** that sends v € V' to the linear map oy (v): V¥ — F given by
V*3 ¢ — ¢(v) is an injective homomorphism; moreover, cvy is an isomorphism
when V' is finite-dimensional.

PROOF. We sometimes denote the evaluation map ay(v): V* — F by ev,,
though this notation may also be used for any other evaluation map (cf. Ex-
ample [6.10). Then ay(v) is a linear form on V* by the definition of the linear
structure on V* Also, ay is itself linear:

ay(Av + XNv') (@) = p(Av + Nv') = Ad(v) + No(v)
= Aay (v)(¢) + Nay (v')(¢) = (Aay (v) + Nay (V) (¢).
In order to prove that ay is injective, it suffices to show that its kernel is trivial.
So let 0 # v € V. Using Zorn’s Lemma from Set Theory (cf. Remark and
see Appendix E of Linear Algebra I, 2018 edition, or later),we can choose a basis
of V' containing v. Then there is a linear form ¢ on V such that ¢(v) = 1 (and

¢(w) = 0 on all the other basis elements, say). But this means ay (v)(¢) = 1, so
ay(v) # 0 and v & ker ay.

Finally, if V is finite-dimensional, then by Corollary 6.5 we have dim V** =
dim V* = dimV, so ay must be surjective as well (use dimim(ay) = dimV —
dim ker(ay ) = dim V**.) O

6.9. Corollary. LetV be a finite-dimensional vector space, and let (¢1, . .., dn)
be a basis of V*. Then there is a unique basis (vi,...,v,) of V with ¢;(v;) = 0;;.

PROOF. By Prop.[6.3] there is a unique dual basis (¢}, ..., ¢}) of V** = (V*)*.
Since avy is an isomorphism, there are unique vy, . .., v, in V such that ay (v;) = o5
They form a basis of V', and

Pi(v;) = evy,(9i) = av(v;)(¢:i) = ¢5(di) = dij -

In other words, (¢1, ..., ¢,) is the basis of V* dual to (vy,...,v,).

6.10. Example. Let V be the vector space of polynomials of degree less
than n; then dim V' = n. For any a € F', the evaluation map

eve:Vop—pla)eF
is a linear form on V. Now pick ay, ..., a, € F distinct. Then ev,,,...,ev,, € V*
are linearly independent, hence form a basis. (This comes from the fact that the
_____ i<j(04j—042') # 0.) What
is the basis of V' dual to that? What we need are polynomials pq, ..., p, of degree
less than n such that p;(a;) = d;;. So pi(z) has to be a multiple of [[,_;(z — ;).
We then obtain
T —
TORD | et
g J

these are exactly the Lagrange interpolation polynomials.

We then find that the unique polynomial of degree less than n that takes the value
B; on «;, for all 7, is given by

pe) =3 Bmla) =[]

=1 i#
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So far, we know how to ‘dualize’ vector spaces (and bases). Now we will see how
we can also ‘dualize’ linear maps.

6.11. Definition. Let V' and W be F-vector spaces, f : V — W a linear
map. Then the transpose or dual linear map of f is defined as

flaWs— Ve fT() =do f.
A diagram clarifies perhaps what is happening here.
v-Ll.w-toF
The composition 1 o f is a linear map from V to F', and is therefore an element

of V* It is easy to see that fT is again linear: for 11,1, € W* and A\, s € F, we
have

ST+ Athe) = (At +A0t2) o f = Aithro f+Xowao f = A f T (1) + Ao f T (1ha) .

Also note that for linear maps f1, fo : V' — W and scalars A\, Ay, we have
Mfi4dafo) T = Mf] +Xafy

and for linear maps fi : Vi — Vo, fo: Vo — Vs, we obtain (fyo f1)T = fl o f) —
note the reversal.

Another simple observation is that idy, = idy-.

6.12. Proposition. Let f : V — W be an isomorphism. Then f' : W* — V*

is also an isomorphism, and (f7)™t = (f~1)7.

ProOF. We have f o f~! =idy and f~'o f =idy. This implies that
(fHTofT =idy- and fTo(f )" =idy- .
The claim follows. U

We denote the standard scalar product (dot product) on F™ by (_, ). While
working with general vector spaces, it is often advisable to avoid choosing a basis,
as there usually is no natural choice. However, the vector space F™ comes with
a standard basis E = (e, ea,...,€e,), and its dual (F™)* with the associated dual
basis P = (p1,...,pn) of coordinate maps (see Example [6.2). We denote the
associated map pp: F™ — (F™)* by ,; it sends ¢; to the linear form p; = (e;, ),
which sends x € F" to (e;, ). We conclude that, in general, ¢, sends a € F™ to
the linear form (a,_). Indeed, ¢, and the map F"™ — (F™)* given by a — (a,_)
coincide on a basis, so they are the same.

6.13. Lemma. Let V' be a finite-dimensional F'-vector space with basis B of
dimension n, and let B* be the corresponding dual basis of the dual space V*. Let
pp: F" =V and pp«: F™" — V* be the usual linear maps sending the i-th standard
basis vector to the i-th vector in B and B*, respectively. Then the composition
ppoppe: F* — (F™)* is ¢,.

Proor. It suffices to check that the two maps are the same on the standard
basis vectors e; € F™. Write B = (vy,...,v,) and B* = (v}, ..., v}). Then for each
index 1 <4 < n, we have pp-(e;) = v}, and therefore (o} 0 pp-)(e;) = pp(v)) =
v} o pp. For each index 1 < j < n we have (v] o pp)(e;) = vi(v;) = d;; = pi(e;),
which implies that v} o w5 = p; = pn(e;). The statement follows. O

The reason for calling ' the “transpose” of f becomes clear through the following
result.
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6.14. Lemma. Let m,n be nonnegative integers, and A € Mat(m x n, F') a
matrix. Let fa: F™" — F™ and fu7: F™ — F™ be the linear maps associated to
A and its transpose A", respectively. Then we have fum = @, o fi o o, and the
diagram

I

(Fry S (1

«me T%

Fm Fm

fAT

commutes.

PROOF. Both statements are equivalent to the equality ¢, o fat = fi © ©m,
which we now verify. For each a € F™ and x € F", we have, if we identify them
with an m x 1 and an n x 1 matrix, respectively,

(o £41) (@) () = (pu(AT@) (@) = (ATa,2) = (ATa)Ta = o Au,
and

((fa e pm)(@) (@) = (f2({Loa) (@) = ((a,_) © fa) () = (a, Av) = a Auz.
These are equal for all z € F", so we conclude (¢, o fa7)(a) = (f4i © pm)(a) for
all a € F™, which implies ¢, o far = f1 © ©pm. Il

The following proposition is a generalisation of the previous lemma.

6.15. Proposition. Let V and W be finite-dimensional vector spaces, with
bases B = (vq,...,v,) and C = (w1, ..., wy,), respectively. Let B* = (vf,...,v})
and C* = (wi,...,w}) be the corresponding dual bases of V* and W*, respectively.
Let f:V — W be a linear map, represented by the matrix A with respect to the

given bases of V. and W. Then the matrixz representing f' with respect to the dual

bases is AT, that is
[F15 = ([f1e) "

ProOF. We have the following two commutative diagrams

R
v ow wr Ly
B A PR
" ——s Fm J A——
fa far

with A = [f]8 and A’ = [fT]§.. The dual of the first diagram can be combined
with the second to obtain the following commutative diagram

i

(Fmy e (P

%%T TwE

fT
Pm W* V* Pn
pc* T T‘PB*
Fm "
far

where the two curved compositions are ¢, and ¢, by Lemma We conclude
from Lemma [6.14] that fa = @ 1o f1 0 @m = far,50 A= AT, O
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Il e

f(’l)j) = Z Ai;W; .
=1

We then have

(T () (07) = (w; o )(0y) = w] (f(ey)) = wi (D angwn) = ai
k=1
Since we always have, for ¢ € V*, that ¢ =37 | ¢(v;)v}, this implies that
Flwp) =" agv;.
j=1

Therefore the columns of the matrix representing f' with respect to the dual
bases are exactly the rows of A. O

Note that for every invertible matrix P we have (P~1)T = (P7)~1; we will denote
this matrix by P~'.

6.16. Corollary. Let V be a finite-dimensional vector space, and let B =
(v1,...,0,) and C = (wy, ..., wy,) be two bases of V. Let B* = (v},...,v}) and
C* = (wi,...,w) be the corresponding dual bases. Then we have

fidv-12 = (dv]) "

PRO(T)F. Using id{, = idy-, we find from Proposition that [idy+]G. =
([idv]g) . The statement now follows from the fact that the matrices [idy+]|%-
and [idy+«]B. are each other’s inverses. U

This corollary is reflected in the matrices we use to change bases. If f: V — V
is an endomorphism and we set A = [f]5 and A’ = [f]S, then for the matrix
P = [idy]Z we have A’ = PAP~!. The matrices AT = [f"]5. and A'T = [fT]%
are then related by A" = (PAP™ )T = P~TATPT,

As is to be expected, we have a compatibility between f'T and the canonical
map ay .

6.17. Proposition. Let V and W be vector spaces, f : V — W a linear map.
Then the following diagram commutes.

avj jaw
fTT

\Vai W **

PROOF. We have to show that fT T oay = awy o f. Solet v € V and ¢ € W*.
Then

F  av (@) (@) = (av(v) o f1)(¥) = av(v)(f T ()
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6.18. Proposition. Let V be a vector space. Then we have oy, o ary« = idy-.

If V is finite-dimensional, then af, = a;l.

ProoF. Let ¢ € V*. Then for all v € V we have
04; (QV*(¢))(U) = (OéV*(¢) o Oév)(v) = ay-(¢) (Oév(v))

so ay (av«(¢)) = ¢, and ay; 0 ay+ = idy-.

I
—~
Q

<
&>
~—
&
I
<
—~~
=

Hence, ay -« is injective. If dimV < oo, then dim V* = dim V' < oo, and ay+ is an
isomorphism; the relation we have shown then implies that oy, = oz‘_/l. O

6.19. Corollary. Let V and W be finite-dimensional vector spaces. Then
Hom(V,W) > f = f' € Hom(W*, V*)

s an isomorphism.

PROOF. By the observations made in Definition [6.11], the map is linear. Note
that by Propositions and [6.18) we have (ay; )" = (ay},) ™! = app-. This allows
us to conclude from Proposition that the map

Hom(W*, V*) 3 g+ ay og' oay € Hom(V, W),
is the inverse of the given map. Indeed,
agtofToay=f

and
1T T_ T, TT ~INT _ 1 TT _
(ayog ocay) =ayog 'o(ay) =ap.09 oawr=g.
U

The following lemma states that every linear form on a subspace U of a vector
space V can be extended to a linear form on V. Note that if j: U — V is
an inclusion map, then j': V* — U* is the restriction map that sends ¢ € V*

to ¢lu.

6.20. Lemma. LetV be a vector space and U C V' a subspace. Let j: U — V
denote the inclusion map. Then j': V* — U* is surjective.

PROOF. Let U’ C V be a complementary space of U (using Zorn’s Lemma if
V' is infinite-dimensional), and 7: V' — U the projection onto U along U’. That
is, for v = u + v with v € U and v’ € U’, we have m(v) = u. Then we have
moj=idy,s0j o' = (m0j) =idy~, which implies that jT is surjective. [

6.21. Proposition. Let f: U — V and g: V — W be two linear maps of
vector spaces.

(1) If we have im f C ker g, then we have img'" C ker f'.
(2) If we have ker g C im f, then we have ker fT Cimg'.
(3) If we have im f = ker g, then we have img' = ker f.

PROOF. (1) Suppose im f C ker g. Then the composition go f is the zero
map. Hence so is the dual of this composition, which is the composition
fTog" of the duals. This implies img' C ker f .
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(2) Write g as the composition g = jog with g: V — imgand j: img — W
the inclusion map. Then we have kerg = kerg. From Lemma [6.20] we
find that j' is surjective, so from g" = G’ o jT we obtain img = im g.
Hence it suffices to prove the statement with g instead of g, so without
loss of generality, we may and will assume g is surjective.

Suppose ker g C im f. Take any ¢ € ker f, so f'(p) = 0, that is,
for all u € U we have ¢(f(u)) = 0. For each w € W, thereis av € V
with g(v) = w, since g is surjective; for v,v" € V with g(v) = g(v') = w,
we have v — 0" € kerg C im f, so there is a u € U with f(u) = v — 1/,
and therefore p(v) = (v —v") + (V') = (f(u)) + p(v") = (v'). Hence,
there is a well-defined map 1: W — F with ¢(g(v)) = ¢(v) for allv € V.
To verify that 1 is linear, note that if w = g(v) and w’ = g(v’), then we
have w 4+ w' = g(v + '), so

Y(w+w') =p(v+1) =) + o) = d(w) +P);

The fact that ¢ respects scalar multiplication follows similarly. We con-
clude that ¢» € W* and o = ¢g" () €img', so ker fT Cimg".
(3) This follows from the previous statements.

6.22. Definition. A sequence

Vo Ly fy Ly

of composable linear maps is called ezxact if for all indices 1 < i < n we have
im fz = ker fi-l—l'

Proposition states that if U — V' — W is an exact sequence, then the induced
sequence W* — V* — U* is exact as well. Note that a linear map f: V — W is
injective if and only if the sequence 0 — V Low s exact, while f is surjective if

and only if the sequence V' LW = 0 s exact.

6.23. Corollary. Let f: V — W be a linear map of vector spaces. If f is
injective, then f' is surjective. If f is surjective, then f' is injective.

Proor. If f is injective, then the sequence 0 — V Ly W is exact. Then by

Proposition [6.21 the sequence W* g V* — 0 is exact, so f is surjective. As an
alternative proof, we could have also written f as the composition f = jo f of the
isomorphism f: V — im f induced by f, and the inclusion j: im f — W; then by
Proposition and Lemma , the map fT = f7 047 is the composition of a
surjection and an isomorphism, and thus surjective.

If f is surjective, then the sequence V' Jy W = 0 is exact. Then by Proposi-

-
tion [6.21| the sequence 0 — W* NS VR exact, so f ' is injective. Il

6.24. Definition. Let A € Mat(m X n, F') be a matrix. A kernel matriz of A
is a matrix whose columns span the kernel of A.

If B is a kernel matrix of A, then we have im f5 = ker f4. By Proposition [6.21]
this implies im f] = ker f§ C (F™)*. Applying ¢, !, we obtain the equality
im f4v = ker fgr by Lemma This shows that AT is a kernel matrix of B'.
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6.25. Proposition. Let f: V — W be a linear map of finite-dimensional
vector spaces. Then we have

dimim f = dimim f'
and

dim V — dimker f = dim W — dimker f .

PROOF. The map f is the composition of the surjection f: V — im f induced
by f and the inclusion j: im f — W. By Corollary the dual map f' is
the composition of the surjective map j': W* — (im f)* and the injective map

fT: (im f)* = V*. We conclude im fT = im fT and hence
dimim f7 = dimim 7 = dim(im f)* = dimim f,
which proves the first equality. We also conclude ker f" = kerj ", so we find
dimker f7 = dimkerj ' = dim W* — dim(im f)*
=dim W — dimim f = dim W — (dim V' — dimker f),

which proves the second equality. Il

6.26. Remark. The equality of dimensions dimim(f") = dimim(f) is, by
Prop. [6.15] equivalent to the statement “row rank equals column rank” for matri-
ces.

Note that [BR2] claims (in Theorem 7.8) that we also have dim ker(f ") = dim ker(f).
However, this is false unless dim V' = dim W!

Next, we study how subspaces relate to dualization.

6.27. Definition. Let V be a vector space and S C V' a subset. Then
S°={peV":¢(v)=0foralvesS}CV"
is called the annihilator of S.

S° is a linear subspace of V*, since we can write

S° = ﬂ ker (ay (v)) .

veES

Trivial examples are {0y }° = V* and V° = {0y~ }.

6.28. Remark. As we have seen before, if U is a subspace of a vector space V,
and j: U — V is the inclusion map, then j': V* — U* is the restriction map,
which sends each linear form ¢ € V* to its restriction ¢|;; we have

U®=kerj'.
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6.29. Theorem. Let V be a finite-dimensional vector space, U C V a linear
subspace. Then we have

dimU +dimU° =dimV  and ay(U)=U".

PROOF. As in Remark the dual of the inclusion j: U < V is a surjective
map V* — U*, of which the kernel is U°. Hence, we have dimU° + dimU* =
dim V*, even if V' were not finite-dimensional. Because V is finite-dimensional, we
have dim V' = dim V* and dim U = dim U™, so the first equality follows. Applying
it to U°, we obtain dim U = dim U*°.

For the second equality, note that U° consists of all the linear forms on V' that
vanish on U. Hence, for every u € U, the evaluation map ev,: V* — F sending
v € V* to p(u) sends all of U° to 0. This implies that the element ay (u) =
ev, € V** is contained in U, so we have ay (U) C U®°, even if V were not finite-
dimensional. Because V' is finite-dimensional, we have dimay (U) = dimU =
dim U*°, so the inclusion ay (U) C U°° is an equality. O

The theorem implies that we have U°° = U if we identify V and V** via ay .

6.30. Theorem. Let f: V — W be a linear map of vector spaces. Then we
have

(ker(f))” =im(f") and (im(f))" =ker(f").

PROOF. Let j: ker f — V be the inclusion map. Apply Proposition to
the exact sequence

ker f LV 4w

to get the exact sequence
fr i’
W* — V* =— (ker f)*,

which implies im fT = kerj " = (ker f)°, which proves the first equality. For the
second equality, let 7: im f — W denote the inclusion map, and write f as the
composition f =io f with f: V — im f induced by f. Then fT = f' 0i', and
since f is injective, we obtain ker fT = keriT = (im f)°. O

6.31. Interpretation in Terms of Matrices. Let us consider the vector
spaces V = F"™ and W = F" and a linear map f : V — W. Then f is represented
by a matrix A, and the image of f is the column space of A, i.e., the subspace
of F™ spanned by the columns of A. We identify V* = (F™)* and W* = (F™)*
with F™ and F™ via the dual bases consisting of the coordinate maps (see the
text above Lemma [6.13). Then for x € W*, we have z € (im(f))° if and only if
2"y = (z,y) = 0 for all columns y of A, which is the case if and only if 27 A = 0.
This is equivalent to A"x = 0, which says that x € ker(f") — remember that A"
represents f' : W* — V*.
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Exercises.

(1) Define ¢;: R™ — R by ¢;(x1,...,2,) = x1+x0+---Fa; fori =1,2,...n.
Show that (¢1,...,¢,) is a basis of (R™)*, and compute its dual basis of
R™.

(2) Let V' be an n-dimensional vector space, let vy,...,v, € V and let
1,0, € V*. Show that det((¢i(v;))i;) is non-zero if and only if
(v1,...,v,) is a basis of V and (¢1, ..., ¢,) is a basis of V*.

(3) Let V' be the 3-dimensional vector space of polynomial functions R — R
of degree at most 2. In each of the following cases, we define ¢; € V* for
i =0,1,2. In each case, indicate whether (¢q, ¢1, ¢2) is a basis of V*, and
if so, give the dual basis of V.

(a) ¢i(f) = f(i)

(b) ¢i(f) = fD(0), i.e., the ith derivative of f evaluated at 0.
(c) ¢:(f) = fO(1)

(@) &) = I, Fa)da

(4) For each positive integer n show that there are constants ay, as, ..., a, so
that

j Fla)etd = Z £ i)

for all polynomial functions f: R — R of degree less than n.

(5) Suppose V is a finite dimensional vector space and W is a subspace. Let
f: V. — V be a linear map so that f(w) = w for w € W. Show that
fE(p) — o € We for all p € V*.

Conversely, if you assume that f7(p) — ¢ € W° for all ¢ € V*, can
you show that f(w) = w for w € W?

(6) * Let V be a finite-dimensional vector space and let U C V and W C V*

be subspaces. We identify V' and V** via ay (so W° C V). Show that

dim(U°NW) +dimU = dim(U N W?°) +dim W .

(7) Let ¢1,...,0, € (R")*. Prove that the solution set C' of the linear in-
equalities ¢q1(z) >0, ..., ¢,(z) > 0 has the following properties:
(a) o, €C = a+peC.

(b) aeC,teRsy = tacC.
(c) If ¢1,..., ¢, form a basis of (R™)*, then

C:{tlal—{—...—i-tn&nZtiERzo,ViE{l,...,n}},

where aq, ..., q, is the basis of R™ dual to ¢4, ..., ¢,.

7. Norms on Real Vector Spaces

The following has some relevance for Analysis.

7.1. Definition. Let V be a real vector space. A normonV isamapV — R,
usually written x — ||z, such that
(i) [|z|| > 0 for all z € V, and ||z|| = 0 if and only if = 0;
(ii) [|Az|| = |A|||z] for all A e R, z € V;
(iii) ||z +y|| < ||z]| + ||y|| for all z,y € V (triangle inequality).
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7.2. Examples. If V = R", then we have the following standard examples of
norms.

(1) The maximum norm:

|(z1,. ., 20)||lo = max{|xy|,. .., |za|}-

(2) The euclidean norm (see Section [J below):

(3) The sum norm (or l-norm):

[Gers sl = faa] + -+ ]

7.3. Remark. A norm on a real vector space V induces a metric: we set

d(z,y) = ||z =yl

then the axioms of a metric (positivity, symmetry, triangle inequality) follow from
the properties of a norm.

Recall that the usual Euclidean topology on R" is induced by the Euclidean metric
given by d(z,y) = ||l — y||2 for all z,y € R". With respect to this topology, we
have the following result.

7.4. Lemma. Every norm on R" is continuous (as a map from R™ to R).

Proor. Note that the maximum norm on R" is bounded from above by the

Euclidean norm:
max{|z;|:j € {1,...,n}} <yJal+ - +a2.

Let [|- || be a norm, and set C' = »7_, [le;||, where ey, ..., e, is the canonical basis
of R". Then for z = (x1,...,z,) € R" we have

[zl = I(21, - s za)ll = llzrer + - - + znea|] < llzren]] + -+ + ||lzneal

= lzallleal] 4 - - - + [znlllen]] < max{lz], ... Jznl} - C < lzfl2- C.
From the triangle inequality, we then get
Nzl = 1lyll] < llz =yl < C -l —yllz-

So for any € > 0, if ||z — y[l2 < &/C, then |||lz]| — [|y[|| <e. O

7.5. Definition. Let V' be a real vector space, x — ||z||; and = — ||z|]2 two
norms on V' (any norms, not necessarily those of Example [7.2]). The two norms
are said to be equivalent, if there are C', Cy > 0 such that

Cl||l’||1 S ||I||2 S CQ“IHl for all x eV.
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7.6. Theorem. On a finite-dimensional real vector space, all norms are equiv-
alent.

Proor. Without loss of generality, we can assume that our space is R", and
we can assume that one of the norms is the euclidean norm || - ||3 defined above.
Let S C R™ be the unit sphere, i.e., S = {z € R" : ||z||» = 1}. We know from
Analysis that S is compact (it is closed as the zero set of the continuous function
r+— 22 + -+ 22 — 1 and bounded). Let || - || be another norm on R". Then
z — ||z is continuous by Lemma [7.4] hence it attains a maximum C5 and a
minimum C; on S. Then Cy > Cy > 0 (since 0 ¢ S). Now let 0 # = € V, and
let e = ||lz||5'2; then |le]|s = 1, so e € S. This implies that C; < |le]| < Cy, and
therefore

Cillzlls < [lllz2 - llell < Cafll2 -

From ||z|z - [le]| = ||||z|l2¢|| = ||z]| we conclude Ci|z[s < ||z]| < Collz|2. So every
norm is equivalent to || - ||2, which implies the claim, since equivalence of norms is
an equivalence relation. O

7.7. Examples. If V is infinite-dimensional, then the statement of the theo-
rem is no longer true. As a simple example, consider the space of finite sequences
(@n)n>0 (such that a,, = 0 for n sufficiently large). Then we can define norms || - [|1,

| “ll2, ||l @s in Examples[7.2] but they are pairwise inequivalent now — consider
the sequences s, = (1,...,1,0,0,...) with n ones, then |[s,|l1 = n, [|sall2 = V7

and ||s,l/e = 1.

Here is a perhaps more natural example. Let V' be the vector space C([0,1]) of
real-valued continuous functions on the unit interval. We can define norms

1f1lx Z/If(x)ldﬂf, 1fll2 = /f(ﬂf)2 d,  |[flleo = max{|f(z) : z € [0,1]}

in a similar way as in Examples and again they are pairwise inequivalent.
Taking f(x) = z™, we have

1 1
= ) = ) oo — L.
= Il = o )

Exercises.

Let V and W be normed vector spaces over R. For a linear map f: V — W set

IfIF="sup [[f(2)]-

zeV, |le|=1

(1) Consider V' = R™ with the standard inner product and the norm || - ||2.
Suppose that f: V — V is a diagonalizable map whose eigenspaces are
orthogonal (i.e., V has an orthogonal basis consisting of eigenvectors of
f). Show that || f|| as defined above is equal to the largest absolute value
of an eigenvalue of f.

(2) (a) Show that B(V,W) = {f € Hom(V,W): |/ f|| < oo} is a subspace

of Hom(V, W), and that || - || is a norm on B(V, W).

(b) Show that B(V, W) = Hom(V, W) if V is finite-dimensional.

(c) Taking V' = W above, we obtain a norm on B(V,V). Show that
1fogll < WA llgll for all f,g € B(V, V).
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(3) Consider the rotation map f: R* — R? which rotates the plane by 45
degrees. For any norm on R? the previous exercise defines a norm || f||.
Show that || f|| = 1 when we take the standard euclidean norm || - ||z on
R2. What is || f|| when we take the maximum norm || - ||o, on R??

(4) Consider the vector space V' of polynomial functions [0, 1] — R with the
sup-norm: || f|| = supy<,<; |f(x)]. Consider the functional ¢ € V* defined
by ¢(f) = f/(0). Show that ¢ ¢ B(V,R). [Hint: consider the polynomials
(1—z)"forn=1,2,...]

(5) What is the sine of the matrix ( 70T Z )?

8. Bilinear Forms

We have already seen multilinear maps when we were discussing the determinant
in Linear Algebra I. Let us remind ourselves of the definition in the special case
when we have two arguments.

8.1. Definition. Let V;, V5 and W be F-vector spaces. A map ¢ : Vi x V5 —
W is bilinear if it is linear in both arguments, i.e.

VAN € Fio,o' € Viyy e Vo o(Ax + N y) = Xop(z,y) + No(2',y) and
VAN € Fr e Visyy € Vo gz, Ay + Ny') = Ap(a,y) + No(, ).
When W = F'is the field of scalars, ¢ is called a bilinear form.

ItV =V, =V and W = F, then ¢ is a bilinear form on V. It is symmetric if
d(x,y) = o(y, ) for all x,y € V, and alternating if ¢(x,z) =0 for all x € V. The
latter property implies that ¢ is skew-symmetric, i.e. ¢(z,y) = —¢(y,x) for all
x,y € V. To see this, consider

0=0o(r+y,x+y)=dz,2) +o(x,y) + oy, x) + ¢y, y) = d(2,y) + ¢y, 7).
The converse holds if char(F) # 2, since (taking z = y)

0=¢(z,z) + d(x,x) =2¢(x, x).

We denote by Bil(V, W) the set of all bilinear forms V' x W — F, and by Bil(V)
the set of all bilinear forms on V. These sets are F-vector spaces in the usual way,
by defining addition and scalar multiplication point-wise.

8.2. Examples. The standard ‘dot product’ on R" is a symmetric bilinear
form on R™.

The map that sends ((§),(§)) € R? x R? to |§ §| = ad — bc is an alternating
bilinear form on R2.

The map (A, B) — Tr(A" B) is a symmetric bilinear form on Mat(m x n, F).

If K:[0,1]> — R is continuous, then the following defines a bilinear form on the
space of continuous real-valued functions on [0, 1]:

(/. 9) — / / K (e, ) f(x)g(y) dz dy

Evaluation defines a bilinear form on V' x V*: (v, ¢) — ¢(v).
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8.3. Definition. A bilinear form ¢ : V x W — F induces linear maps
oV —W* v (w > ¢(v,w)) and ¢p: W — V™ w— (v > ¢(v,w)) .

The subspace ker(¢y) C V is called the left kernel of ¢; it is the set of all v € V
such that ¢(v,w) = 0 for all w € W. Similarly, the subspace ker(¢r) C W is
called the right kernel of ¢. The bilinear form ¢ is said to be nondegenerate if ¢y,
and ¢r are isomorphisms.

8.4. Remark. If ¢ : V x W — F'is a nondegenerate bilinear form, then V'
and W have the same finite dimension (Exercise, cf. Remark [6.6]).

8.5. Lemma. Let ¢ : V. x W — F be a bilinear form with V- or W finite-
dimensional. Then ¢ is nondegenerate if and only if both its left and right kernel
are trivial.

PROOF. First, by the definition of bilinear forms, the maps w — ¢(v,w) (for
any fixed v € V) and v — ¢(v,w) (for any fixed w € W) are linear, so ¢, and ¢g
are well-defined as maps into W* and V™ respectively. Then using the definition
of bilinearity again, we see that ¢ and ¢g are themselves linear maps.

To prove the last statement, first observe that the left and right kernels are cer-
tainly trivial when ¢ and ¢r are isomorphisms. For the converse statement,
first suppose that W is finite-dimensional. Assume that the left and right kernels
are trivial. Then ¢, is injective, and since W is finite-dimensional, we obtain
dimV < dimW* = dim W, so V is finite-dimensional as well. From ¢g being
injective, we similarly get dim W < dimV, so dimV = dim W and ¢, and ¢ are
isomorphisms. The case that V is finite-dimensional works analogously. U

8.6. Example. For the ‘evaluation pairing’ ev: V x V* — F we find that
the map evy: V — V*is ay, and evg: V* — V* is the identity. So this bilinar
form ev is nondegenerate if and only if ay is an isomorphism, which is the case if
and only if V is finite-dimensional (see Remark [6.6]).

8.7. Example. The standard scalar (dot) product ¢ on F" given by ¢ (v, w) =
(v,w) is a nondegenerate symmetric bilinear form. In fact, here ¢ equals ¢, as
defined in the paragraph above Lemma m it sends the standard basis vector e;
to the j-th coordinate map in (F™)*, so it maps a basis to a basis and is therefore
an isomorphism.

8.8. Remarks.

(1) The bilinear form ¢ : V x V' — F' is symmetric if and only if ¢ = ¢;.

(2) Suppose V and W have the same finite dimension. If ¢: V x W — F
is a bilinear form, then ¢ is nondegenerate if and only if its left kernel is
trivial (if and only if its right kernel is trivial).
Indeed, in this case, dimW* = dimV, so if ¢ is injective, it is also
surjective, hence an isomorphism. But then the identity ¢r = ¢] o aw
(which we leave as an exercise for the reader) is an isomorphism as well.
If ¢ is injective, then we use the identity ¢7 = ¢}, o ay instead.

In fact, we can say a little bit more.
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8.9. Proposition. Let V and W be F-vector spaces. There is an isomor-
phism
Bvw : BI(V, W) — Hom(V,W*), ¢+ ¢r

with inverse given by

f= ((0,w) = (f(0)(w)).

PROOF. We leave the (by now standard) proof that the given maps are linear
as an exercise. It remains to check that they are inverses of each other. Call the
second map yyw. So let ¢ : V. x W — F be a bilinear form. Then vy (¢r)
sends (v,w) to (¢r(v))(w) = ¢(v,w), so yyw o Pyw is the identity. Conversely,
let f € Hom(V, W*), and set ¢ = yyw(f). Then for v € V, the linear form ¢, (v)
sends w to (¢ (v))(w) = ¢(v,w) = (f(v))(w), so ¢r(v) = f(v) for allv € V| hence
¢, = f. This shows that By o yyw is also the identity map. O

If V=W, we write Sy : Bil(V) — Hom(V, V*) for this isomorphism.

8.10. Example. Let V now be finite-dimensional. We see that a nondegener-
ate bilinear form ¢ on V' allows us to identify V' with V* via the isomorphism ¢y .
Conversely, if we fix a basis B = (vy,...,v,), we also obtain an isomorphism
vV — V* by sending v; to vj, where B* = (vf,...,v;) is the dual basis of V™.
What is the bilinear form ¢: V x V' — F' corresponding to this map? We have,
for v=">""_| Njuj, w= Y70, pv;,

B, w) = (1(v)) (w) = (L(é Aos)) (i v )
= (Z Ao (Z o) = Z M (00 = 3 Aiedye = Zw

7,k=1

This is just the standard dot product if we identify V' with F™ using the given
basis; it is a symmetric bilinear form on V.

Alternatively, we note that ¢« = 1 0 @p, so we obtain the following commutative
diagram by Lemma

V

L V*
<PBT SV Lsﬁg

Hence, indeed, if we identify V' with F" through ¢p (and likewise V* with (#)*
through ), then ¢: V' — V* corresponds to the map ¢, : F™ — (F™)*, which
sends a € F™ to the linear form (_,a). As we have seen in Example [8.7] this map
corresponds to the bilinear form that is the usual scalar (dot) product.

8.11. Proposition. Let V.W be a F-vector spaces, and let ¢: V X W — F
be a nondegenerate bilinear form. Then for every linear form ¢ € W* there is a
unique v € V' such that for every w € W we have ¥(w) = ¢(v, w).

PrOOF. The condition that for every w € W we have ¢¥(w) = ¢(v,w) is
equivalent with the equality ¢ = ¢(v, -), which means that ) = ¢ (v). The claim
now follows from the fact that ¢ : V — W* is an isomorphism. U
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8.12. Example. Let V be the real vector space of polynomials of degree at
most 2. Then

p:VxV =R, (pq)r— /p(a:)q(x) dx

is a bilinear form on V. It is nondegenerate since for p # 0, we have ¢(p,p) > 0.
Evaluation at zero p — p(0) defines a linear form on V, which by Proposition m
must be representable in the form p(0) = ¢(q,p) for some ¢ € V. To find ¢, we
have to solve a linear system:

P(ag + arx + agx?, by + biw + box?)
= agbo + 3(aoby + arbo) + (aghs + aiby + asby) + L(aibs + asbs) + Lashs
and we want to find ag, a1, as such that this is always equal to by. This leads to
CLO—I—%CLl—I—%CLQ:]_, %ao—l—%al—l—%ag:O, %a0+%a1+%a2:0
so ¢(z) =9 — 36z + 3022, and
1

p(0) = / (9 — 367 + 302%)p(x) dz .

8.13. Representation by Matrices. Let ¢ : '™ x F' — F be a bilinear
form. Then we can represent ¢ by a matrix A = (a;;) € Mat(m x n, F'), with
entries a;; = ¢(ej, ;). In terms of column vectors x € F™ and y € F™, we have

o(z,y) =y Az.

Similarly, if V' and W are finite-dimensional F-vector spaces, and we fix bases
B = (vi,...,v,) and C = (wy, ..., w,) of V and W respectively, then any bilinear
form ¢ : V x W — F'is given by a matrix relative to these bases, by identifying
V and W with F™ and F™ in the usual way, that is, through the isomorphisms
pp: F* — V and ¢c: F™ — W. If A = (a;;) is the matrix as above, then
a;; = ¢(vj,w;). f v =mzv1 4+ + 2,0, and w = Yyrwy + - - - + YWy, then

P(v, w) = Z Z @i T5Y; -

i=1 j=1

8.14. Proposition. LetV and W be finite-dimensional F'-vector spaces. Pick
two bases B = (vi,...,v,) and B’ = (vi,...,v,) of V and two bases C =
(Wi, ..., Wy) and C" = (W), ...,w.,) of W. Let A be the matriz representing the
bilinear form ¢ : V- x W — F with respect to B and C, and let A’ be the matrix
representing ¢ with respect to B' and C'. Then for P = [idy]8" and Q = [idw]&
we have

A =QTAP.

PROOF. Let 2/ € F™ be the coefficients of v € V' with respect to the new basis
B’. Then x = Px’, where x represents v with respect to the old basis B. Similary
for 3/, y € F™ representing w € W with respect to the two bases, we have y = Qy/.
So
gAY = (v, w) =y Ax = v QT AP
which implies the claim. U
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Vw2 F > ylAx = y'T A
(eBypC) / /
(oprpcr) Fn x Fm (2,9) A =QTAP
el /]
Frx F™ (@', y) A= ((b(vj,wi))i’j

In particular, if ¢ is a bilinear form on the n-dimensional vector space V, then ¢ is
represented (with respect to any given basis) by a square matrix A € Mat(n, F'). If
we change the basis, then the new matrix will be B = PT AP, with P € Mat(n, F)
invertible. Matrices A and B such that there is an invertible matrix P € Mat(n, F')
such that B = PTAP are called congruent.

8.15. Remark. Let A be an m X n matrix over . Then the associated
bilinear form

F'"x F™ — F, (z,y) —y Ax

can also be expressed using the standard dot products on ™ and £, both denoted
by (_,_), as we have

(y,Az) =y Az = (ATy) 'z = (ATy,z).

8.16. Example. Let V' be the real vector space of polynomials of degree less
than n, and consider again the symmetric bilinear form

P(p,q) = / p(z)q(z) dx.

With respect to the standard basis (1,z,...,x"!), it is represented by the “Hilbert

Y _ 1 )
matrix” H, = (ijl L<ij<n’

For completeness, we summarize in one commutative diagram the ways to associate
a matrix to linear maps and bilinear forms. Let V' and W be finite-dimensional
vector spaces, with bases B and C', respectively. Let C* denote the dual basis
of W*. Also set ¢ = ¢c+ 0 o' : W — W*, which sends the i-th basis vector of C
to the i-th basis vector of C*. Recall that ¢, = ¢ o po: F™ — (F™)* sends
a € F™ to (a,_). Then all maps in the following diagram are isomorphisms.
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Bil(V x W, F) —2=%2, Hom(V, W*)

Bil(F" x F™,

F) (E™, (F™)) Hom(V, W)

— ((z,y)—y Az)

This diagram shows, for example, that if A is the matrix representing the bilinear
form ¢: V x W — F with respect to the bases B and C of V' and W, respectively,
then A = [¢r]E. is also the matrix associated to the linear map ¢r: V — W* with
respect to the bases B and C*, since the map o i o ¢r, o ¢p is fa.

8.17. Lemma. Let ¢: V x W — F be a bilinear form, and B and C' bases of
the finite-dimensional vector spaces V' and W, respectively. Let A be the matrix
that represents ¢ with respect to B and C'. Then ¢ is nondegenerate if and only if
A is invertible.

PROOF. We have just seen that A = [¢1]5., so the left kernel of ¢ corresponds
to the kernel of A, which is trivial if and only if dimV = rk A. Similarly, the
right kernel of ¢ is trivial if and only if dim W = rk A. The statement therefore
follows from Lemma [8.5] and the fact that the equalities dimV = dimW = rk A
are equivalent with A being invertible. O

8.18. Lemma. Let ¢ be a bilinear form on the finite-dimensional vector space V,
represented (with respect to some basis) by the matrix A. Then

(1) ¢ is symmetric if and only if AT = A;

(2) ¢ is skew-symmetric if and only if AT + A = 0;

(3) ¢ is alternating if and only if AT + A = 0 and all diagonal entries of A
are zero.

PrROOF. Let B = (vy,...,v,) be the basis of V. Since a;; = ¢(v;,v;), the
implications “=" in the first three statements are clear. On the other hand,
assume that AT = £A4. Then

eTAy = (z"Ay)" =y TATe = £y" Az,
which implies “<=” in the first two statements. For the third statement, we com-
pute ¢(v,v) for v = xyv; + -+ - + TV,

o(v,v) = Z QT = Zaiix? + Z (a;; + aji)xiz; =0,
i=1

ij=1 1<i<j<n

since the assumption implies that both a;; and a;; + aj; vanish. Ul
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8.19. Definition. Let ¢: V x W — F be a bilinear form. For any subspace
U CW we set
Ut={veV:¢wu)=0forallucU}.
For any subspace U C V' we set
Ut ={weW:¢u,w)=0foralucU}.

In both cases we call U+ the subspace orthogonal to U (with respect to ¢).

8.20. Remark. Note that for a subspace U C W, the set Ut is indeed a
subspace, as it is the kernel of the composition of ¢ : V' — W* with the restriction
map res)y : W* — U* that sends 1 € W* to the restriction t|y. Similarly, for a
subspace U C V, the subspace U+ is the kernel of the composition of ¢pr: W — V*
with the restriction map resy;: V* — U*. Moreover, as the kernel of resy; is the
annihilator U°, we also find U+ = ¢, (U°).

8.21. Example. Let V be a vector space over F, and consider the bilinear
form ev: V x V* — F of Example 8.6, Let U C V be a subspace. Then the
orthogonal subspace Ut with respect to ev consists of all f € V* that satisfy
f(u) = ev(u, f) = 0 for all u € U. This means that the subspace U+ = U° is
the annihilator of U. Note that this is a special case of Remark [8.20], as we have

evg = idy+ (see Example .

8.22. Lemma. Let ¢: V xW — F be a nondegenerate bilinear form, with V,

W finite-dimensional vector spaces. Let U be a subspace of either V- or W. Then
we have dimU + dim U+ = dim V' = dim W. Moreover, we have (U+)*+ =U.

ProOOF. From Remark we recall dimV = dim W. First suppose U C W.
By Lemma , the restriction map res}Y : W* — U* is surjective. So is the map
¢r: V. — W*, and therefore so is the composition V' — U*. The kernel of this
composition is U+, so we obtain dimV = dim U+ 4+ dimU* = dim U+ + dim U.
The case U C V follows similarly by considering the composition of ¢r with the
restriction map res);, thus proving the identity dim U + dim U+ = dimV in all
cases. Applying this identity to Ut as well, we find dim(U+)*+ = dimU. For all
u € U and all w € U+, we have ¢(u, w) = 0, so there is an inclusion U C (U+)* of
subspaces of the same finite dimension. Hence, this inclusion is an equality. [

We leave it to the reader to find an example of a bilinear form ¢ on a finite-
dimensional vector space V' that is degenerate and for which there is a subspace

U CV with (UL £ U.

As with endomorphisms, we can also split bilinear forms into direct sums in some
cases.

8.23. Definition. If V = U @& U’, ¢ is a bilinear form on V, ¢ and v’ are
bilinear forms on U and U’, respectively, and for uy,us € U, u),u}, € U’, we have
O(ur + Uy, uz + uy) = ¥(ur, uz) + ¢ (uy, uy)

then ¢ is the orthogonal direct sum of 1 and 1.

Given V = U@ U’ and ¢, this is the case if and only if ¢(u,u') = 0 and ¢(v', u) =0
for all u € U, v € U’ (and then ¥ = ¢|yxu, ¥ = dlurxv)-

This can be generalised to an arbitrary number of summands.

If V is finite-dimensional and we represent ¢ by a matrix with respect to a basis
that is compatible with the splitting, then the matrix will be block diagonal.
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8.24. Proposition. Let ¢ be a symmetric bilinear form on'V, and let U C V
be a linear subspace such that ¢|yxy is nondegenerate. Then V =U ® UL, and ¢
splits accordingly as an orthogonal direct sum.

When the restriction of ¢ to U x U is nondegenerate, we call U+ the orthogonal
complement of U.

PROOF. We have to check a number of things. First, U N U+ = {0} since
v € UNU*L implies ¢(v,u) = 0 for all u € U, but ¢ is nondegenerate on U, so v
must be zero. Second, U + U+t = V: let v € V, then U 3 u + ¢(v,u) is a linear
form on U, and since ¢ is nondegenerate on U, by Proposition there must be
u’ € U such that ¢(v,u) = ¢(u',u) for all uw € U. This means that ¢(v —u',u) =0
for all u € U, hence v — ' € U+, and we see that v = v’ + (v — ') € U + U* as
desired. So we have V = U @ U*. The last statement is clear, since by definition,
¢ is zero on U x U+, O

Theorem [8.26 gives the first and quite general classification result for symmetric
bilinear forms: they can always be diagonalized. We first state a useful lemma.

8.25. Lemma. Assume that char(F) # 2, let V' be an F-vector space and ¢ a
symmetric bilinear form on V. If ¢ # 0, then there is v € V' such that ¢(v,v) # 0.

PROOF. If ¢ # 0, then there are v,w € V such that ¢(v,w) # 0. Note that
we have

0 # 2¢(v,w) = ¢(v,w) + d(w,v) = ¢p(v + w, v+ w) — ¢(v,v) — P(w, w),

so at least one of ¢(v,v), ¢p(w,w) and ¢(v + w, v + w) must be nonzero. d

8.26. Theorem. Assume that char(F) # 2, let V be a finite-dimensional
F-vector space and ¢ a symmetric bilinear form on V. Then there is a basis
(v1,...,vn) of V such that ¢ is represented by a diagonal matriz with respect to
this basis.

FEquivalently, every symmetric matriz A € Mat(n, F') is congruent to a diagonal
matriz.

PRrROOF. If ¢ = 0, there is nothing to prove. Otherwise, we proceed by induc-
tion on the dimension n. Since ¢ # 0, by Lemma [8.25] there is v; € V' such that
¢(v1,v1) # 0 (in particular, n > 1). Let U = L(v;), then ¢ is nondegenerate on U.
By Prop. we have an orthogonal splitting V' = L(v;) @ U+. By induction

(dim U+ = n — 1), UL has a basis (vy,...,v,) such that ¢|y. 1 is represented
by a diagonal matrix. But then ¢ is also represented by a diagonal matrix with
respect to the basis (v, va, ..., v,). OJ

8.27. Remark. The entries of the diagonal matrix are not uniquely deter-
mined. For example, we can always scale the basis elements; this will multiply the
entries by arbitrary nonzero squares in F'. But this is not the only ambiguity. For

example, we have
2 0y (1 —-1\(1 0 1 1
0 2) \1 1 0 1/)\—-1 1)°

On the other hand, the number of nonzero entries is uniquely determined, since it
is the rank of the matrix, which does not change when we multiply on the left or
right by an invertible matrix.
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8.28. Example. Let us see how we can find a diagonalizing basis in practice.
Consider the bilinear form on F** (with char(F) # 2) given by the matrix

011
A=1|1 0 1
1 10

Following the proof above, we first have to find an element v; € F? such that
v] Av; # 0. Since the diagonal entries of A are zero, we cannot take one of
the standard basis vectors. However, the proof of Lemma tells us that (for
example) v; = (1,1,0)" will do. So we make a first change of basis to obtain

110 1 00 21 2
A=1010]JAl1 1 0]=1]101
0 01 0 01 210

Now we have to find a basis of the orthogonal complement L(v;)*. This can be
done by adding suitable multiples of v; to the other basis elements, in order to
make the off-diagonal entries in the first row and column of the matrix zero. Here
we have to add —1/2 times the first basis vector to the second, and add —1 times
the first basis vector to the third. This gives

1 00 1 -1 -1 2 0 0
A'=|-2 1 0|Af0o 1 o0]|=(0 -3 O
-1 01 0 0 1 0 0 -2

We are lucky: this matrix is already diagonal. (Otherwise, we would have to
continue in the same way with the 2 x 2 matrix in the lower right.) The total
change of basis is indicated by the product of the two P’s that we have used:

1 0 0\ /1 -1 -1
1 10ff[o0 : -1
00 1/ \0 0 1

so the desired basis is vy = (1,1,0)7, vo = (—3,3,0)", v3 = (=1, -1,1) .

1
pP= 0|=11
0

8.29. Example. Consider the bilinear form ¢ on R? given by (z,y) + y' Az

with
010
A=11 11
011
First we switch the first two basis vectors to get a 1 in the top left. This yields
1 11 010
A= PAP, = 0 0], with P,=[1 0 0
0 1 0 01

1
1
From the new basis (es, €1, e3), in order to get generators for ey, we subtract e,
from the other two to get (es,e1 — €2, e3 — e3). This corresponds to

1 0 0 1 -1 -1
A"=PJAP,= |0 -1 1], with P,=(0 1 0
0 —1 0 0 0 1

The middle vector e; — es is not orthogonal to itself, as the corresponding entry
along the diagonal of A’ is nonzero, so we keep it as second vector. In order to
find generators for the orthogonal complement of the subspace spanned by e, and
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e1 — e, we subtract this middle vector e; — ey from the last vector to obtain the
basis (eg, €1 — €z, e3 — e1). This corresponds to

1 0 0 10 0
A" =P A'P;=0 -1 0], with Py=(0 1 —1
0 0 1 00 1
Setting
0 1 -1
P=PPP=[1 -1 0|,
0 0 1

we find PT AP = A™. Note that indeed the basis vectors es, e; — €9, and es —e;, or
better said, their coefficients with respect to the standard basis, are in the columns
of P.

For algebraically closed fields like C, we get a very nice result.

8.30. Theorem (Classification of Symmetric Bilinear Forms Over C).
Let F be algebraically closed, for example F = C. Then every symmetric matrizc
A € Mat(n, F') is congruent to a matric

1. 10
00 /)"’
and the rank 0 < r < n 1is uniquely determined.

PROOF. By Theorem [8.26] A is congruent to a diagonal matrix, and we can
assume that all zero diagonal entries come at the end. Let aj; be a non-zero
diagonal entry. Then we can scale the corresponding basis vector by 1/, /a;; (which
exists in F', since F' is algebraically closed); in the new matrix we get, this entry
is then 1.

The uniqueness statement follows from the fact that n — r is the dimension of the
(left or right) kernel of the associated bilinear form. O

If ' =R, we have a similar statement. Let us first make a definition.

8.31. Definition. Let V be a real vector space, ¢ a symmetric bilinear form
on V. Then ¢ is positive definite if

¢(v,v) >0  forallve V\ {0}

8.32. Remark. A positive definite symmetric bilinear form on a finite-dimensional
real vector space is nondegenerate: if v # 0, then ¢(v,v) > 0, so ¢(v,v) # 0. Hence
v is not in the (left or right) kernel of v. For example, this implies that the Hilbert
matrix from Example is invertible.

8.33. Theorem (Classification of Symmetric Bilinear Forms Over R).
Every symmetric matriv A € Mat(n,R) is congruent to a unique matriz of the
form

I,| 0 |0
0|—-I|0
0, 0 |0

The number r + s is the rank of A or of the corresponding bilinear form, the
number r — s is called the signature of A or of the corresponding bilinear form.
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PRrROOF. By Theorem [8.26, A is congruent to a diagonal matrix, and we can
assume that the diagonal entries are ordered in such a way that we first have
positive, then negative and then zero entries. If a;; is a non-zero diagonal entry,
we scale the corresponding basis vector by 1/4/|a;|. Then the new diagonal matrix
we get has positive entries 1 and negative entries —1, so it is of the form given in
the statement.

The number r + s is the rank of the form as before, and the number r is the
maximal dimension of a subspace on which the bilinear form is positive definite,

therefore r and s only depend on the bilinear form, hence are uniquely determined.
O

8.34. Example. Let V be again the real vector space of polynomials of degree
< 2. Consider the symmetric bilinear form on V' given by
1

¢(p.q) = /(256 — Dp(x)q(x) dz.
0
What are the rank and signature of ¢?

We first find the matrix representing ¢ with respect to the standard basis 1, z, 2.

Using [, (22 — 1)a" dz = 2 — AT = ez We obtain
0 % &\ /0 1010
_ (1 1 3] _
A=t b 3= (1010 9
1 3 2 10 9 8
6 20 15

The rank of this matrix is 2 (the kernel is generated by 1022 — 10x + 1). We have
that ¢(z,x) = % >0and ¢p(x — 1,z —1) :%—2%4—0: —% < 0, so r and s must
both be at least 1. The only possibility is then r = s = 1, so the rank is 2 and the
signature is 0. In fact, we have ¢(z,z — 1) =0, so

V6z, V6(z—1), 102®—10z+1

is a basis such that the matrix representing ¢ is

1 0 0
0 -1 0
0 0 0

8.35. Theorem (Criterion for Positive Definiteness). Let A € Mat(n,R)
be symmetric. Let A; be the submatriz of A consisting of the upper left j x j block.
Then (the bilinear form given by) A is positive definite if and only if det A; > 0
forall1 <j<n.

PRrOOF. First observe that if a matrix B represents a positive definite sym-
metric bilinear form, then det B > 0: by Theorem [8.33] there is an invertible
matrix P such that PTBP is diagonal with entries 1, —1, or 0, and the bilinear
form is positive definite if and only if all diagonal entries are 1, i.e., PTBP = I.
But this implies 1 = det(P"BP) = det B(det P)?, and since (det P)? > 0, this
implies det B > 0.

Now if A is positive definite, then all A; are positive definite, since they represent
the restriction of the bilinear form to subspaces. So det A; > 0 for all j.

Conversely, assume that det A; > 0 for all j. We use induction on n. For n =1
(or n = 0), the statement is clear. For n > 2, we apply the induction hypothesis
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to A,_1 and obtain that A,_; is positive definite. Then there is an invertible
matrix P € Mat(n — 1,R) such that

(i) ()= =»

with some vector b € R*! and o € R. Setting
I|-b
QTBQ — (%‘L) ,

and so A is positive definite if and only if 5 > 0. But we have (note det @ = 1)
B =det(Q"BQ) = det B = det(P")det Adet P = (det P)*det A,
so 8> 0, since det A = det A,, > 0, and A is positive definite. O

we get

Exercises.

(1) Let V4, Vo, U, W be vector spaces over a field F', and let b: V; x Vo — U be
a bilinear map. Show that for each linear map f: U — W the composition
f o b is bilinear.

(2) Let V,WW be vector spaces over a field F. If b: V x V — W is both
bilinear and linear, show that b is the zero map.

(3) Give an example of two vector spaces V, W over a field I’ and a bilinear
map b: V x V — W for which the image of b is not a subspace of W.

(4) Let V, W be two 2-dimensional subspaces of the standard R-vector space
R3. The restriction of the standard inner product R3 xR* — R to R* x W
is a bilinear map b: R?® x W — R.
(a) What is the left kernel of b7 And the right kernel?
(b) Let v/: V x W — R be the restriction of b to V' x W. Show that b’

is degenerate if and only if the angle between V' and W is 90°.
(5) Let ¢: R* x R — R be the bilinear form given by (z,y) — y' Az with

1 2 3 4
2 3 45
345 6

Let f: R* — R* be the isomorphism given by
(21, T2, 3, 24) = (21,21 + To, 1 + Xo + X3, 21 + Tg + T3 + T4).
Let g: R? — R? be the isomorphism given by
(21,29, 3) — (21,21 + X2, 21 + X9 + x3).

Let b: R* x R® — R be the map given by b(z,y) = ¢(f(x), g(y)).
(a) Determine the kernel of ¢ and ¢g.
(b) Show that b is bilinear.
(c) Give the matrix associated to b with respect to the standard bases
for R* and R3.
(6) Let V' be a finite-dimensional vector space over F, and ev: V x V* — F
the bilinear form that sends (v, ¢) to ¢(v). Let B be a basis for V, and
B* its dual basis for V*. What is the matrix associated to ev with respect
to the bases B and B*?



64 CONTENTS

(7) Let V be a vector space over R, and let b: V x V — R be a sym-
metric bilinear map. Let the “quadratic form” associated to b be the
map ¢: V — R that sends © € V to b(z,z). Show that b is uniquely
determined by gq.

(8) Let V' be a vector space over R, and let b: V' x V — R be a bilinear
map. Show that b can be uniquely written as a sum of a symmetric and
a skew-symmetric bilinear form.

(9) Let V be the 3-dimensional vector space of polynomials of degree at most 2
with coefficients in R. For f, g € V define the bilinear form ¢: V xV — R
by

1

o(f,9) = /:Ef(a:)g(x)dx.

-1

(a) Is ¢ nondegenerate?
(b) Give a basis of V' for which the matrix associated to ¢ is diagonal.
(c) Show that V has a 2-dimensional subspace U for which U C U*.
(10) Let eq,...,e, be the standard basis of V' = R", and define a symmetric
bilinear form ¢ on V' by ¢(e;,e;) = 2 for all 4,5 € {1,...,n}. Give the
signature of ¢ and a diagonalizing basis for ¢.
(11) Suppose V is a vector space over R of finite dimension n with a nonde-
generate bilinear form ¢: V xV — R, and suppose that U is a subspace
of V with U C U*. Then show that the dimension of U is at most n/2.
(12) For x € R consider the matrix

r —1
= (1)
(a) What is the signature of A; and A_;7
(b) For which x is A, positive definite?

r —1 1
(¢) For which zis | —1 x 1 | positive definite?
1 11

(13) Let V be a vector space over R, let b: V' x V' — R be an skew-symmetric
bilinear form, and let x € V be an element that is not in the left kernel
of b.

(a) Show that there exist y € V such that b(z,y) = 1 and a linear
subspace U C V such that V = (z,y) @ U is an orthogonal direct
sum with respect to b.

REMARK. The notation (x,y) denotes the subspace spanned by z
and y, and of course has nothing to do with an inner product.
HINT. Take U = (z,y)* ={v € V : b(z,v) = b(y,v) = 0}

(b) Conclude that if dim V' < oo, then then there exists a basis of V' such
that the matrix representing b with respect to this basis is a block
diagonal matrix with blocks By, ..., B; of the form

()

and zero blocks By 1,..., By.
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(14) Let Vi, Vs be vector spaces over F. Let ¢: V} x V5 — F be a bilinear
form. Show that there is a commutative diagram

Vi x vy
(ldV17¢R)T
VixVyo—F

ev

which shows that if ¢ is nondegenerate, and we use ¢r to identify V;
with V", then ¢ corresponds to the evaluation pairing.

9. Inner Product Spaces

In many applications, we want to measure distances and angles in a real vector
space. For this, we need an additional structure, a so-called inner product.

9.1. Definition. Let V be a real vector space. An inner product on V is a
positive definite symmetric bilinear form on V. It is usually written in the form
(x,y) — (z,y) € R. Recall the defining properties:

(1) Az + Na',y) = Mz, y) + N2, y);
(2) (y,z) = (z, y);
(3) (z,z) > 0 for = # 0.

A real vector space together with an inner product on it is called a real inner
product space.

Recall that an inner product on V' induces an injective homomorphism V' — V*,
given by sending x € V to the linear form y +— (z,y); this homomorphism is
an isomorphism when V' is finite-dimensional, in which case the inner product is
nondegenerate.

Frequently, it is necessary to work with complex vector spaces. In order to have
a similar structure there, we cannot use a bilinear form: if we want to have (z, x)
to be real and positive, then we would get

(iz,iz) = i*(z, 1) = —(2,7),

which would be negative. The solution to this problem is to consider Hermit-
tan forms instead of symmetric bilinear forms. The difference is that they are
conjugate-linear in the second argument.

9.2. Definition. Let V be a complex vector space. A sesquilinear form on V'
isamap ¢ : V x V — C that is linear in the first and conjugate-linear in the
second argument (“sesqui” means 13):

p(Az + N y) = Ap(x,y) + No(2',y), oz, Ay +Ny) = Ad(z,y) + No(z, i) .

A Hermitian form on V' is a sesquilinear form ¢ on V' such that ¢(y,x) = ¢(z,y)
for all x,y € V. Note that this implies ¢(z,z) € R. The Hermitian form ¢ is
positive definite if ¢(x,z) > 0 for all x € V' \ {0}. A positive definite Hermitian
form on the complex vector space V is also called an inner product on V; in this
context, the form is usually again written as (z,y) — (x,y) € C.

Warning: this means that from now on, the notation (z,y) may refer to other
pairings than the ordinary scalar (dot) product.

For an inner product on V', we have
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(1) (Ax + N/ y) = Ma,y) + N2/, y);

(2) (v, 2) = (z,y);
(3) (x,x) > 0 for x # 0.

A complex vector space together with an inner product on it is called a complex
inner product space or Hermitian inner product space. A real or complex vector
space with an inner product on it is an tnner product space.

9.3. Definition. If V is a complex vector space, we denote by V the complex
vector space with the same underlying set and addition as V', but with scalar
multiplication modified by taking the complex conjugate: A -v = Av, where on
the left, we have scalar multiplication on V, and on the right, we have scalar
multiplication on V. We call V the complex conjugate of V. If V is a real vector
space, then we set V = V.

9.4. Remark. Let V be a complex vector space. Note that any basis for V'
is also a basis for V, so we have dimV = dim V. Note that if f: V — W is a
linear map, then it is also linear as a map from V to W. If we denote this (same)
map by f: V — W to distinguish it from f, which has a different vector space
structure on its domain and codomain, and B and C' are finite bases for V and W,

respectively, then we have [f']8 = [f]Z.

We denote by V* = (V)* the dual of this complex conjugate space. If V is a
complex inner product space, then the sesquilinear form ¢: V' xV' — C corresponds
to a bilinear form V x V — C, and we get again homomorphisms

V—V* o (y—= (z,y) = (z,)

and )
V—>V*a yi—>(l"—><l’,y>):<_,y>
These maps are injective because we have (z,x) # 0 for x # 0. When V' is finite-

dimensional, this implies that they are isomorphisms, that is, the bilinear form
V x V — C is nondegenerate.

9.5. Remark. Note that the dual V* of V is not the same as V_*J which is the
dual of V' with the modified scalar multiplication. In fact, the map V* — V* that
sends f € V* to the function f that sends z € V' to f(z) is a homomorphism.

9.6. Examples. We have seen some examples of real inner product spaces
already: the space R™ together with the usual scalar (dot) product is the standard
example of a finite-dimensional real inner product space. An example of a different
nature, important in analysis, is the space of continuous real-valued functions on
an interval [a, b], with the inner product

b
(f.g) = / f(2)g(x) dx.

For complex inner product spaces, the finite-dimensional standard example is C"
with the standard (Hermitian) inner product

(21, 2n), (W1, ... wy)) = 211 + + - + 2,0y,
so (z,w) = z - w in terms of the usual scalar (dot) product. Note that

(z,2) = |z1> + -+ |2 > 0.
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The complex version of the function space example is the space of complex-valued
continuous functions on [a, b], with inner product

(f.9) = / F2)g (@) de

9.7. Definition. Let V' be an inner product space.

(1) For z € V, we set ||z|| = \/(z,x) > 0. The vector x is a unit vector if
]l = 1.
(2) We say that x,y € V are orthogonal, x L y, if (z,y) = 0.

(3) A subset S C V is orthogonal if x L y for all z,y € S such that = # y.
The set S is an orthonormal set if in addition, ||z|| =1 for all x € S.

(4) A sequence (vy,...,v;) of elements in V' is orthogonal if v; L v; for all
1 <i < j <k. The sequence is orthonormal if in addition, ||v;|| = 1 for
all 1 <1¢ <k.

(5) An orthonormal basis or ONB of V' is a basis of V' that is orthonormal.
(6) For any set S C V, we define S* as

St={veV :vlsforallsc S}

Note that being perpendicular is symmetric, that is, we have x 1 y if and only
if y L x. Also note that, as mentioned before, the inner product corresponds to
a bilinear pairing V x V' — F where F is R or C. If U C V is a subspace, then
the definition of U+ above coincides with the one given in Definition with
respect to this bilinear pairing (where we use that V and V are the same on the
level of sets). If V is finite-dimensional, then the bilinear pairing V x V — F
is nondegenerate, so from Lemma we find dimU + dim U+ = dimV and
UhHt=U.

9.8. Proposition. Let V' be an inner product space.

(1) Forxz € V and a scalar \, we have ||[Ax| = |A| - ||=]|.
(2) (Cauchy-Schwarz inequality) For x,y € V, we have

[{z o) < ]l - lyll;

with equality if and only if x and y are linearly dependent.
(3) (Triangle inequality) For z,y € V, we have ||z + y|| < ||| + ||ly||-

Note that these properties imply that ||- || is a norm on V' in the sense of Section 7]
In particular,

d(z,y) = [lz =yl
defines a metric on V; we call d(z,y) the distance between = and y. If V = R”
with the standard inner product, then this is just the usual Euclidean distance.

PROOF.

(1) We have

Azl = v (Az, Az) = \[ ANz, 2) = VA2, 2) = AV (z,2) = [Al =]
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(2) This is clear when y = 0, so assume y # 0. Consider

(z,y)
=T — oy
lyl”
then (z,y) = 0 (in fact 2z is the projection of x on y*). We find that
(.y) (o, )
0< <Za Z> = <Z,ZL‘> = <ZL‘,[L’> - H?JH2 (y,x) = ||$||2 - Wa

which implies the inequality. If x = Ay, we have equality by the first part
of the proposition. Conversely, if we have equality, we must have z = 0,
hence z = Ay (with A = (z,y)/|ly||?).

(3) We have
lz +ylI* = (@ +y, 2 +y) = (z,2) + () + {y,2) + (¥, y)
= [lz[* + 2Refz, y) + [[ylI* < [l2]* + 2/ {2, y)| + [ly]?
<l + 2l lyll + lyl® = (=]l + llyl)?
using the Cauchy-Schwarz inequality.
OJ

Next we show that given any basis of a finite-dimensional inner product space,
we can modify it in order to obtain an orthonormal basis. In particular, every
finite-dimensional inner product space has orthonormal bases.

9.9. Theorem (Gram-Schmidt Orthonormalization Process). Let V

be an inner product space. Let xq, ...,z € V be linearly independent, and define
Y1 =1
X )
Yo = T2 — < 2 81)
(y1,’y1>
x x3,
Y3 = Tg — (3, ?/1>y1_ (73 y2>y2
(y1,91) (Y2, Y2)
T, Tk, Yp—
Y = Ty — <ky1> L (Tk, Yr-1) 1.
<y1;yl> (Yr—1, Yr—1)
Finally, set z; = y;/||yil| for i = 1,...,k. Then (z1,...,2x) is an orthonormal

basis of L(xy,..., k).

PrOOF. We first prove by induction on k that (yi,...,yx) is an orthogonal
basis for L(xy,...,x;). The case k = 1 (or k = 0) is clear — x1 # 0, so it is a
basis for L(x).

If £ > 2, we know by the induction hypothesis that yq,...,ys_1 is an orthogonal
basis of L(xy,...,z,_1). In particular, y,...,yx_1 are nonzero, so y; is well de-
fined. Since y, ..., yk—1 are pairwise orthogonal, that is, (y;,y;) = 0 for ¢ # j, we
find for 1 < j <k —1 that

(o) = (@) = > ‘> (Wi, yg) = (@, y5) — (Tr ) = 0.

Hence, in fact yi,...,y, are pairwise orthogonal. By construction, we have an
inclusion L(y1,...,yx) C L(z1,...,x). Asitis also clear that z;, can be expressed
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in yi1,...,Yx, the opposite inclusion also holds. In particular, this implies that
L(y1, ..., yx) has dimension k, so (y1, ..., yx) is linearly independent and hence an
orthogonal basis for L(z1,...,xy).

Since yi,...,y, are linearly independent, they are nonzero, so we may indeed
normalise and set z; = v;/||y;]| for @ = 1,...,k. After normalising, we have
||zi]| = 1 and (%, z;) = 0 for i # j. Clearly, we have L(21,...,2x) = L(v1,...,yx) =
L(xq,..., L), S0 (21,...,2) is an orthonormal basis for L(z,...,zy). O

9.10. Corollary. FEvery finite-dimensional inner product space has an ONB.

PROOF. Apply Theorem [9.9] to a basis of the space. O

9.11. Proposition. Let V be an inner product space.

(1) If (v1, v, ..., vk) is an orthogonal sequence of nonzero elements in V', then
V1, ...,V are linearly independent.
(2) If S C V is an orthogonal set of nonzero vectors, then S is linearly
independent.
PRrooOF.
(1) Let (vq,vs,...,v;) be an orthogonal sequence of nonzero elements in V|

and assume we have a linear combination

k
=1

Now we take the inner product with v; for a fixed j:

k k
0= <Z/\ﬂ)i7vj> = Z)\Z’<U1',Uj> = )\j<vj7vj> .
i=1 i=1

Since v; # 0, we have (v;, v;) # 0, therefore we must have \; = 0. Since
this is true for every index 1 < j < k, the linear combination is trivial.

(2) By part (1), every finite subset of S is linearly independent, which makes
the set S linearly independent by definition.

0

9.12. Proposition. Suppose V' is an n-dimensional inner product space. Then
for every orthonormal sequence (ey, ..., ex) of elements in V, there are elements
€kt 6n €V such that (ey,...,e,) is an ONB of V.

PROOF. By Proposition [9.11] the elements ey, ..., e are linearly independent.
Extend eq,...,e; to a basis of V' in some way and apply Theorem to this
basis. This will not change the first k basis elements, since they are already
orthonormal. U

Orthonormal bases are rather nice, as we will see.
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9.13. Theorem (Bessel’s Inequality). Let V' be an inner product space,
and let (e1,...,e,) be an orthonormal sequence of elements in V. Then for all
x €V, we have the inequality

- 2
> lw e < z)?
j=1

Let U = L(ey, ..., e,) be the subspace spanned by ey, ..., e,. Then for x € V', the
following statements are equivalent:

(1) zeU;
@) Dl enl” = llall’

n

(8) x=) {w,e5)es;

Jj=1
n

(4) forally eV, (x.y) = (z.€;){e;. ).

j=1

In particular, statements to hold for all x € V when (eq,...,e,) is an
ONB of V. When (eq,...,e,) is an ONB, then (and also (2))) is called
Parseval’s Identity. The relation in is sometimes called the Fourier expansion
of x relative to the given ONB.

PROOF. Let 2 =2 — 37 | (7,¢;)e;. Then for any 1 <k <n we have

n

(z ex) = (w,ex) = Y (w,¢5) - {ej,ex) = (,ex) — (z,ex) = 0.
=1
This implies (z, z) = (2, ), so we find

n

0< (z,2) = {z,2) = (x,0) = Y (z,¢5) - (e, 2) = |la]|* — Zl(ﬂ%@ﬁlQ-

j=1

This implies the inequality and also gives the implication = , as equality in
(2) implies (z,2) = 0, so z = 0. The implication (3|) = (4] is a simple calculation,
and = follows by taking y = =. = is trivial. Finally, to show
= , let

n
xr = E )\jej.
Jj=1

Then

n

(wen) = Y Ajlej en) = A,

j=1

which gives the relation in (3)). O

Next, we want to discuss linear maps on inner product spaces.
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9.14. Theorem. Let V and W be two inner product spaces over the same
field (R or C), and let f : V — W be linear. Then there is at most one map
f*: W =V such that

(f(v), w) = (v, f*(w))

forallv eV, w e W. If such a map exists, then it is linear. Moreover, if V 1is
finite-dimensional, then such a map does exist.

PROOF. Recall that we have an injective linear map V — V* that sends
x € V to (_,z), and where we use V = V if the base field is R. This injective
map is an isomorphism if V' is finite-dimensional. For w € W fixed, the map
V 3 v (f(v),w) is a linear form on V, so there is at most one element z € V
such that (f(v),w) = (v,z) for all v € V; if such an element exists, which is
the case if V' is finite-dimensional, then we set f*(w) = z. Assume that f*(w)
is defined for all w € W. Now consider w + w’. We find that f*(w + w’) and
f*(w)+ f*(w') both satisfy the relation, so by uniqueness, f* is additive. Similary,
considering Aw, we see that f*(Aw) and \f*(w) must agree. Hence f* is actually
a linear map. O

ALTERNATIVE PROOF. Let F' be the field over which V' and W are inner prod-
uct spaces. Let ¢: V xV — F and ¢: W x W — F be the bilinear forms
that correspond to the inner products on V' and W, respectively. Then we have
(f(v),w) = (v, f*(w)) for all v € V and all w € W if and only if we have
éro f* = fT op, that is, the diagram

.
(6) we Ly

wl e

W—=V
f*

commutes. Note that ¢p is injective, so there is at most one such map f*. Also
because of injectivity, and the fact that the composition f' o4 is linear, the map
f* is linear if it exists. If V is finite-dimensional, then ¢ is an isomorphism, so
there is such a map, as we can take f* = gb]}l o fl onp. ]

9.15. Definition. Let V and W be inner product spaces over the same field.

(1) Let f:V — W be linear. If f* exists with the property given in Theo-
rem (which is always the case when dim V' < o), then f* is called
the adjoint of f.

(2) If f:V — V has an adjoint f*, and f = f*, then f is self-adjoint.
(3) If f:V — V has an adjoint f* and fo f* = f*o f, then f is normal.

(4) A linear map f : V — W is an isometry if it is an isomorphism and
(f(v), f(v')) = (v,0') for all v,v" € V.

9.16. Remark. Some books use an alternative definition for isometry. In-
deed, Exercise [19 shows that an isomorphism of inner product spaces is an isome-
try if and only if it preserves lengths. Exercise [21] shows that we do not even need
to require the map to be linear, if we assume it preserves all distances. Exercises
and [24] show that it also suffices to require angles to be preserved.
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9.17. Examples. If f : V — V is self-adjoint or an isometry, then f is
normal. For the second claim, note that an automorphism f is an isometry if and
only if f* = f~!. (See also Proposition below; its proof includes a proof of
this statement that does not rely on finite-dimensionality.)

9.18. Remark. While the property of the adjoint given in Theorem [9.14] may
seem asymmetric, we also have

(w, f(v)) = (f(v),w) = (v, f[*(w)) = (f*(w),v)
for all v € V and all w € W, which is equivalent with ¢, o f* = fT o4;.

9.19. Example. Consider the standard inner product on F" and F™ (for
F=Ror FF=C). Let A € Mat(m x n, F) be a matrix and let f: F" — F™ be
the linear map given by multiplication by A. We denote the conjugate transpose
AT by A*. Then for every v € F" and w € F™, we have

(fv),w) = (Av,w) = (Av)T - w=v" AT - w=0" - ATw = (v, A*w)

(where the dot denotes matrix multiplication), so the adjoint f*: F™ — F" of f
is given by multiplication by the matrix A*.

9.20. Proposition (Properties of the Adjoint). Let Vi, V5, V3 be finite-
dimensional inner product spaces over the same field, and let f,.g : Vi — V5,
h:Vy — V3 be linear. Then

(D) (f+9)y =f"+g° () =Af"
(2) (ho f) = froh™
B3) (f) =171
PROOF.
(1) We have for v € Vi, v € V,
(v, (f +9)" (")) = ((f + 9)(v), ) = (f(v),0') + (g(v), ')
= (v, f7(0) + (v, 97(0") = (v, (f" + g7) ("))
and
(o, A () = ((A))(w),0') = (Af(0),0) = A(f(v),0)
= Mo, f* () = (v, Af*(v)) = (v, Af))).

The claim follows from the uniqueness of the adjoint.
(2) We argue in a similar way. For v € V}, v € Vj,

(v, (ho f)(v) = ((ho f)v),v) = (h(f(v)),)
= (f(),*()) = (v, f* (K" (v))) = (v, (f* 2 h")(2)).

Again, the claim follows from the uniqueness of the adjoint.
(3) For all v € Vi, v' € V,, we have

(', f(0)) = {f(0),v) = (v, f*(V)) = (f*(v),v) = (', (f)"(v)),
which implies (v, (f*)*(v) — f(v)) = 0. For v' = (f*)*(v) — f(v), we find
|v'|| =0, so v" =0, and therefore (f*)*(v) = f(v) for all v, so f = (f*)*.

g

Now we characterize isometries.
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9.21. Proposition. Let V and W be inner product spaces of the same finite
dimension over the same field. Let f :V — W be linear. Then the following are
equivalent.

(1) f is an isometry;
(2) f s an isomorphism and f~ 1 = f*;
(3) f f* idyy;
(4) f*o f=idy.

Proor. To show = , we observe that for an isometry f and v € V,
w € W, we have

(v, [*(w)) = (f(v),w) = (f(v), F(f T (w))) = (v, 7 (w)),
which implies f* = f~!. The implications = and = are clear. Now
assume (say) that (4]) holds (the argument for (3| is similar). Then f is injective,
hence an isomorphism, and we get . Now assume , and let v,v" € V. Then

(f0), f(W) = (v, f*(f(V))) = (v,0"),

so f is an isometry. O

9.22. Lemma. LetV be a finite-dimensional inner product space over F with
an orthonormal basis B = (vy,...,v,). Consider the standard inner product on
EF™. Then the isomorphism

QOBZFn—>V, ()\1a~-->/\n)'_>>\1U1+"'+)\nvn

15 an isometry.

PRrROOF. We denote the standard inner product on F” by (_,_) as well. Note
that if v,v" € V have coordinates x = (z1,...,x,),2 = (2},...,2)) € F™ with
respect to B (so that ¢p(z) = v and pg(z’) = '), then we have x; = (v, v;) and
xt = (v, v;) by Theorem which therefore also implies

(2
(0,0') = ;@) + - + ], = (z,27) .

This shows that ¢pg is indeed an isometry. U

9.23. Theorem. Let f: V — W be a linear map of finite-dimensional inner
product spaces. Then we have

im(f*) = (ker(f))”  and  ker(f*) = (im(f))"

PROOF. Let F be the field over which V' and W are inner product spaces. Let
¢: VxV — Fand: WxW — F be the bilinear forms that correspond to the in-
ner products on V' and W, respectively. Because V and W are finite-dimensional,
the maps ¢r and g in the commutative diagram @ are isomorphisms. Hence,
they restrict to isomorphisms im f* — im f7 and ker f* — ker f', respectively.
By Remark , they also restrict to isomorphisms (ker f)* — (ker f)° and
(im f)* — (im f)°, respectively. Hence, the claimed identities follow after ap-
plying ¢r and i to the identities of Theorem [6.30, respectively. Il

ALTERNATIVE PROOF. We first show the inclusion im(f*) C (ker( f))L. So
let z € im(f*), say z = f*(y). Let z € ker(f), then

(z,2) = (x, f*(y)) = (f(x),y) = (0,y9) = 0,
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so z € (ker(f ))L This inclusion implies
(7) dimim f* < dim(ker f)* = dim V — dimker f = dimim f.
The analogous inequality for f* instead of f is
dimim(f*)* < dimim f*.
From the equality (f*)* = f (see Proposition we conclude
dimim f < dimim f*.

Combining this inequality with shows that all inequalities are equalities, so
im(f*) = (ker(f))L. Applying this to f* instead of f yields im(f) = (ker(f*))L,
which is equivalent to the second identity claimed in the theorem. Il

Now we relate the notions of adjoint etc. to matrices representing the linear maps
with respect to orthonormal bases.

9.24. Proposition. Let V and W be two inner product spaces over the same
field, let B = (v1,...,v,) and C = (wy, ..., wy,) be orthonormal bases of V' and W,
respectively, and let f 'V — W be linear. If f is represented by the matriz A
relative to the given bases, then the adjoint map f* is represented by the conjugate
transpose matriv A* = AT with respect to the same bases, that is

/5 = (F12)"

Note that when we have real inner product spaces, then A* = AT is simply the
transpose.

PrOOF. Let ' = R or C be the field of scalars. Let pg: F" — V and
wc: F™ — W be the usual maps associated to the bases B and C, respectively. By
Lemma , these two maps are isometries, so we have ¢ = 4,051 and ¢ = goal.
By definition, the map ;' o f o pp: F™ — F™ is given by multiplication by the
matrix A = [f]2. By Example , multiplication by the conjugate transpose A*
of A gives the adjoint of this map, which equals

(pc' o fowr) =¢xofoles) =¢g5 o f opc.

By definition, this map is also given by multiplication by [f *]%, so we conclude
/1% = A* = ([f]E)*. In other words, the matrix AT = A* represents f*. O

ALTERNATIVE PROOF. To distinguish between the linear map f*: W — V
and the same map between the associated complex conjugate spaces, we write
¥+ W — V for the latter. Set A’ = [f*']§. Let B* and C* be the bases of V and
W dual to B and C, respectively. Let ¢: V xV — Fand ¢: W x W — F denote
the bilinear forms associated to the inner products on V' and W, respectively. Since
¢r: V — V*and ¢r: W — W* send orthonormal bases to their duals (exercise),
we have pp« = ¢pg o pp and Yo« = 1Yr 0 Yeo. Then the commutative diagram @
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extends to the following commutative diagram.

:
W Ly

W e

o W—=V
f*/
TSOB
— s 7
far

Fm

We conclude A’ = [fT]%., so from Proposition we find A/ = AT, From
Remark [9.4) we then conclude [f*]§ = [f*]§ = A’ = AT = A" O

Warning. If the given bases are not orthonormal, then the statement is wrong
in general.

9.25. Corollary. In the situation above, with A = [f]B, we have the follow-
mg.
(1) The map f is an isometry if and only if A* = A™1.
(2) Suppose V=W and B = C. Then [ is self-adjoint if and only if A* = A.
(3) Suppose V=W and B = C. Then f is normal if and only if A*A = AA*.

PRrROOF. Exercise. O

9.26. Definition. A matrix A € Mat(n,R) is

(1) symmetric if AT = A;
(2) normal if AAT = AT A;
(3) orthogonal if AAT = I,,.

A matrix A € Mat(n,C) is

(1) Hermitian if A* = A;
(2) normal if AA* = A* A,
(3) unitary if AA* = I,.

These properties correspond to the properties “self-adjoint”, “normal”, “isometry”
of the linear map given by A on the standard inner product space R" or C".
Correspondingly, isometries of real inner product spaces are also called orthogonal
maps, and isometries of complex inner product spaces are also called unitary
maps.

9.27. Example. Lemma (9.22| was used to prove Proposition [9.24] and we can
recover Lemma[9.22] from Proposition[9.24] Indeed, suppose V' is an n-dimensional
inner product space over F' with FF =R or F' = C, and let B = (vy,...,v,) be an
orthonormal basis. Let E denote the standard (orthonormal) basis for F". Let
pp: F" =V be the map that sends (Ay,...,\,) to Y. \v;. Then the associated
matrix A = [pp]E is the identity, which is unitary, so pp is an isometry.
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9.28. Example. Suppose V is an n-dimensional inner product space over F'

with ' =R or F' = C, and let B and B’ be two orthonormal bases for V. Then
the base change matrix P = [idy]% is unitary, because the identity map is an
isometry.

Exercises.

(1) Let V be the vector space of continuous complex—valued functions defined
on the interval [0, 1], with the inner product (f, g) fo g(x) dz. Show
that the set {x — e*™** . k € Z} C V is orthonormal. Is 1t a ba81s of V7

(2) Give an orthonormal basis for the 2-dimensional complex subspace V3 of
C3 given by the equation x; — ixy + iz3 = 0.

(3) For the real vector space V' of polynomial functions [-1,1] — R with
inner product given by

1

<ﬁm=/#uM@Ma

apply the Gram-Schmidt procedure to the elements 1, z, 22, 23.

(4) For the real vector space V' of continuous functions [—m, 7] — R with
inner product given by

9 == [ falgarts

show that the functions
1/\/5, sin x, cos x, sin 2z, cos 2z, . . .

form an orthonormal set. [Note: for any function f the inner products
with this list of functions is the sequence of Fourier coefficients of f.]

(5) Let F' be R or C, and let V' be an inner product space over F. If F' = C,
then let V be as before. If F =R, thenset V =V. Let ¢: VxV — F be
the bilinear form corresponding to the inner product, and let ¢, : V — V*
and ¢r: V — V* be the usual induced linear maps. Show that ¢; and
¢r send every orthonormal basis to its dual basis.

(6) Show that an endomorphism f of an inner product space V' is normal if
and only if f has an adjoint f* and for all v,v" € V we have

(f(v), f()) = {f*(v), f*()).

(7) Let A be an orthogonal n x n matrix with entries in R. Show that
det A = 1. If A be an orthogonal 2 x 2 matrix with entries in R and

det A = 1, show that A is a rotation matrix CPSH —sinf for
sinf  cosf

some 6 € R. )

(8) For which values of a € C is the matrix ¢ é ) unitary?

(9) Show that the matrix of a normal transformation of a 2-dimensional real
inner product space with respect to an orthonormal basis has one of the

forms
a f a [
(—6&) > (@5)-
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(10) Let V be the vector space of infinitely differentiable functions f: R — C
satisfying f(x 4+ 2) = f(x) for all z € R. Consider the inner product on
V' given by (p,q) = f_llp(:c)q(x)dx. Show that the operator D : p — p”
is self-adjoint.

(11) Let n be a positive integer. Show that there exists an orthogonal anti-
symmetric n X n-matrix with real coefficients if and only if n is even.

(12) Consider R™ with the standard inner product, and let V' C R™ be a
subspace. Let A be the n x n-matrix of orthogonal projection on V.
Show that A is symmetric.

(13) Give an alternative proof of Proposition that follows the ideas of the
alternative proof of Theorem (Hint: For (3), use Remark [9.18] the
identity ¢; = ¢ o ay and its equivalent for W, and Proposition [6.17})

(14) Let V be an inner product space and U C V a finite-dimensional subspace.
Let the inclusion map be denoted by ¢: U — V. Show that we have
ker ¥ = U+,

(15) Suppose

v-Lvw
is an exact sequence of linear maps between finite-dimensional inner prod-
uct spaces. Show that there is an induced exact sequence

w2y o

(16) Check for all finite-dimensional inner product spaces in the results and
exercises of this chapter whether the assumption of finite-dimensionality
can be left out (possibly by replacing it by the assumption that certain
adjoint maps exist). If so, give a proof of the stronger statement. If not,
give a counter example.

(17) Let Vi, Vo, Wy, and Wy be vector spaces, and let ¢: V; x Vo — F and
: Wi x Wy — F be two nondegenerate bilinear forms.

(a) Show that for every linear map f: V3 — Wj there is a unique map
fT: Wy — V4 such that for all z € V4 and all y € W, we have

oz, 1) = v(f(2),y).
(b) Show that we have

im f1 = (ker f)* and ker f = (im f)*.

(18) Let f1: V — Wy and fo: V' — W; be two linear maps of inner product
spaces over the same field. Show that the following two conditions are
equivalent.

(i) For all v € V' we have || f1(v)|| = || f2(v)]].
(ii) For all v,v" € V' we have (f;(v), f1(v")) = (f2(v), f2(V")).

(19) Let f: V — W be a linear map of inner product spaces over the same
field.

(a) Show that f is an isometry if and only if f is an isomorphism and

for all v € V' we have ||f(v)|| = [|v]|.
(b) Suppose V' and W have the same finite dimension. Show that f is
an isometry if and only if for all v € V' we have ||f(v)]| = ||v]|.

(20) Let f1: V. — Wy and fo: V. — Wy be two linear maps of inner product
spaces over the same field. Suppose that the two equivalent conditions of
Exercise [1§ hold.

(a) Show that f; and f; have the same kernel.



78 CONTENTS

(b) Show that there exists a unique isometry g: im f; — im f> such that
fa=go fi.

(21) Let f1: V. — Wi and fy: V — W; be any two maps of real inner product
spaces that satisfy f1(0) = 0 and f>(0) = 0. Show that the following two
conditions are equivalent.

(i) For all v,0’ € V we have |[fi(v) — fi(v))]| = [ fa(v) — (@)
(ii) For all v,v" € V' we have (fi(v), f1(v")) = (f2(v), fa(v")).

(22) Let f: V — W be any map of real inner product spaces of the same finite
dimension that satisfies f(0) = 0. Show that f is an isometry if and only
if for all v,v" € V' we have ||f(v) — f(V)]| = ||[v — V|

(23) The Cauchy-Schwarz inequality allows us to define the angle between any
two nonzero vectors x and y in the same real inner product space as the
unique real number a € [0, 7] for which we have

(z,9)
] - lyll

We denote this angle by Z(z,y). Suppose that V' and W are real inner
product spaces, and f: V — W is an isomorphism that preserves angles
at 0, that is, for all x,y € V we have

L(f(x), fy) = ZL(x,y).

Show that f is the composition of an isometry with the multiplication by
a scalar.

(24) Suppose that V' and W are real inner product spaces, and f: V — W
is a bijection that preserves general angles, that is, for all z,y,z € V we
have

Z(f(z) = f(2), fy) = [(2)) = L(x — 2,y — 2).

Show that f is the composition of a translation, the multiplication by a
scalar, and an isometry.

10. Orthogonal Diagonalization

In this section, we discuss the following question. Let V' be an inner product space
and f : V — V an endomorphism. When is it true that f has an orthonormal
basis of eigenvectors (so can be orthogonally diagonalized or is orthodiagonalizable
— nice word!)?

After a few general lemmas, we will first consider the case of complex inner product
spaces, for which, as we will see, f has an orthonormal basis of eigenvectors if and
only if f is normal.

10.1. Lemma. Let V be a finite-dimensional inner product space and let f :
V — V be an endomorphism. If f is orthodiagonalizable, then [ is normal.

PrOOF. If f is orthodiagonalizable, then there exists an orthonormal basis
(é1,...,e,) of V such that f is represented by a diagonal matrix D with respect
to this basis. Now D is normal, hence so is f, by Corollary [9.25] U

The proof of the other direction is a little bit more involved. We begin with the
following partial result.
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10.2. Lemma. Let V' be an inner product space, and let f : 'V — V be
normal.

W) (L@l = 1f@)]-
(2) If f(v) = \v for some v €V, then f*(v) = \v.
3) If f(v) = v and f(w) = pw with A # u, then v L w (i.e., (v,w) =0).

—~
[\

PrROOF. For the first statement, note that

L @)II* = (), () = (f(f*(v)),0)
= (/" (f(v),v) = (f(v). f(v)) = [If@)II*.

For the second statement, note that

)
Ao, f*(v)) = Mf(v),v) = M, v) = [A*{v,0)
(f"(v), W) = Mo, f(v)) = Mo, W) = [A*{v,0)
(Av, Av) = |A*{v,v)

and so
(f*(v)=Xv, f*(v) = dv) = (f*(v), f*(0)) = (Ao, f*(0)) = (f*(v), Ao} + (v, dv) = 0.
This implies f*(v) — A = 0, so f*(v) = Av.
For the last statement, we compute
AMv,w) = (f(v),w) = (v, f*(w)) = (v, i) = p(v,w).

Since A # p by assumption, we must have (v, w) = 0. O

This result shows that the various eigenspaces are orthogonal in pairs, and we
conclude that when f is a normal endomorphism of an inner product space, it is
orthodiagonalizable if it is just diagonalizable. It remains to prove that this is the
case.

10.3. Lemma. Let V' be an inner product space over the field FF = R or C,
let f:V — V be normal, and let p € F[X]| be a polynomial. Then p(f) is also
normal.

PROOF. Let p(z) = apa™ + - -+ + ag. Then by Prop. [9.20}
P = (amf™ + -+ arf +aoidy)" = @ (f*)" + -+ a1 f" + aoidy = p(f*),
where p is the polynomial whose coefficients are the complex conjugates of those

of p. (If F =R, then p(f)* = p(f*).) Now p(f) and p(f)* = p(f*) commute since
f and f* do, hence p(f) is normal. O
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10.4. Lemma. Let V be a finite-dimensional inner product space, and let
f:V =V be normal. Then V = ker(f) @ im(f) is an orthogonal direct sum.

PROOF. Let v € ker(f) and w € im(f). We have f(v) =0, so f*(v) = 0 by
Lemma [10.2] and w = f(u) for some u € V. Then

(v, w) = (v, f(u)) = (f*(v),u) = (0,u) =0,
so v L w. In particular, we have ker f Nim f = {0}, because the inner product is
positive definite. From dim ker(f) 4+ dimim(f) = dim V', we conclude

dim(ker(f) 4+ im(f)) = dimker(f) 4+ dimim(f) — dim(ker f Nim f) = dim V,
so ker(f) +im(f) = V, which finishes the proof. O

10.5. Lemma. LetV be a finite-dimensional complex inner product space,and
let f:V —V be normal. Then f is diagonalizable.

Proor. We will show that the minimal polynomial of f does not have multiple
roots. So assume the contrary, namely that

My(z) = (v — a)’g()
for some a € C and some polynomial g. We know that f — «idy is normal. Let
v € V and consider w = (f — aidy)(g(f)(v)). Obviously w € im(f — aidy),
but also (f — aidy)(w) = Ms(f)(v) =0, so w € ker(f — aidy). By the previous
lemma, w = 0. Hence, f is already annihilated by the polynomial (z — «)g(z) of
degree smaller than M(x), a contradiction. d

ALTERNATIVE PROOF. We proceed by induction on dim V. The base case
dimV =1 (or = 0) is trivial. So assume dimV > 2. Then f has at least one
eigenvector v, say with eigenvalue \. Let U = ker(f —Aidy) # 0 be the eigenspace
and W = im(f — Aidy). We know that V = U @ W is an orthogonal direct sum
by Lemma [10.4] Because f commutes with f — Aidy, we have that f(U) C U
and f(W) C W, so f is the direct sum of its restrictions to U and W. Then
by uniqueness, f* is also the direct sum of the adjoints of these restrictions, so
normality of f implies normality of its restrictions. In particular, f|y : W — W
is again a normal map. By induction, f|y is diagonalizable. Since f|y = Aidy
is trivially diagonalizable, f is diagonalizable. (The same proof would also prove
directly that f is orthodiagonalizable.) O

So we have now proved the following statement, which is often referred to as the
Spectral Theorem (though this may also refer to some other related theorems).

10.6. Theorem. Let V' be a finite-dimensional complex inner product space,
and let f:V — V be a linear map. Then V has an orthonormal basis of eigen-
vectors for f if and only if f is normal.

PRrROOF. Indeed, Lemma [10.1] states the “only if”-part. For the converse, as-
sume f is normal. Then f is diagonalizable by Lemma [10.5, which means that the
concatenation of any bases for the eigenspaces yields a basis for V. Lemma [10.2
shows that if we take the bases of the eigenspaces to be orthonormal, which we
can do by applying Gram-Schmidt orthonormalization (Theorem to any basis,
then the concatenation is orthonormal as well, so f has an orthonormal basis of
eigenvectors. U
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This nice result leaves one question open: what is the situation for real inner
product spaces? The key to this is the following observation.

10.7. Proposition. LetV be a finite-dimensional complex inner product space,
and let f:V — V be a linear map. Then f is normal with all eigenvalues real if
and only if f is self-adjoint.

Proor. We know that a self-adjoint map is normal. So assume now that f is
normal. Then there is an ONB of eigenvectors, and with respect to this basis, f
is represented by a diagonal matrix D, so we have D* = D" = D. Obviously, we

have that f is self-adjoint if and only if D = D*, which reduces to D = D, which
happens if and only if all entries of D (i.e., the eigenvalues of f) are real. O

This implies the following.

10.8. Theorem. Let V' be a finite-dimensional real inner product space, and
let f:V —V be linear. Then V has an orthonormal basis of eigenvectors for f
of and only iof f is self-adjoint.

PrOOF. If f has an ONB of eigenvectors, then its matrix with respect to this
basis is diagonal and so symmetric, hence f is self-adjoint.

For the converse, choose any orthonormal basis B for V and suppose that f
is self-adjoint. Then the associated real matrix A = [f]5 satisfies A* = A by
Corollary [9.25] Hence, the associated map fa: C" — C" is self-adjoint with
respect to the standard Hermitian inner product (see Example . Therefore,
the matrix A, viewed over C, is normal and has all its eigenvalues (over C) real by
Proposition This implies that A is diagonalizable over C by Theorem [10.6]
By Proposition [3.§ this is means that the minimal polynomial M4 of A as a matrix
over C is the product of distinct linear factors, which has the real eigenvalues as
roots. Since M, is a real polynomial, it is also the minimal polynomial of A as
a matrix over R (any factor over R is also a factor over C) and also splits as a
product of distinct linear factors over R. Applying Proposition (3.8 again shows
that A, and thus f, is also diagonalizable over R. Lemma m, (3) then shows that
the eigenspaces are orthogonal in pairs. Hence, concatenating orthonormal bases
for the different eigenspaces, obtainable with Gram-Schmidt orthonormalization
(Theorem , yields an orthonormal basis of eigenvectors for V. U

In terms of matrices, this reads as follows.

10.9. Theorem. Let A be a square matrix with real entries. Then A is or-
thogonally similar to a diagonal matriz (i.e., there is an orthogonal matriz P:
PP =1, such that P~YAP is a diagonal matriz) if and only if A is symmetric.
In this case, we can choose P to be orientation-preserving, i.e., to have det P =1
(and not —1).

PROOF. The first statement follows from the previous theorem. To see that we
can take P with det P = 1, assume that we already have an orthogonal matrix )
such that Q7' AQ = D is diagonal, but with det Q = —1. The diagonal matrix T
with diagional entries (—1,1,...,1) is orthogonal and detT = —1, so P = QT is
also orthogonal, and det P = 1. Furthermore,

PYAP=T'Q'AQT =TDT =D,

so P has the required properties. ]
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This statement has a geometric interpretation. If A is a symmetric 2 x 2-matrix,
then the equation

(8) x ' Ax =1

defines a conic section in the plane. Our theorem implies that there is a rotation
P such that P71 AP is diagonal. This means that in a suitably rotated coordinate
system, our conic section has an equation of the form

ax’ +by* =1,

where a and b are the eigenvalues of A. We can use their signs to classify the
geometric shape of the conic section (ellipse, hyperbola, empty, degenerate).

The directions given by the eigenvectors of A are called the principal axes of the
conic section (or of A), and the coordinate change given by P is called the principal
azxes transformation. Similar statements are true for higher-dimensional quadrics
given by equation (8) when A is a larger symmetric matrix.

10.10. Example. Let us consider the conic section given by the equation

52 +4xy+2y2=1.

5 2
()
We have to find its eigenvalues and eigenvectors. The characteristic polynomial
s (X —=5)(X—-2)—4=X?-7X+6=(X—1)(X —6), so we have the two

eigenvalues 1 and 6. This already tells us that we have an ellipse. To find the
eigenvectors, we have to determine the kernels of A — I and A — 61. We get

4 2 -1 2
r(22) e (32),

so the eigenvectors are multiples of (1, —2) and of (2,1). To get an orthonormal
basis, we have to scale them appropriately; we also need to check whether we
have to change the sign of one of them in order to get an orthogonal matrix with
determinant 1. Here, we obtain

A1 2
P:( “f) and P AP = ((1) 2) .
VB VB

To sketch the ellipse, note that the principal axes are in the directions of the
eigenvectors and that the ellipse meets the first axis (in the direction of (1, —2))
at a distance of 1 from the origin and the second axis (in the direction of (2,1))
at a distance of 1/1/6 from the origin.

The matrix is

w%
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The ellipse 522 +4zy +2y* = 1.

10.11. Example. Consider the symmetric matrix

5o =2 4
A=|-2 8 2
4 2 5

We will determine an orthogonal matrix () and a diagonal matrix D such that
A =QDQ". The characteristic polynomial of A is the determinant of

t—5 2 —4
tI—A=1| 2 t-8 -2,
—4 -2 t-5

which is easily determined to be P4(t) = t(t —9)?, so we have eigenvalues 0 and 9.
The eigenspace for eigenvalue A = 0 is the kernel ker A. From a row echelon
form for A, which we will leave out here, we find that this kernel is generated by
(2,1, —2). Normalising gives the unit vector v; = %(2, 1,—2), which forms a basis
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for the eigenspace for A = 0. The eigenspace for eigenvalue A = 9 is the kernel of

—4 -2 4
A—-9I=|-2 -1 2
4 2 —4
A row echelon form for this matrix is
2 1 =2
00 0],
00 O

from which we find that this eigenspace is generated by w; = (1,0,1) and wy =
(1,—2,0). Within this eigenspace we apply Gram-Schmidt orthonormalisation to
find an orthonormal basis for the eigenspace. We find w; and
<w2’ w1>
(wi, wy)
1

After normalising this yields vy = \/5(1, 0,1) and vz = ﬁ(l, —4,-1).

w1 = Wy — lwl = %(1, —4, —]_)

W9 — D)

Our new basis becomes B = (v, v2,v3). By Lemma[10.2} the two eigenspaces are
orthogonal to each other, so B is an orthonormal basis of eigenvectors. Hence, the
matrix Q = [id]2 is orthogonal, that is, Q~! = Q. For the diagonal matrix

D =[fal} =

o O O
o © O
Nolen i)

we find
A= [falg = iz - [falp - [1[d]5 = QDQ™ = QDQ".
The matrix @ = [id]2 has the basis vectors of B as columns, so we have

S T
51% V2 32ﬂ

—| L 0 —2\2
< P10
3 V2 3v2

Exercises.

(1) Suppose that A is a real symmetric 2 x 2 matrix of determinant 2 for

which (_12) is an eigenvector with eigenvalue —1.
(a) What is the other eigenvalue of A?
(b) What is the other eigenspace?
(c¢) Determine A.

(2) Consider the quadratic form ¢(z,y) = 112* — 162y — .

(a) Find a real symmetric matrix A for which

(o) =) a- (7).

Y

(b) Find real numbers a,b and an orthogonal map f: R?* — R? so that
q(f(u,v)) = au? + bv? for all u,v € R.
(c) What values does ¢(z,y) assume on the unit circle 2% + y* = 17
(3) What values does the quadratic form q(z,y, 2) = 2zy+ 2wz + 3> — 2yz + 2°
assume when (z,y, z) ranges over the unit sphere x? + y? + 22 = 1 in R3?
(4) Suppose that A is an anti-symmetric n X n matrix over the real numbers.

(a) Show that every eigenvalue of A over the complex numbers lies in
1R.
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(b) If n is odd, show that 0 is an eigenvalue of A.

(5) Let V be an inner product space and let f : V' — V be an endomorphism.
Suppose that V' has an orthonormal basis of eigenvectors. Show that f
has an adjoint and that f is normal (see Lemma .

11. External Direct Sums

Earlier in this course, we have discussed direct sums of linear subspaces of a vector
space. In this section, we discuss a way to contruct a vector space out of a given
family of vector spaces in such a way that the given spaces can be identified with
linear subspaces of the new space, which becomes their direct sum.

11.1. Definition. Let F' be a field, and let (V;);cr be a family of F-vector
spaces. The (external) direct sum of the spaces V; is the vector space

V= @V} = {(vl) € HV} :v; = 0 for all but finitely many i € I}.
iel icl
Addition and scalar multiplication in V' are defined component-wise.
If I is finite, say I = {1,2,...,n}, then we also write
V=VieV,d - dV,;

as a set, it is just the cartesian product Vi x --- x V,,.

11.2. Proposition. Let (V;);e; be a family of F-vector spaces, and V =
B, BV, their direct sum.

(1) There are injective linear maps ¢; = V; =V given by
ti(v;) = (0,...,0,v;,0,...) with vj in the jth position

such that with V; = 1;(V}), we have V = @jezvj as a direct sum of
subspaces.

(2) If B; is a basis of Vj, then B =J,¢; t;(B;) is a basis of V.

(3) If W is another F-vector space, and ¢; : V; — W are linear maps, then
there is a unique linear map ¢ : V. — W such that ¢; = ¢ o ¢; for all
jel.

PROOF.

(1) This is clear from the definitions, compare
(2) This is again clear from [2.2]

(3) A linear map is uniquely determined by its values on a basis. Let B be a
basis as in (2). The only way to get ¢; = ¢oy; is to define ¢(¢;(b)) = ¢,(b)
for all b € Bj; this gives a unique linear map ¢ : V- — W.

O
Statement (3) above is called the universal property of the direct sum. It is essen-

tially the only thing we have to know about €, ., V;; the explicit construction is
not really relevant (except to show that such an object exists).
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12. The Tensor Product

As direct sums allow us to “add” vector spaces in a way (which corresponds to
“adding” their bases by taking the disjoint union), the tensor product allows us to
“multiply” vector spaces (“multiplying” their bases by taking a cartesian product).
The main purpose of the tensor product is to “linearize” multilinear maps.

You may have heard of “tensors”. They are used in physics (there is, for example,
the “stress tensor” or the “moment of inertia tensor”) and also in differential
geometry (the “curvature tensor” or the “metric tensor”). Basically a tensor is
an element of a tensor product (of vector spaces), like a vector is an element of
a vector space. You have seen special cases of tensors already. To start with, a
scalar (element of the base field F') or a vector or a linear form are trivial examples
of tensors. More interesting examples are given by linear maps, endomorphisms,
bilinear forms and multilinear maps in general.

The vector space of m x n matrices over F' can be identified in a natural way with
the tensor product (F™)* @ F™. This identification corresponds to the interpreta-
tion of matrices as linear maps from F™ to ™. The vector space of m xn matrices
over F' can also identified in a (different) natural way with (F™)* ® (F™)*; this
corresponds to the interpretation of matrices as bilinear forms on F™ x F™.

In these examples, we see that (for example), the set of all bilinear forms has the
structure of a vector space. The tensor product generalizes this. Given two vector
spaces V; and V5, it produces a new vector space V; ® V5 such that we have a
natural identification

Bil(Vi x Vo, W) = Hom(V; ® Vo, W)

for all vector spaces W. Here Bil(V; x V5, W) denotes the vector space of bilinear
maps from Vi x V5 to W. The following definition states the property we want
more precisely.

12.1. Definition. Let V; and V5 be two vector spaces. A tensor product of
V) and V5 is a vector space V', together with a bilinear map ¢ : V) x Vo — V,
satisfying the following “universal property”:

For every vector space W and bilinear map v : Vi x Vo — W there is a unique
linear map f : V — W such that ¢ = f o ¢.

VixVe—" Ly

In other words, the canonical linear map
Hom(V, W) — Bil(Vi x Vo, W), fr— fo¢
is an isomorphism.

It is easy to see that there can be at most one tensor product in a very specific
sense.
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12.2. Lemma. Any two tensor products (V,¢), (V',¢') are uniquely isomor-
phic in the following sense: There is a unique isomorphism ¢ : V — V' such that

¢ =10¢.

<

~

T ——

PROOF. Since ¢’ : Vi x Vo — V' is a bilinear map, there is a unique linear map
¢t 'V — V' making the diagram above commute. For the same reason, there is a
unique linear map ¢/ : V/ — V such that ¢ =1 o ¢’. Now /o1 :V — V is a linear
map satisfying (1/ o) o ¢ = ¢, and idy is another such map. But by the universal
property, there is a unique such map, hence ¢/ o+ = idy. In the same way, we see
that ¢ ot/ = idy, therefore ¢ is an isomorphism. O

Because of this uniqueness, it is allowable to simply speak of “the” tensor product
of V} and V3 (provided it exists! — but see below). The tensor product is denoted
Vi ® Vs, and the bilinear map ¢ is written (vy, vg) — v; ® vs.

It remains to show existence of the tensor product.

12.3. Proposition. Let V| and Vs be two vector spaces; choose bases By of Vi
and By of Va. Let V' be the vector space with basis B = By X Bs, and define a
bilinear map ¢ : Vi x Vo — V wia ¢(by,by) = (by,bs) € B for by € By, by € Bs.
Then (V, ¢) is a tensor product of Vi and V5.

PROOF. Let ¢ : V] x Vo — W be a bilinear map. We have to show that there
is a unique linear map f : V — W such that ¢ = f o ¢. Now if this relation is to
be satisfied, we need to have f((b1,b2)) = f(¢(b1,b2)) = (b1, b2). This fixes the
values of f on the basis B, hence there can be at most one such linear map. It
remains to show that the linear map thus defined satisfies f(¢(vy,v2)) = ¥ (v1, v2)
for all v; € Vi, vy € V5. But this is clear since ¢ and f o ¢ are two bilinear maps
that agree on pairs of basis elements. U

12.4. Remark. This existence proof does not use that the bases are finite
and so also works for infinite-dimensional vector spaces (given the fact that every
vector space has a basis).

There is also a different construction that does not require the choice of bases. The
price one has to pay is that one first needs to construct a gigantically huge space V/
(with basis V; x V3), which one then divides by another huge space (incorporating
all relations needed to make the map Vi x Vo, — V bilinear) to end up with the
relatively small space V; ® V5. This is a kind of “brute force” approach, but it
works.

Note that by the uniqueness lemma above, we always get “the same” tensor prod-
uct, no matter which bases we choose.
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12.5. Elements of V; ® V5. What do the elements of V; ® V5, look like? Some
of them are values of the bilinear map ¢ : Vi x Vo — V; ® V5, so are of the form
v1 ® vy. But these are not alll However, elements of this form span V; ® V5, and
since

AV ® va) = (A1) ® vy = v1 @ (Avg)

(this comes from the bilinearity of ¢), every element of V; ® V5 can be written as
a (finite) sum of elements of the form v; ® v,.

The following result gives a more precise formulation that is sometimes useful.

12.6. Lemma. Let V and W be two vector spaces, and let wy,...,w, be a
basis of W. Then every element of V@ W can be written uniquely in the form

Y vi@w =v@w +-+v, ®w,
=1

with vy,...,v, € V.

PRrROOF. Let x € V ® W; then by the discussion above, we can write
T=1 Q21+ +Yn® 2y

for some yy,...,yn € V and zy,..., 2, € W. Since wy,...,w, is a basis of W, we
can write

Zj = W1 + -+ -+ AWy
with scalars aj;. Using the bilinearity of the map (y, z) — y ® z, we find that
=1y ® (awy + - + W) + -+ Y @ (s + -+ - + QnpWy,)
= (any + -+ WaYm) @i + -+ (Qapy1 + - F GnplYm) @ Wy,
which is of the required form.

For uniqueness, it suffices to show that
nuw+-+v,Quw, =0 = vi=---=v,=0.

Assume that v; # 0. There is a bilinear form ¢ on V' x W such that ¢ (v;, w;) =1
and (v, w;) = 0 for all v € V and ¢ # j. By the universal property of the tensor
product, there is a linear form f on V®@W such that f(v®w) = (v, w). Applying
f to both sides of the equation, we find that

0=f(0)=fl1@wi +  + v, @wy,) =Y(vi,wi) + -+ Y(vp, w,) =1,
a contradiction. O
In this context, one can think of V ® W as being “the vector space W with scalars
replaced by elements of V.” This point of view will be useful when we want to

enlarge the base field, e.g., in order to turn a real vector space into a complex
vector space of the same dimension.
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12.7. Basic Properties of the Tensor Product. Recall the axioms satis-
fied by a commutative “semiring” like the natural numbers:

a+(b+c)=(a+b)+c

a+b=b+a
a+0=a
a-(b-c)=1(a-b)-c
a-b=>b-a
a-1=a

a-(b+c)=a-b+a-c

(The name “semi’ring refers to the fact that we do not require the existence of
additive inverses.)

All of these properties have their analogues for vector spaces, replacing addition
by direct sum, zero by the zero space, multiplication by tensor product, one by
the one-dimensional space F', and equality by natural isomorphism:

Ua(VeaW2UaV)aW
UaV2VaU
Us0xU
Ua(VeW)2UeV)eW
UV 2Vel
U F~U
U(VeW)2UeV & U'W

There is a kind of “commutative diagram”:

B— #B
(Finite Sets, I1, X, %) # (N, +,-,=)

m) dim
(Finite-dim. Vector Spaces, ®, ®, )

Let us prove some of the properties listed above.

Proor. We show that U @ V =V ® U. We have to exhibit an isomorphism,
or equivalently, linear maps going both ways that are inverses of each other. By
the universal property, a linear map from U ® V into any other vector space W
is “the same” as a bilinear map from U x V into W. So we get a linear map
f:U®V — VU from the bilinear map U xV — V®U that sends (u,v) to v®u.
So we have f(u® v) = v ® u. Similarly, there is a linear map g: Vo U - U®V
that satisfies g(v ® u) = v ® v. Since f and g are visibly inverses of each other,
they are isomorphisms. O

Before we go on to the next statement, let us make a note of the principle we have
used.

12.8. Note. To give a linear map f : U ® V. — W, it is enough to specify
flu®@wv) forueU,veV. Themap U xV — W, (u,v) — f(u® v) must be
bilinear.
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PRrROOF. We now show that U® (VW) = (UV)®W. First fix u € U. Then
by the principle above, there is a linear map f, : VW — (U®V)® W such that
fulv®@w) = (uRV)@w. Now the map Ux (VW) — (URV)QW that sends (u, x)
to fu(z) is bilinear (check!), so we get a linear map f: U®(VOW) - (UeV)oW
such that f(u® (v ® w)) = (v ® v) ® w. Similarly, there is a linear map ¢ in the
other direction such that g((u ®v) @w) = u® (v®@w). Since f and g are inverses
of each other (this needs only be checked on elements of the form u ® (v ® w) or
(u ®v) ® w, since these span the spaces), they are isomorphisms. O

We leave the remaining two statements involving tensor products for the exercises.

Now let us look into the interplay of tensor products with linear maps.

12.9. Definition. Let f: V — W and f': V' — W’ be linear maps. Then
VXV > WeW, (v,v)— f(v)® f(v) is bilinear and therefore corresponds
to a linear map V @ V' — W ® W', which we denote by f ® f’. L.e., we have

(f@ o) =fv)e f{v).
12.10. Lemma. ldV & ldW = idV®W.

PROOF. Obvious (check equality on elements v ® w). O

12.11. Lemma. Let U =5V 5 W and U' <5 V' 25 W' be linear maps.
Then

(g@g)o(f@f)=(gof)®(g o f).

PrOOF. Easy — check equality on u ® v’ O

12.12. Lemma. Hom(U, Hom(V,W)) = Hom(U @ V,W).

PROOF. Let f € Hom(U, Hom(V, W)) and define f(u ® v) = (f(w)(v) (note
that f(u) € Hom(V, W) is a linear map from V to W). Since (f(u))(v) is bilinear
in v and v, this defines a linear map f € Hom(U ® V,W). Conversely, given
¢ € Hom(U ® V, W), define $(u) € Hom(V, W) by (¢(u))(v) = ¢(u @ v). Then
¢ is a linear map from U to Hom(V, W), and the two linear(!) maps f — f and
© — ¢ are inverses of each other. U

In the special case W = F, the statement of the lemma reads

Hom(U, V*) 2 Hom(U ® V, F) = (U ® V)*.

The following result is important, as it allows us to replace Hom spaces by tensor
products (at least when the vector spaces involved are finite-dimensional).
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12.13. Proposition. Let V and W be two vector spaces. There is a natural
linear map

¢:V*@W — Hom(V, W), l@w+— (v l(v)w),

which is an isomorphism when V' or W is finite-dimensional.

Proor. We will give the proof here for the case that W is finite-dimensional,
and leave the case “V finite-dimensional” for the exercises.

First we should check that ¢ is a well-defined linear map. By the general principle
on maps from tensor products, we only need to check that (I, w) — (v l(v)w)
is bilinear. Linearity in w is clear; linearity in [ follows from the definition of the
vector space structure on V'*:

(anly + agly, w) — (v = (gl + agly)(v) w = ol (V)w + Oézlg(U)’LU)

To show that ¢ is bijective when W is finite-dimensional, we choose a basis
wy, ..., wy, of W. Let wi,...,w} be the basis of W* dual to wy,...,w,. Define a
map

¢ Hom(V, W) — V'@ W, fr— Y (wiof)®u;.
=1

It is easy to see that ¢ is linear. Let us check that ¢ and ¢’ are inverses. Recall
that for all w € W, we have

n

w = Zw?(w)wi.

i=1

Now,

Now assume that V = W is finite-dimensional. Then by the above,
Hom(V,V) =V eV

in a natural way. But Hom(V, V') contains a special element, namely idy. What
is the element of V* ® V' that corresponds to it?
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12.14. Remark. Let vy,...,v, be a basis of V, and let vy, ..., v} be the basis
of V* dual to it. Then, with ¢ the canonical map from above, we have

n

gb(va ®vi) =idy .

=1

PROOF. Apply ¢’ as defined above to idy. O

On the other hand, there is a natural bilinear form on V* x V', given by evaluation:
(I,v) — I(v). This gives the following.

12.15. Lemma. LetV be a finite-dimensional vector space. There is a linear
form T:V*®@V — F given by T(l @ v) = l(v). It makes the following diagram
commutative.

V'V ——2 Hom(V,V)

N,

ProOOF. That T is well-defined is clear by the usual principle. (The vector
space structure on V* is defined in order to make evaluation bilinear!) We have to

check that the diagram commutes. Fix a basis vy, ..., v,, with dual basis v}, ..., v},

and let f € Hom(V,V). Then ¢~'(f) = Y_,(vf o f) ® v;, hence T(¢7'(f)) =
> vf(f(v;)). The terms in the sum are exactly the diagonal entries of the matrix A

1

representing f with respect to vy, ..., v,, so T(¢71(f)) = Tr(A) = Tr(f). O

The preceding operation is called “contraction”. More generally, it leads to linear
maps

U9 UV Vel - W, U0 QU,, W;---QW,.
This in turn is used to define “inner multiplication”
(@ @UpnV ) x (Ve - oW, —U1®--- U @W;--- W,

(by first going to the tensor product). The roles of V' and V* can also be reversed.
This is opposed to “outer multiplication”, which is just the canonical bilinear map

(U1®...®Um)><(W1®...®Wn)_>U1®...®Um®W1...®Wn.

An important example of inner multiplication is composition of linear maps.

12.16. Lemma. Let U, VW be vector spaces. Then the following diagram
commutes.

tovrew) (U @V)x (VW) —2% s Hom(U, V) x Hom(V,W) (19

| | ¢ | |

U(v)l®w U"'W > HOHI(U, W) gof
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PRrROOF. We have
p(l' @w) o p(l@v) = (V= I'(v)w) o (urs l(u)v)
<UF»z'zuﬁQU)—1( )@ow)
(e ).

0

12.17. Remark. Identifying Hom(F™, F™) with the space Mat(n x m, F') of
n X m-matrices over F', we see that matrix multiplication is a special case of inner
multiplication of tensors.

12.18. Remark. Another example of inner multiplication is given by evalu-
ation of linear maps: the following diagram commutes.

(Il ®w,v) V*oW)x VY Hom(V, W) x vV (f,0)

I | | |

[(v)w w W f)

Complexification of Vector Spaces. Now let us turn to another use of the
tensor product. There are situations when one has a real vector space, which
one would like to turn into a complex vector space with “the same” basis. For
example, suppose that Vg is a real vector space and W¢ is a complex vector space
(writing the field as a subscript to make it clear what scalars we are considering),
then W can also be considered as a real vector space (just by restricting the scalar
multiplication to R C C). We write Wy for this space. Note that dimg W =
2dimec We — if by, ..., b, is a C-basis of W, then by,iby,...,b,,1b, is an R-basis.
Now we can consider an R-linear map f : Vg — Wg. Can we construct a C-vector
space Vg out of V' in such a way that f extends to a C-linear map f : Vo — W¢?
(Of course, for this to make sense, Vi has to sit in Vi as a subspace.)

It turns out that we can use the tensor product to do this.

12.19. Lemma and Definition. Let V' be a real vector space. The real vector
space V.= C®grV can be given the structure of a complex vector space by defining
scalar multiplication as follows.

AMa®v)=(Aa) Qo
V is embedded into V as a real subspace via v:v— 1 ® v.
This C-vector space V is called the complexification of V.
PROOF. We first have to check that the equation above leads to a well-defined
R-bilinear map C x V' — V. But this map is just
Cx(CerV)—Cr(CerV)Z(CerC)rV — CRrV,

where m : C®r C — C is induced from multiplication on C (which is certainly an
R-bilinear map). Since the map is in particular linear in the second argument, we
also have the “distributive laws”

Mz +y) =+ Ny, A+ p)x = Iz + px

m®ldv
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for \,u € C, z,y € V. The “associative law”
Apx) = (Ap)z

(for A\, ju € C, x € V) then needs only to be checked for z = a ® v, in which case
we have
Al @) = A(pa) @ v) = (Ape) @ v = (Ap)(a@ @ v).

The last statement is clear. O

If we apply the representation of elements in a tensor product given in Lemma [12.6
to V', we obtain the following.

Suppose V has a basis vq, ..., v,. Then every element of V can be written uniquely
in the form

a1 ®@uy+ -+, ®U, for some ay,...,qa, € C.

In this sense, we can consider V' to have “the same” basis as V, but we allow
complex coordinates instead of real ones.

On the other hand, we can consider the basis 1,4 of C as a real vector space, then
we see that every element of V' can be written uniquely as

l@v+i®v =u(v)+i-(v))  for some v, € V.

In this sense, elements of V have a real and an imaginary part, which live in V'
(identifying V' with its image under ¢ in V).

12.20. Proposition. Let V' be a real vector space and W a complex vector
space. Then for every R-linear map f: Vg — Wr, there is a unique C-linear map
f Ve = We such that four= f (where v : Vg — Vi is the map defined above).

A
N

v

PROOF. The map CxV — W, (a,v) — af(v) is R-bilinear. By the universal

property of the tensor product V' = C ®g V, there is a unique R-linear map
f:V — W such that f(a ® v) = af(v). Then we have

flew) = fl@v) = f(v).
We have to check that f is in fact C-linear. It is certainly additive (being R-linear),
and for A\ € C, a®v eV,

FMa @) = f(Aa) ®v) = Aaf(v) = Af(a®w).
Since any C-linear map f having the required property must be R-linear and
satisfy
fla®v) = fla(l@v)) =af(l1@v) =af(v),

and since there is only one such map, f is uniquely determined. U
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12.21. Remark. The proposition can be stated in the form that
Homg (V, W) — Home(V, W), f+— f,
is an isomorphism. (The inverse is F' +— F o .)

We also get that R-linear maps between R-vector spaces give rise to C-linear maps
between their complexifications.

12.22. Lemma. Let f : V — W be an R-linear map between two R-vector
spaces. Then idec ®f : V. — W is C-linear, extends f, and is the only such map.

Proo¥r. Consider the following diagram.

v—Low

1N

F

Here, F' = 1y o f is an R-linear map from V' into the C-vector space W, hence
there is a unique C-linear map F': V' — W such that the diagram is commutative.
We only have to verify that F' = id¢ ®f. But

(ide®@f)(a®@v) = a® f(v) = a(1® f(v)) = aluy © f)(v) = aF(v) = Fla®v).
U

13. Symmetric and Alternating Products
Note. The material in this section is not required for the final exam.

Now we want to generalize the tensor product construction (in a sense) in order
to obtain similar results for symmetric and skew-symmetric (or alternating) bi-
and multilinear maps.

13.1. Reminder. Let V and W be vector spaces. A bilinear map f : V x
V. — W is called symmetric if f(v,v") = f(v/,v) for all v,v" € V. f is called
alternating if f(v,v) = 0 for all v € V; this implies that f is skew-symmetric, i.e.,
fw,v") = = f(v',v) for all v,v" € V. The converse is true if the field of scalars is
not of characteristic 2.

Let us generalize these notions to multilinear maps.

13.2. Definition. Let V' and W be vector spaces, and let f : V" — W be a
multilinear map.

(1) fis called symmetric if

F(Vo(1), Vo2), - - 3 Vo(n)) = f(V1,02, ..., 0p)
for all v1,...,v, € V and all 0 € §,,.

The symmetric multilinear maps form a linear subspace of the space of
all multilinear maps V" — W, denoted Sym(V", W).
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(2) fis called alternating if
fv1,v9,...,0,) =0

for all vy,...,v, € V such that v; = v; for some 1 <7 < j <n.

The alternating multilinear maps form a linear subspace of the space of
all multilinear maps V"™ — W, denoted Alt(V"™, W).

13.3. Remark. Since transpositions generate the symmetric group S,, we
have the following.

(1) f is symmetric if and only if it is a symmetric bilinear map in all pairs of
variables, the other variables being fixed.

(2) f is alternating if and only if it is an alternating bilinear map in all pairs
of variables, the other variables being fixed.

(3) Assume that the field of scalars has characteristic # 2. Then f is alter-
nating if and only if

T (Vo(1), Vo2), - - -, Vo)) = €(0) f(v1, 02, ..., 0p)

for all vy,...,v, € V and all ¢ € S, where (o) is the sign of the
permutation o.

13.4. Example. We know from earlier that the determinant can be inter-
preted as an alternating multilinear map V" — F, where V' is an n-dimensional
vector space — consider the n vectors in V' as the n columns in a matrix. More-
over, we had seen that up to scaling, the determinant is the only such map. This
means that

Al(V", F) = F det .

13.5. We have seen that we can express multilinear maps as elements of suit-
able tensor products: Assuming V' and W to be finite-dimensional, a multilinear
map f: V"™ — W lives in

Hom(VE" W)= (VH*" @ W .

*

Fixing a basis vy,...,v, of V and its dual basis v],...,v}, any element of this
tensor product can be written uniquely in the form

m

* *
f= E UL ® @ U, ® Wi,y

i1eyin=1

with suitable w;, ;, € W. How can we read off whether f is symmetric or alter-
nating?

13.6. Definition. Let z € V®",

(1) x is called symmetric if s,(x) = x for all ¢ € S,,, where s, : V& — V&
is the automorphism given by
SU('Ul X (%) SR ®Un) = ,I.}o'(l) ®’UU(2) X e ®’Ijo'(n) .
We will write Sym(V®™) for the subspace of symmetric tensors.

(2) x is called skew-symmetric if s,(z) = e(o)x for all o € S,,.
We will write Alt(V®") for the subspace of skew-symmetric tensors.
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13.7. Proposition. Let f : V" — W be a multilinear map, identified with its
image in (V*)®" @ W. The following statements are equivalent.

(1) f is a symmetric multilinear map.

(2) fe (V)" @ W lies in the subspace Sym((V*)®") @ W.

(3) Fizing a basis as above m in the representation of f as given there,
we have

wl’o‘(l)v"'aio(n) = wil,...,’in

forall o € S,.

Note that in the case W = F' and n = 2, the equivalence of (1) and (3) is just the
well-known fact that symmetric matrices encode symmetric bilinear forms.

PRrOOF. Looking at (3), we have that w;, ;. = f(vi,...,v;,). So symmetry
of f (statement (1)) certainly implies (3). Assuming (3), we see that f is a linear
combination of terms of the form

( D thw® @ ”i(m) D w

ce6y

(with w = wy, _;,), all of which are in the indicated subspace Sym((V*)®") @ W
of (V*)®" @ W, proving (2). Finally, assuming (2), we can assume f = z ® w
with z € Sym((V*)®") and w € W. For y € V" and z € (V*)®" = (Vo)*
we have (s,(2))(ss(y)) = z(y). Since s,(x) = x, we get z(s,(y)) = z(y) for all
o € S, which implies that f(s,(y)) = z(s,(y)) @ w = z(y) @ w = f(y). So f is
symmetric. OJ

13.8. Proposition. Let f : V" — W be a multilinear map, identified with its
image in (V*)®" @ W. The following statements are equivalent.

(1) f is an alternating multilinear map.
(2) f e (V)" @ W lies in the subspace Alt((V*)®™") @ W.

(3) Fizing a basis as above m in the representation of f as given there,
we have
wia‘(l):"'via(n) = €(O'>w11,,ln
forall o € S,.
The proof is similar to the preceding one.

The equivalence of (2) and (3) in the propositions above, in the special case W = F
and replacing V* by V, gives the following. (We assume that F' is of characteristic
zero, i.e., that Q C F.)

13.9. Proposition. LetV be an m-dimensional vector space with basis vy, ..., Up,.

(1) The elements
Z Vigay ® -+ @ Vi,

O'GSTL
for 1 <iy <iyg <--- <i, <m form a basis of Sym(V®™). In particular,
—1
dim Sym(V®") = (m o ) .
n
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(2) The elements
> e(0)vi,y @ By,

U’ES’n
for 1 <iy <ig < -+ < i, <m form a basis of Alt(V®™). In particular,

dim ALt (V®") = (ZZ) .

PROOF. It is clear that the given elements span the spaces. They are linearly
independent since no two of them involve the same basis elements of V®". (In the
alternating case, note that the element given above vanishes if two of the 7; are
equal.) O

The upshot of this is that (taking W = F for simplicity) we have identified
Sym(V", F) = Sym((V*)®") C (V*)®" = (V&")*
and
AlL(V™, F) = Alb((V*)®™) C (V*)®" = (VE)*

as subspaces of (V®")*. But what we would like to have are spaces Sym" (V') and
Alt"(V) such that we get identifications

Sym(V", F') = Hom(Sym"(V), F') = (Sym"(V))*
and

Alt(V™, F) = Hom(AIt"(V), F) = (Alt"(V))*.

Now there is a general principle that says that subspaces are “dual” to quotient
spaces: If W is a subspace of V', then W* is a quotient space of VV* in a natural
way, and if W is a quotient of V', then W* is a subspace of V* in a natural way. So
in order to translate the subspace Sym(V™, F') (or Alt(V™, F')) of the dual space
of V®" into the dual space of something, we should look for a suitable quotient
of V&l

13.10. Definition. Let V be a vector space, n > 0 an integer.

(1) Let W C V®" be the subspace spanned by all elements of the form
V1 QU2 Q- Q@ Up — VUs(1) @ VUs(2) @+ + & Vg(n)
for vi,vy,...,v, € V and o € S,,. Then the quotient space
Sym™(V) = S™(V) = V" /W

is called the nth symmetric tensor power of V. The image of vy ® vy ®

co- @y, in S™(V) is denoted vy - vy - - vy,
(2) Let W C V" be the subspace spanned by all elements of the form

V1 QU2 @+ QU

for vy, vy, ..., v, € V such that v; = v; for some 1 <7 < j < n. Then the
quotient space

Al (V) = N'(V) = V)W

is called the nth alternating tensor power of V. The image of v; ® vy ®
- @uy in A"(V) is denoted vy Avg A -+ A vy,
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13.11. Theorem.

(1) The map
w: VT — S"(V), (v1,09,...,0,) —> V1 -V -0y
15 multilinear and symmetric. For every multilinear and symmetric map
f V" = U, there is a unique linear map g : S™(V) — U such that
f=goe.
(2) The map
PV — AN"(V), (v,v9,...,0,) —> 1 AV A=+ Aoy,

18 multilinear and alternating. For every multilinear and alternating map
f V™ = U, there is a unique linear map g : N"(V) — U such that

f=g01.

These statements tell us that the spaces we have defined do what we want: We
get identifications

Sym(V",U) = Hom(S"(V),U) and Alt(V",U)=Hom(A"(V),U).

Proor. We prove the first part; the proof of the second part is analogous.
First, it is clear that ¢ is multilinear: it is the composition of the multilinear map
(V1,0 Uy) = V] ® -+ ® v, and the linear projection map from V& to S™(V).
We have to check that ¢ is symmetric. But

©(Vo(1), - -, Vo(n)) — @(V1, .., Un) = Vg(1) =+ Vo(n) — V1V =0,
since it is the image in S™(V) of v,1) @ -+ @ Vp(n) — V1 @ -+ - @ v, € W. Now let
f V"™ = U be multilinear and symmetric. Then there is a unique linear map
f': V@ — U corresponding to f, and by symmetry of f, we have
f/(UU(1)®"'®va(n)_Ul®"'®vn) :O

So f’ vanishes on all the elements of a spanning set of W. Hence it vanishes on W
and therefore induces a unique linear map g : S™(V) = V& /W — U.

0

The two spaces Sym(V®") and S™(V) (resp., Alt(V®") and A"(V)) are closely

related. We assume that F' is of characteristic zero.

13.12. Proposition.
(1) The maps Sym(V®™) C V& — S™(V) and

1
S™(V) — Sym(VE"), vy vy vy n! Z Vo(1) ® Vg (2) @ * ** @ Vg (n)

' €Sy
are inverse isomorphisms. In particular, if by, ..., by, is a basis of V', then
the elements

form a basis of S™(V), and dim S™(V) = (m+n—1)_

n
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(2) The maps Als(V®™) Cc V& — A" (V) and
AN'(V) — AIL(VEY) | v Avg A+ -Av, — 1 Z Sign(0)v,(1) RUy(2) X+ - - @V
) 1/\V2 n ol g (1) © Vs (2) o(n)
€Sy

are inverse isomorphisms. In particular, if by, ..., by, is a basis of V', then
the elements

form a basis of \"(V), and dim A" (V) = (7).

n

PROOF. It is easy to check that the specified maps are well-defined linear maps
and inverses of each other, so they are isomorphisms. The other statements then
follow from the description in Prop. [13.9] U
Note that if dim V' = n, then we have

NV)=F(vy A~ Awvy)

for any basis vy, ..., v, of V.

13.13. Corollary. Let vy,...,v, € V. Then vy,...,v, are linearly indepen-
dent if and only if vy A --- ANv, # 0.

ProOOF. If vy,...,v, are linearly dependent, then we can express one of them,
say v, as a linear combination of the others:
Up = AUL + 0+ A1 Up1
Then

Ul/\"'/\vnfl/\vn:vl/\"'/\vnfl/\()\11}1+"'+)\n71’0n71)
:)\l(vl/\"'/\Un—l/\Ul)+"'+)\n—1(vl/\"'/\Un—l/\vn—l)

=0+4+---4+0=0.
On the other hand, when vy, ..., v, are linearly independent, they form part of
a basis v1,...,Un,..., Uy, and by Prop. [13.12, v; A --- A v, is a basis element of
A" (V), hence nonzero. O

13.14. Lemma and Definition. Let f: V — W be linear. Then f induces
linear maps S™(f) : S™(V) — S"(W) and \"(f) : N"(V) = N" (W) satisfying

S"(H)or-v) = flon) - flon), A0 A Awv) = o) Ao A fon).

PrROOF. The map V" — S™(W), (v1,...,v,) — f(v1) - f(vy,), is a symmetric
multilinear map and therefore determines a unique linear map S™(f) : S™(V) —
S™(W) with the given property. Similarly for A\"(f).
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13.15. Proposition. Let f: 'V — V be a linear map, with V' an n-dimensional
vector space. Then N"(f): N"(V) — N"(V) is multiplication by det(f).

PRrROOF. Since \"(V) is a one-dimensional vector space, A" (f) must be multi-
plication by a scalar. We pick a basis vy, ..., v, of V and represent f by a matrix A
with respect to this basis. The scalar in question is the element § € F' such that

F) A flog) A A flog) =0 (01 Avg A= Awy) .
The vectors f(v1), ..., f(v,) correspond to the columns of the matrix A, and 0 is

an alternating multilinear form on them. Hence ¢ must be det(A), up to a scalar
factor. Taking f to be idy, we see that the scalar factor is 1. O

13.16. Corollary. Let V be a finite-dimensional vector space, f,g:V — V
two endomorphisms. Then det(g o f) = det(g) det(f).

PRrROOF. Let n = dim V. We have \"(go f) = A" go A" f, and the map on the
left is multiplication by det(g o f), whereas the map on the right is multiplication
by det(g) det(f). O

We see that, similarly to the trace Hom(V, V) 2 V*® V' — F, our constructions
give us a natural (coordinate-free) definition of the determinant of an endomor-
phism.
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matrix representation, [55]
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is multiplicative, [I01]
of direct sum, [6]
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uniqueness, [31]
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external, [85]
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of subspaces, [4]
orthogonal,
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dual
basis, [39]
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basis change, [44]
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inverse, [42]

matrix representation, [43]
of canonical map ay, [44]
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exact, [6]

exponential
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external direct sum,
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Process, [63]

Hermitian inner product,
Hermitian matrix, [75]
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composition, [02]
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inner product, [65]
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complex, [65]
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invariant subspace, [f]
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isometry, [71], [77] [7§]
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kernel matrix, [40]
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linear form, [39]
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matrix representation
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dual linear map,
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symmetric, [05]
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algebraic,
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structure of, [16] [17]
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norm, [49] [67]
equivalent,
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normal,
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5 1]
properties, [7§]
normal matrix,

ONB, [67]
orientation preserving, [8]]
orthodiagonalizable,
criterion complex inner product space,
criterion real inner product space,
orthogonal, [67]
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orthogonal direct sum, [58] [79]
orthogonal map, [75]
orthogonal matrix,
orthogonal set, [67]
is linearly independent,
orthogonally diagonalized,
orthogonally similar,
orthonormal, [67]
orthonormal basis, [67]
equivalent statements,
orthonormal set, [67]
orthonormalization,
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Parseval’s identity, [70]
polynomial
characteristic, 2]
coprime, [7]
division (algorithm),
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positive definite,
positive definiteness
criterion, [62]
principal axes, [82]
transformation,
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rank of a bilinear form,
real inner product space,
Real Jordan Normal Form,

right kernel,

scalar product, 2]
self-adjoint, [71]
self-adjoint endomorphism
real inner product space
is orthodiagonalizable,
semi-simple,
semiring,
semiring of vector spaces, [89]
sesquilinear form, [65]
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skew-symmetric bilinear form,
skew-symmetric bilinear map,
skew-symmetric tensor,
Spectral Theorem, 80
subspace of alternating tensors
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subspace of symmetric tensors
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symmetric bilinear form,
can be diagonalized, 59|
classification, [59]
classification over C,
classification over R,
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symmetric matrix, [75]
is diagonalizable, [81]
symmetric multilinear map,
equivalent statements,
symmetric tensor, [06]
symmetric tensor power, @
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linear map, (100
nth symmetric tensor power,

tensor product, [36]
elements,
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uniqueness, [86]
trace
of direct sum, [6]
transpose linear map, see also dual linear
map

triangle inequality, [49] [67]

unit vector, [67]
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