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Abstract. Let Γ be the graph on the roots of the E8 root system, where any two
distinct vertices e and f are connected by an edge with color equal to the inner
product of e and f . For any set c of colors, let Γc be the subgraph of Γ consisting
of all the 240 vertices, and all the edges whose color lies in c. We consider cliques,
i.e., complete subgraphs, of Γ that are either monochromatic, or of size at most 3,
or a maximal clique in Γc for some color set c, or whose vertices are the vertices
of a face of the E8 root polytope. We prove that, apart from two exceptions,
two such cliques are conjugate under the automorphism group of Γ if and only
if they are isomorphic as colored graphs. Moreover, for an isomorphism f from
one such clique K to another, we give necessary and sufficient conditions for f
to extend to an automorphism of Γ, in terms of the restrictions of f to certain
special subgraphs of K of size at most 7.

1. Introduction
Let Λ be the E8 lattice, that is, the unique positive-definite, even, unimodular lattice
of dimension 8. More concretely, let Λ be given by

Λ =
{
a ∈ Z8 +

〈(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)〉 ∣∣∣∣∣
8∑
i=1

ai ∈ 2Z
}
.

Consider the E8 root system E in Λ given by
E = {a ∈ Λ | ‖a‖ =

√
2}.

In this artice we study a graph on the elements in E, which we call roots. By a
graph we mean a pair (V,D), where V is a set of elements called vertices, and D
a subset of the powerset of V of which every element has cardinality 2; elements
in D are called edges, and the size of the graph is the cardinality of V . By a colored
graph we mean a graph (V,D) together with a map ϕ : D −→ C, where C is any set,
whose elements we call colors; for an element d ∈ D we call ϕ(d) its color. If (V,D)
is a colored graph with color function ϕ, we define a colored subgraph of (V,D) to
be a pair (V ′, D′) with a map ϕ′, such that V ′ is a subset of V , while D′ is a subset
of the intersection of D with the powerset on V ′, and ϕ′ is the restriction of ϕ to D′.
Finally, we define a clique of a colored graph to be a complete colored subgraph.

Let Γ be the complete colored graph whose vertex set is E, of which the color
function on the edge set is induced by the dot product. The different colors of the
edges in Γ are −2,−1, 0, 1. For a subset c ⊆ {−2,−1, 0, 1}, we denote by Γc the
colored subgraph of Γ with vertex set E and all edges whose color is an element in c.

Let W be the automorphism group of Γ. It is clear that if two cliques in Γ are
conjugate under the action of W , they must be isomorphic. The converse is not
always true, and in general it can be hard to determine whether two cliques in Γ
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are conjugate under the action of W . Dynkin and Minchenko studied in [DM10] the
bases of subsystems of E8, and classified for which isomorphism classes of these bases
being isomorphic implies being conjugate. They call these bases normal. In this
article, we extend this classification to a large set of cliques in Γ (more specifically,
cliques of type I, II, III, or IV, as defined below). In Theorem 1.1 we show that with
two exceptions, two such cliques are isomorphic if and only if they are conjugate.
One of the exceptions, which is the clique described in Theorem 1.1 (i), is one of
the bases (of the system 4A1) that was also found as not being normal in [DM10],
Theorem 4.7. Additionally, in [DM10] the authors determine when a homomorphism
of two bases of subsytems extends to a homomorphism of the whole root system.
We answer the same question for cliques of type I, II, III, or IV in Theorem 1.2.

Although the classification of different types of cliques and their orbits is a finite
problem, because of the size of Γ it is practically impossible to naively let a computer
find and classify the cliques according to their W -orbit. In fact, we avoid using a
computer for our computations as much as possible.

The E8 root polytope is the convex polytope in R8 whose vertices are the roots in E.
By a face of the root polytope we mean a non-empty intersection of a hyperplane
in R8 and the root polytope, such that the root polytope lies entirely on one side of
the hyperplane. If the dimension of this intersection is k then we call this a k-face,
and a 7-face is called a facet. We study the following cliques in Γ, and their orbits
under the action of W .

(I) Monochromatic cliques
(II) Cliques whose vertices are the vertices of a face of the E8 root polytope
(III) Cliques of size at most three
(IV) For all c 6= {−1, 0, 1}, the maximal cliques in Γc

More specifically, we prove the following theorem.

Theorem 1.1. Let K1, K2 be two cliques in Γ of types I, II, III, or IV. Then the
following hold.

(i) If both K1 and K2 are of type I with color 0 and of size 4, then K1 and K2
are conjugate under the action of W if and only if the vertices sum to an element
in 2Λ for both K1 and K2, or for neither.
(ii) If both K1 and K2 are of type I with color 1 and of size 7, then K1 and K2
are conjugate under the action of W if and only if the vertices sum to an element
in 2Λ for both K1 and K2, or for neither; this is equivalent to K1 and K2 both
being maximal or both being non-maximal, respectively, under inclusion in Γ1.
(iii) In all other cases, K1 and K2 are conjugate under the action of W if and only
if they are isomorphic as colored graphs.

Furthermore, we give conditions for an isomorphism of two cliques of types I, II, III
or IV to extend to automorphisms of the lattice Λ. To this end we introduce the
following colored graphs.
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Here α is either −1 or 1, two disjoint vertices have an edge of color 0 between them,
and all other edges have color 1.

Theorem 1.2. Let K1, K2 be two cliques in Γ of types I, II, III, or IV, and let
f : K1 −→ K2 be an isomorphism between them. The following hold.

(i) The map f extends to an automorphism of Λ if and only if for every ordered
sequence S = (e1, . . . , er) of distinct roots in K1 such that the colored graph on
them is isomorphic to A, B, Cα, D, or F, its image f(S) = (f(e1), . . . , f(er)) is
conjugate to S under the action of W .
(ii) If S = (e1, . . . , er) is a sequence of distinct roots in K1 such that the colored
graph on them is isomorphic to either A or B, then S and f(S) are conjugate
under the action of W if and only if the sets {e1, . . . , er} and {f(e1), . . . , f(er)}
are.
(iii) If K1 and K2 are maximal cliques, both in Γ−1,0 or both in Γ−2,−1,0, and
S = (e1, . . . , e5) is a sequence of roots in K1 such that the colored graph on them
is isomorphic to C−1 with e1 · e4 = e2 · e5 = −1, then S and f(S) are conjugate
under the action of W if and only if both e = e1 + e2 + e3 − e4 − e5 and f(e) are
in the set {2f1 + f2 | f1, f2 ∈ E}, or neither are.
(iv) If K1 and K2 are maximal cliques in Γ−2,0,1, and S = (e1, . . . , er) is a se-
quence of distinct roots inK1 such that the colored graph G on them is isomorphic
to C1, D, or F , then S and f(S) are conjugate under the action of W if and only
if the sets {e1, . . . , er} and {f(e1), . . . , f(er)} are, or equivalently, if and only if
the following hold.
• If G ∼= C1, both

∑5
i=1 ei and

∑5
i=1 f(ei) are in the set {2f1 + f2 | f1, f2 ∈ E},

or neither are.
• If G ∼= D, both

∑5
i=1 ei and

∑5
i=1 f(ei) are in {2f1 +2f2 | f1, f2 ∈ E}, or neither

are.
• If G ∼= F , then both

∑6
i=1 ei and

∑6
i=1 f(ei) are in 2Λ, or neither are.

Remark 1.3. Note that to apply Theorem 1.2 (i) to an isomorphism f , we have to
know whether certain ordered sequences or roots are conjugate. Theorem 1.2 (ii), in
combination with Theorem 1.1 (i) and (ii), tells us how to verify this when the colored
graph on the roots in an ordered sequence is isomorphic to A or B. Theorem 1.2 (iii)



4 ROSA WINTER AND RONALD VAN LUIJK

and (iv) tells us how to verify this when the colored graph on the roots in an ordered
sequence is isomorphic to Cα, D, or F .

Remark 1.4. In the proof of Theorem 1.2, we will specify for each type of K1
and K2 which of the graphs A, B, Cα, D, and F , are needed to check whether an
isomorphism f extends. Of course one can see this partially from the size and the
colors, but it turns out that we can make stronger statements. For example, sur-
prisingly, an isomorphism between two maximal graphs in Γ0,1 always extends, and
even uniquely (Lemma 5.33). In the table in Remark 6.1 we show the requirements
for each type of K1 and K2.

As we mentioned before, because of the size of Γ it is practically impossible to
naively let a computer find and classify all cliques of the above types according to
theirW -orbit. This holds mainly for the results in Section 5, where we study cliques
of type IV. This is the only section where we use a computer program, but without
using results from the previous sections to minimize the computations it would have
been practically undoable. Checking that two cliques are isomorphic is easily done
by hand for types I, II, and III, since with one exception of size fourteen, they are
all of size at most eight (see Sections 3 and 4). For type IV we give necessary and
sufficient invariants to check if two large cliques are isomorphic in Section 5.

The orbits of the faces of the E8 root polytope under the action of W are described
in [Cox30], Section 7.5. These include all monochromatic cliques of color 1 (see
Proposition 2.4). We give a different, more group-theoretical proof that W acts
transitively on one type of the facets, see Corollary 3.16. The orbits of ordered
sequences of the vertices in the faces (except for one type of facets) have been
described in [Man74], Corollary 26.8. We summarize his results in Proposition 2.12.
Monochromatic cliques of color 0 are orthogonal sets, and their orbits under the
action of W are described in [DM10], Corollary 3.3. We describe the action of W
on the ordered sequences of orthogonal roots in Proposition 4.4.

Our inspiration to study the E8 root system and the cliques in Γ is the connection to
del Pezzo surfaces of degree one. Such surfaces have exactly 240 lines, and there is
a bijection between these lines and a root system that is isomorphic to E8. We have
studied the maximal number of lines on these surfaces that go through one point,
which will be published in future work. This led us to studying cliques in the colored
intersection graph on these lines (which is isomorphic to Γ). A good reference for
these surfaces and their lines is [Man74], Chapter IV. In Remarks 2.8, 3.5, 3.22,
4.11, and 5.1, we explain how some of our results translate to this geometric view.

We split the article in chapters that deal with one or more of the types I, II, III,
or IV. Note that these four types do not exclude each other, and some results in
one section may be part of a result in another section. We ordered the sections such
that each section builds as much on the previous ones as possible.
Section 2 states all the needed definitions as well as many known results about E8
and the action of the Weyl group, and the relation with del Pezzo surfaces. We
also set up the notation for the rest of this article. The reader that is familiar with
root systems, and with E8 in particular, can skip this section. Section 3 contains all
results on the facets of the E8 root polytope, and cliques of type III. Section 4 deals
with cliques of type I. Section 5 classifies all cliques of type IV. This is the biggest



THE ACTION OF THE WEYL GROUP ON THE E8 ROOT SYSTEM 5

section, and the only section where we use a computer for some of the results (from
Section 5.3 onwards). The results from this section are summarized in the tables in
the appendices. Finally, we prove Theorems 1.1 and 1.2 in Section 6.

All computations are done in magma ([BCP97]). The code that we used can be found
in [Win]. We want to thank David Madore, who gave us useful references for results
on E8 and the action of W . Moreover, there is a great interactive view of E8 on
his website http://www.madore.org/~david/math/e8w.html, which has been very
insightful.

2. Background: the Weyl group and the E8 root polytope
Let Λ, E, Γ, and W be as defined in the introduction. In this section we recall some
well-known results about these objects, the Weyl group, and the E8 root polytope.
We also make a first step in proving Theorems 1.1 and 1.2, by showing that for two
cliques of type I, II, III, or IV in Γ that are isomorphic as colored graphs, there is a
type that they both belong to (Lemma 2.13).

Useful references for root systems and the Weyl group are [Bou81], Chapter 6, and
[Hum72], Chapter III.

The subgroup of the isometry group of R8 that is generated by the reflections in
the hyperplanes orthogonal to the roots in E is called the Weyl group, and denoted
by W8. This group permutes the elements in E, and since these roots span R8,
the action of W8 on E is faithful. The Weyl group is therefore finite: it has order
696729600 = 214 · 35 · 52 · 7. It is equal to the automorphism group of the E8 root
system ([Hum72], section 12.2), hence also to the automorphism group of the root
lattice Λ, and to the group W .

Lemma 2.1. The Weyl group acts transitively on the E8 root system.

Proof. [Hum72], Section 10.4, Lemma C. �

Note that the roots in E are of two types. Either they are of the form
(
±1

2 , . . . ,±
1
2

)
,

where an even number of entries is negative (giving 27 = 128 roots), or exactly two
entries are non-zero, and they can independently be chosen to be −1 or 1 (giving
4 ·
(8

2
)

= 112 roots).

Proposition 2.2. The absolute value of the dot product of any two elements in E
is at most 2. Let e ∈ E be a root. Then e has dot product 2 only with itself, and
dot product −2 only with its inverse −e. There are exactly 56 roots f ∈ E with
e · f = 1, there are exactly 56 roots g ∈ E with e · g = −1, and there are exactly 126
roots in E that are orthogonal to e.

Proof. From Cauchy-Schwarz it follows that for e, e′ ∈ E we have
|e · e′| ≤ ‖e‖ · ‖e′‖ = 2,

and equality holds if and only if e, e′ are a scalar multiple of each other. Since all
roots are primitive, it follows that e · e′ = 2 if and only if e = e′, and e · e′ = −2 if
and only if e = −e′. SinceW acts transitively on E (Lemma 2.1), to count the other
cases it suffices to prove this for one element in E. Take e = (1, 1, 0, 0, 0, 0, 0, 0) ∈ E.
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The roots f ∈ E with e · f = 1 are of the form f = (a1, . . . , a8) with a1 + a2 = 1.
So for these roots we either have a1 = a2 = 1

2 , which gives 32 different roots, or
{a1, a2} = {0, 1}, which gives 24 different roots. This gives a total of 56 roots.
For f ∈ E, we have e · f = 1 if and only if e · −f = −1, so this gives also 56 roots
g ∈ E with e · g = −1.
The roots in E that are orthogonal to e are of the form f = (a1, . . . , a8) with
a1 + a2 = 0. So for these roots we have a1 = a2 = 0, which gives 60 roots, or
{a1, a2} = {−1, 1}, which gives 2 roots, or {a1, a2} =

{
−1

2 ,
1
2

}
, which gives 64 roots.

This gives a total of 126 roots. �

We continue with results on the E8 root polytope. Coxeter described all faces of
the E8 root polytope, which he called the 421 polytope, in [Cox30]. The faces come
in two types: k-simplices (for k ≤ 7), given by k + 1 vertices with angle π

3 and
distance

√
2 between any two of them, and k-crosspolytopes (for k = 7), given

by 2k vertices where every vertex is orthogonal to exactly one other vertex, and has
angle π

3 and distance
√

2 with all the other vertices. We summarize his results in
Propositions 2.4 and 2.5.

Lemma 2.3. Two vertices in the E8 root polytope have distance
√

2 between them
if and only if their dot product is one.

Proof. For e, f ∈ E we have ‖e− f‖2 = e2 − 2 · e · f + f2 = 4− 2 · e · f. �

Proposition 2.4. For k ≤ 7, the set of k-simplices in the E8 root polytope is given
by

{{e1, . . . , ek+1} | ∀i : ei ∈ E; ∀j 6= i : ei · ej = 1},
where a k-simplex is identified with the set of its vertices. For k ≤ 6, the k-simplices
in the E8 root polytope are exactly its k-faces.

Proof. The vertices in a k-simplex have dot product 1 by the previous lemma. The
fact that the k-faces are exactly the k-simplices for k ≤ 6 is in [Cox30], section 7.5
or the table on page 414. �

Proposition 2.5. The facets of the E8 root polytopes are exactly the 7-simplices
and the 7-crosspolytopes contained in it. The set of 7-crosspolytopes is given by{

{{e1, f1}, . . . , {e7, f7}}
∣∣∣∣ ∀i ∈ {1, . . . , 7} : ei, fi ∈ E; ei · fi = 0;
∀j 6= i : ei · ej = ei · fj = fi · fj = 1.

}
,

where a 7-crosspolytope is identified by the set of its 7 pairs of orthogonal roots.

Proof. The facets are the 7-simplices and the 7-crosspolytopes by [Cox30], Sec-
tion 7.5 or see the table on page 414. The dot products follow from Lemma 2.3. �

Remark 2.6. We also show that the 7-simplices and the 7-crosspolytopes in the E8
root polytope are facets in Remarks 3.6 and 3.18.

Corollary 2.7. The E8 root polytope has 6720 1-faces, 60480 2-faces, 241920
3-faces, 483840 4-faces, 483840 5-faces, 207360 6-faces, 17280 7-simplices, and 2160
7-crosspolytopes.

Proof. See [Cox30], p.414. �
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Remark - analogy with geometry 2.8. Let us give a quick analogy with
geometry, which was our motivation to study the E8 root lattice. More on this can
be found in [Man74], Chapter IV, and in a lot more detail than sketched here.
Let X be a del Pezzo surface of degree one over an algebraically closed field k.
Then X is isomorphic to the blow up of P2

k in eight points in general position
(meaning no three on a line, no six on a conic, and no eight on a cubic that is
singular at one of them). Let KX be the class in Pic X of the anticanonical divisor
of X, and let K⊥X be the orthogonal complement of KX in the lattice Pic X. Let(
R⊗K⊥X , 〈·, ·〉

)
be the Euclidean vector space with inner product 〈·, ·〉 defined by the

negative of the intersection pairing in Pic X. Classes in K⊥X with self intersection −2
(so inner product 2 in R ⊗ K⊥X) form a root system within this vector space, and
this root system is isomorphic to E8.
It is well known that Pic X contains 240 classes c with c2 = c · KX = −1, called
exceptional classes. Let C be the set of exceptional classes in Pic X. For c ∈ C we
have c+KX ∈ K⊥X and 〈c+KX , c+KX〉 = 2, and this gives a bijection between C and
the root system in R⊗K⊥X , such that 〈c1 +KX , c2 +KX〉 = 1− c1 · c2. Therefore the
group of permutations of C that preserves the intersection multiplicity is isomorphic
to the Weyl group W8. Moreover, studying the colored intersection graph of C,
where colors are given by the intersection multiplicities, is equivalent to studying
the colored graph of the E8 root system, where colors are given by the dot products.
Throughout this article, we will remark on some of the analogies of the results for
the set C.
For example, the vertices of a k-simplex in the E8 root polytope correspond to a
sequence of k+ 1 exceptional classes in C that are pairwise disjoint. Moreover, for r
pairwise disjoint exceptional curves e1, . . . , er (for 1 ≤ r ≤ 7), the exceptional curves
that are disjoint to e1, . . . , er are isomorphic to the exceptional curves of the del Pezzo
surface of degree r + 1 that is obtained by blowing down e1, . . . , er. We know the
number of exceptional curves on del Pezzo surfaces (see [Man74], Table IV.9), and
we can use this to compute the number of k-faces of the E8 root polytope for k ≤ 5.

Remark 2.9. For k ≤ 5, the statement in Corollary 2.7 also follows from the last
part of Remark 2.8 and Table (IV.9) in [Man74]: we have

240 · 56
2 = 6720, 240 · 56 · 27

3! = 60480, 240 · 56 · 27 · 16
4! = 241920,

and so on. For k equal to 6 and for the 7-simplices, the statement is in Proposi-
tion 4.7. For the 7-crosspolytopes it follows from Lemma 3.14, see Remark 3.15.

The following propositions state results about the action of the Weyl group on the
faces of the E8 root polytope.

Proposition 2.10. The group W acts transitively on the set of k-faces for k ≤ 5.
There are two orbits of facets.

Proof. In [Cox30], Section 7.5, it is shown that all k-simplices are conjugate for
k ≤ 5, and that any two facets of the same type are conjugate as well. We know
that there are two types of facets from Proposition 2.5. �

Remark 2.11. There are two orbits of 6-faces, which we describe in Proposition 4.7.
See also Remark 4.10.
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We know something even stronger, namely, the action ofW on the ordered sequences
of roots in faces of the E8 root polytope.

Proposition 2.12. For all r ≤ 8 such that r 6= 7, the group W acts transitively
on the set

Rr = {(e1, . . . , er) ∈ Es | ∀i 6= j : ei · ej = 1}.
For r = 7, there are two orbits under the action of W .

Proof. In Remark 2.8 we describe a bijection between E and the set C of 240 ex-
ceptional curves on a del Pezzo surface of degree one, where two elements in E have
dot product a if and only if the two corresponding elements in C have intersection
product 1− a. This bijection respects the action of W , and under this bijection the
set Rr corresponds to the set of sequences of length r of disjoint exceptional curves.
The statement now follows from [Man74], Corollary 26.8. �

The following lemma is the first step in proving Theorems 1.1 and 1.2.

Lemma 2.13. Let K1,K2 be two cliques in Γ of type I, II, III, or IV that are
isomorphic. Then there is a type I, II, III, or IV that they both belong to.

Proof. If a clique is of type I or III, then any clique that is isomorphic to it is of the
same type. If K1 is of type II, then its vertices form a k-simplex (for k ≤ 7) or a k-
crosspolytope (for k = 7) by Proposition 2.4 and Proposition 2.5. In both cases, K2
is of the same type, again by Proposition 2.4 and Proposition 2.5. Analogousyly,
if K2 is of type II then so is K1. Finally, if K1 and K2 are both not of types I, II,
or III, then they are automatically both of type IV. �

We conclude this section by stating a lemma that will be used throughout this
article.

Lemma 2.14. Let H be a group, let A,B be H-sets, and f : A −→ B a morphism
of H-sets. Then the following hold.

(i) If H acts transitively on A, then H acts transitively on f(A).
(ii) If H acts transitively on B, then all fibers of f have the same cardinality.
(iii) If H acts transitively on A and A is finite, then all non-empty fibers of f have
the same cardinality, say n, and |f(A)| = |A|

n .
(iv) If H acts transitively on f(A), and there is an element b ∈ f(A) such that Hb

acts transitively on f−1(b), then f acts transitively on A.

Proof.
(i) Take f(a), f(a′) ∈ f(A) with a, a′ ∈ A. Assume that H acts transitively on A,
then there is an h ∈ H such that ha = a′. Since f is a morphism of H-sets, we
have hf(a) = f(ha) = f(a′), so H acts transitively on f(A).
(ii) Take b, b′ ∈ B. Since H acts transitively on B, there is an h ∈ H such that
hb = b′, so |f−1(b′)| = |f−1(hb)| = |hf−1(b)| = |f−1(b)|.
(iii) Take b, b′ ∈ B such that f−1(b) and f−1(b′) are non-empty. Then we have
b, b′ ∈ f(A). Since H acts transitively on f(A) by (i), it follows from (ii) that
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f−1(b) and f−1(b′) have the same cardinality, say n. It is now immediate that
|A| = |f−1(B)| =

∑
b∈f(A) n = n|f(A)|, so |f(A)| = |A|

n .

(iv) Take b ∈ f(A) such that Hb acts transitively on f−1(b). Take a, a′ ∈ A.
Since H acts transitively on f(A), there are h, h′ ∈ H such that hf(a) = b and
h′f(a′) = b. Then ha and h′a′ are contained in f−1(b). Since Hb acts transitively
on f−1(b), there is an element g ∈ Hb with gha = h′a′. So we have h′−1gha = a′

and H acts transitively on A. �

3. Facets of the E8 root polytope and cliques of size at most three
In this section we study the cliques in Γ of type III, and the facets of the E8 root
polytope. We give an alternative proof for the fact that W acts transitively on the
set of facets that are 7-crosspolytopes (Corollary 3.16), and we prove the following
propositions.

Proposition 3.1. For a ∈ {±1,−2, 0}, The group W acts transitively on the set
{(e1, e2) ∈ E2 | e1 · e2 = a}.

Proposition 3.2. For a, b, c ∈ {−2,−1, 0, 1}, the group W acts transitively on the
set

{(e1, e2, e3) ∈ E3 | e1 · e2 = a, e2 · e3 = b, e1 · e3 = c},
in all cases where it is not empty.

Note that these two propositions describe the orbits under the action of W of se-
quences of the vertices of cliqes in Γ, hence they also prove Theorem 1.2 for cliques
of Type III; see Corollary 3.33. The proof of Proposition 3.1 can be found below
Proposition 3.13, and the proof of Proposition 3.2 below Lemma 3.32. Throughout
this section we do not use any computer programs. More background on the E8
root polytope can be found in [Cox30] and [Cox48].

We start by some results on the facets of the E8 root polytope that are 7-simplices.
The results on the facets that are 7-crosspolytopes are in Lemmas 3.16 and 3.17.
Consider the set

U = {(e1, e2, e3, e4, e5, e6, e7, e8) ∈ E8 | ∀i 6= j : ei · ej = 1}.
Note that an element in U is a sequence of eight roots that form a 7-simplex. Define
the following roots, and note that (u1, . . . , u8) is an element in U .

u1 = (1, 1, 0, 0, 0, 0, 0, 0); u5 = (1, 0, 0, 0, 0, 1, 0, 0);
u2 = (1, 0, 1, 0, 0, 0, 0, 0); u6 = (1, 0, 0, 0, 0, 0, 1, 0);
u3 = (1, 0, 0, 1, 0, 0, 0, 0); u7 = (1, 0, 0, 0, 0, 0, 0, 1);

u4 = (1, 0, 0, 0, 1, 0, 0, 0); u8 =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
.

Lemma 3.3. Every element in U generates a sublattice of index 3 of the root lat-
tice Λ, and the group W acts freely on U .

Proof. By Proposition 2.12, it is enough to check the first statement for one element
in U . The matrix whose i-th row is ui for i ∈ {1, . . . , 8} has determinant 3, so
u1, . . . , u8 are linearly independent and generate a sublattice of rank 8 and index 3
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in Λ. Take w ∈ W such that there is an element u ∈ U with w(u) = u. Then w
fixes the sublattice generated by u, so for all x ∈ Λ we have 3w(x) = w(3x) = 3x.
Since Λ is torsion free, this implies that w fixes all of Λ. It follows that w is the
identity. We conclude that the action of W on U is free. �

Corollary 3.4. Let u = (e1, . . . , e8) be an element in U . Then 1
3
∑8
i=1 ei is con-

tained in Λ.

Proof. By Lemma 3.3, we know that the roots e1, . . . , e8 generate a lattice M of
index 3 in Λ. Set v = 1

3
∑8
i=1 ei. Since v ·ei = 3 for i ∈ {1, . . . , 8}, we have 1

3v ∈M
∨,

where M∨ is the dual lattice of M . But the dual lattice Λ∨ has index 3 in M∨, so
it follows that 3 · 1

3v = v is contained in Λ∨. Since Λ is unimodular, it is self dual,
so v is contained in Λ. �

Remark - analogy with geometry 3.5. Let X be a del Pezzo surface of
degree 1 and KX its canonical divisor, see Remark 2.8. Lemma 3.3 can be stated
in terms of X as follows. For every set of eight pairwise disjoint exceptional classes
c1, . . . , c8 there exists a unique class l such that we have KX = −3l +

∑8
i=1 ci

and (l, c1, . . . , c8) is a basis for Pic X; one can blow down the exceptional curves
corresponding to c1, . . . , c8 to eight points in P2, such that l is the class of the
pullback of a line in P2 that does not contain any of these eight points.

Remark 3.6. Let u = (e1, . . . , e8) be an element in U . We know that e1, . . . , e8
define a facet of the E8 root polytope. This also follows from from Corollary 3.4.
Indeed, for v = 1

3
∑8
i=1 ei we have v · ei = 3 for i ∈ {1, . . . , 8}, and we have

v · e = 1
3

8∑
i=1

ei · e ≤
1
3

8∑
i=1

1 = 8
3 < 3

for e ∈ E \ {e1, . . . , e8}. This implies that the whole E8 root polytope lies on one
side of the hyperplane given by v · x = 3, and the intersection of the polytope with
this hyperplane, which is exactly given by the convex combinations of e1, . . . , e8, lies
in the boundary of the polytope. Hence e1, . . . , e8 generate a facet of the E8 root
polytope, and v is the normal vector to this facet.

We will now prove part of Proposition 3.1.

Lemma 3.7. For any a ∈ {−2,±1}, the group W acts transitively on the set
Aa = {(e1, e2) ∈ E2 | e1 · e2 = a}.

Proof. The groupW acts transitively on A1 by Proposition 2.12. There is a bijection
between the W -sets A1 and A−1 given by

f : A1 −→ A−1, (e1, e2) 7−→ (e1,−e2).
It follows from Lemma 2.14 that W acts transitively on A−1, too. Finally, we have
a bijection

E −→ A−2, e 7−→ (e,−e),
so W acts transitively on A−2 by Proposition 2.12 and by Lemma 2.14. �
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Before we prove the rest of Proposition 3.1, we prove Proposition 3.2 for the cases
(a, b, c) = (−1,−1,−1) (Corollary 3.9) and (a, b, c) = (0, 0, 1) (Lemma 3.11), which
we will use later.

Lemma 3.8. For e1, e2 ∈ E with e1 · e2 = −1 there is a unique element e ∈ E with
e · e1 = e · e2 = −1, which is given by e = −e1 − e2.

Proof. Take e1, e2, e ∈ E with e1 ·e2 = −1 and e·e1 = e·e2 = −1. Set f = e1+e2+e.
Then we have ‖f‖ = 0, hence f = 0, so e = −e1 − e2. Therefore e is unique if it
exists. Moreover, we have ‖ − e1 − e2‖ =

√
2, so −e1 − e2 is an element in E that

satisfies the conditions. �

Corollary 3.9. The group W acts transitively on the W -set
{(e1, e2, e3) ∈ E3 | e1 · e2 = e2 · e3 = e1 · e3 = −1}.

Proof. By Lemma 3.8 there is a bijection between the sets
{(e1, e2) ∈ E2 | e1 · e2 = −1}

and
{(e1, e2, e3) ∈ E3 | e1 · e2 = e2 · e3 = e1 · e3 = −1},

given by (e1, e2) 7−→ (e1, e2,−e1 − e2). The statement now follows from Lemma 3.7
and Lemma 2.14. �

Lemma 3.10. Take e1, e2 ∈ E such that e1 · e2 = 1. Then there are exactly 72
elements of E orthogonal to e1 and e2.

Proof. By Lemma 3.7 it is enough to check this for fixed e1, e2 ∈ E with e1 · e2 = 1.
Set e1 = (1, 1, 0, 0, 0, 0, 0, 0), e2 = (1, 0, 1, 0, 0, 0, 0, 0). Then e1 · e2 = 1. An element
f ∈ E with f · e1 = f · e2 = 0 is of the form f = (a1, . . . , a8) with a1 + a2 = 0
and a1 + a3 = 0, hence a1 = −a2 and a2 = a3. If f is of the form

(
±1

2 , . . . ,±
1
2

)
,

then there are 32 such possibilities. If f has two non-zero entries, given by ±1,
then a1, a2, a3 should all be zero, which gives 40 possibilities. We find a total of 72
possibilities for f . �

Lemma 3.11. Consider the set
B = {(e1, e2, e3) ∈ E3 | e1 · e2 = e2 · e3 = 0; e1 · e3 = 1}.

We have |B| = 967680, and the following hold.
(i) The group W acts transitively on B.
(ii) For every element b = (e1, e2, e3) ∈ B, there are exactly 6 roots that have dot
product 1 with e1, e2 and e3. These 6 roots, together with e1 and e3, form a facet
in the set U .

Proof. From Proposition 2.2 and Lemma 3.10 we have
|B| = 240 · 56 · 72 = 967680.

Set e1 = (1, 1, 0, 0, 0, 0, 0, 0), e2 = (0, 0, 1, 1, 0, 0, 0, 0), and e3 = (1, 0, 0, 0, 1, 0, 0, 0).
Then b = (e1, e2, e3) is an element in B. Let Wb be its stabilizer in W and Wb its
orbit in B. Let Ub be the set

Ub = {e ∈ E | e · e1 = e · e2 = e · e3 = 1}.
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For an element e = (a1, . . . , a8) ∈ Ub, we have a1 +a2 = a3 +a4 = a1 +a5 = 1. From
this we find

Ub =



(1, 0, 0, 1, 0, 0, 0, 0)
(1, 0, 1, 0, 0, 0, 0, 0)(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1
2

)(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2

)(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2

1
2 ,−

1
2

)(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2

)


.

We conclude that there are 6 roots that have dot product 1 with e1, e2, and e3. It
is obvious that these 6 elements, together with e1 and e3, form an element of the
set U .
We have |W ||Wb| = |Wb| ≤ |B|. We want to show that the latter is an equality. The
group Wb acts on Ub. Let w be an element of Wb that fixes all the roots in Ub. Since
the roots in {e1, e3} ∪ Ub form an element in U , by Lemma 3.3 this implies that w
is the identity. Therefore the action of Wb on Ub is faithful. This implies that Wb

injects into S6, so |Wb| ≤ 720. We now have

967680 = |W |720 ≤
|W |
|Wb|

= |Wb| ≤ |B| = 967680,

so we have equality everywhere and therefore we haveWb = B. We conclude thatW
acts transitively on B, proving (i). Part (ii) clearly holds for the element b, and from
part (i) it follows that it holds for all elements in B. �

We proceed to prove the rest of Proposition 3.1.

Lemma 3.12. For e1 = (1, 1, 0, 0, 0, 0, 0, 0) , e2 = (0, 0, 1, 1, 0, 0, 0, 0) ∈ E, there are
32 elements e in E such that e · e1 = 0 and e · e2 = 1.

Proof. Take f ∈ E with f · e1 = 0 and f · e2 = 1. Then f is of the form
f = (a1, a2, a3, a4, . . . , a8) with a1 + a2 = 0 and a3 + a4 = 1. If f is of the form(
±1

2 , . . . ,±
1
2

)
, then a1 = −a2 and a3 = a4 = 1

2 . There are 16 such possibilities.
If f has two non-zero entries given by ±1, then either a3 = 1, a1 = a2 = a4 = 0,
or a4 = 1, a1 = a2 = a3 = 0. This gives 16 possibilities. We find a total of 32
possibilities for f . �

Proposition 3.13. The group W acts transitively on the set
A0 = {(e1, e2) ∈ E2 | e1 · e2 = 0}.

Proof. Consider the set B′ = {(e1, e2, e3) ∈ E3 | e1 · e2 = e1 · e3 = 0; e2 · e3 = 1}.
Note that there is a bijection between theW -set B′ and theW -set B in Lemma 3.11,
given by (e, f, g) 7−→ (f, e, g). Therefore, the groupW acts transitively on B′ and we
have |B′| = 967680 by Lemma 3.11. We have a projection λ : B′ −→ A0 on the first
two coordinates. We show that λ is surjective. Fix the roots e1 = (1, 1, 0, 0, 0, 0, 0, 0)
and e2 = (0, 0, 1, 1, 0, 0, 0, 0) in E. Then (e1, e2) is an element of A0. Take e ∈ E,
then (e1, e2, e) is in B′ if and only if e · e1 = 0 and e · e2 = 1. By Lemma 3.12 this
gives 32 possibilities for e, so |λ−1((e1, e2))| = 32. Since W acts transitively on B′,
it follows from Lemma 2.14 that all non-empty fibers of λ have cardinality 32, and
|λ(B′)| = |B′|

32 = 30240. By Proposition 2.2 we have |A0| = 240 · 126 = 30240. We
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conclude that λ(B′) = A0. Hence λ is surjective. Therefore, the group W acts
transitively on A0 by Lemma 2.14. �

Proof of Proposition 3.1. This follows from the previous proposition together
with Lemma 3.7.

Before we continue proving Proposition 3.2, we complete our study on the facets of
the E8 root polytope. Define the set

C =
{
{{e1, f1}, . . . , {e7, f7}}

∣∣∣∣ ∀i ∈ {1, . . . , 7} : ei, fi ∈ E; ei · fi = 0;
∀j 6= i : ei · ej = ei · fj = fi · fj = 1.

}
.

Elements in C are facets that are 7-crosspolytopes by Proposition 2.4. We define
the following elements c1, . . . , c7, d1, . . . , d7. Note that {{c1, d1}, . . . , {c7, d7}} is an
element in C.

c1 = (1, 1, 0, 0, 0, 0, 0, 0) , d1 = (0, 0, 1, 1, 0, 0, 0, 0),
c2 = (1, 0, 1, 0, 0, 0, 0, 0) , d2 = (0, 1, 0, 1, 0, 0, 0, 0),
c3 = (1, 0, 0, 1, 0, 0, 0, 0), d3 = (0, 1, 1, 0, 0, 0, 0, 0),

c4 =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
, d4 =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)
,

c5 =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2

)
, d5 =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2

)
,

c6 =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2

)
, d6 =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2

)
,

c7 =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2

)
, d7 =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2

)
.

Lemma 3.14. For e1, e2 ∈ E with e1 · e2 = 0, there are exactly 12 elements e ∈ E
with e · e1 = e · e2 = 1. These 12 elements, together with e1 and e2, form an element
in C, and this is the unique element in C containing e1, e2.

Proof. By Proposition 3.13, it is enough to check this for fixed e1, e2 ∈ E with
e1 · e2 = 0. Take e1 = c1, e2 = d1 in E. For a root e = (a1, . . . , a8) in E
with e · c1 = e · d1 = 1, we have either a1 = a2 = a3 = a4 = 1

2 , which im-
plies e ∈ {c4, . . . , c7, d4, . . . , d7}, or {a1, a2} = {a3, a4} = {0, 1}, which implies
e ∈ {c2, c3, d2, d3}. Therefore there are exactly 12 possibilities {c2, . . . , c7, d2, . . . , d7}
for e, and we conclude that {{c1, d1}, . . . , {c7, d7}} is the unique element in C con-
taining c1, d1. �

Remark 3.15. Since elements in C correspond to 7-crosspolytopes, we know that
|C| = 2160 from Corollary 2.7. This also follows from the previous lemma. Recall
the set A0 = {(e1, e2) ∈ E2 | e1 · e2 = 0}. By Lemma 3.14, for every element
(e1, e2) in A0 there is a unique element in C containing e1, e2. But every element
in C contains seven pairs f1, f2 such that (f1, f2) and (f2, f1) are in A0, so the map
A0 −→ C is fourteen to one. Hence we have |C| = |A0|

14 = 240·126
14 = 2160.

Corollary 3.16. The group W acts transitively on C.
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Proof. Consider the set A0 = {(e1, e2) ∈ E2 | e1 · e2 = 0}. By Proposition 3.13, the
group W acts transitively on A0. By Lemma 3.14 there is a map A0 −→ C, sending
(e1, e2) to the unique element in C that contains e1 and e2. This map is clearly
surjective. It follows from Lemma 2.14 that W acts transitively on C. �

Lemma 3.17. Every element in C generates a sublattice of finite index in Λ.

Proof. By Corollary 3.16, it is enough to check this for one element in C. Take the
element {{c1, d1}, . . . , {c7, d7}} in C, where the ci, di are defined above Lemma 3.14.
The matrix whose rows are the vectors c1, . . . , c7, d1, . . . , d7 has rank 8, so these 14
elements generate a sublattice L of finite index in Λ. �

Remark 3.18. Let {{e1, f1}, . . . , {e7, f7}} be an element in C, and let c be the set
c = {e1, . . . , e7, f1, . . . , f7}. We know that the elements in c are the vertices of a
facet of the E8 root polytope. We show how this also follows from the previous
lemma. Take i ∈ {1, . . . , 7}, then we have (ei + fi) · e = 2 for all e ∈ c. Since the
elements in c generate a full rank sublattice, this implies that ei+fi = ej +fj for all
i, j ∈ {1, . . . , 7}. So the vector n = 1

7
∑7
i=1(ei+ fi) = e1 + f1 is an element in Λ with

n · e = 2 for e ∈ s. Take e ∈ E \ s, and note that e can not have dot product 1 with
both e1 and f1 by Lemma 3.14. It follows that we have n · e < 2, so the entire E8
root polytope lies on one side of the affine hyperplane given by n · x = 2. Moreover,
this hyperplane intersects the E8 root polytope in its boundary, and exactly in the
convex combinations of the roots e1, . . . , e7, f1, . . . , f7. Therefore these roots are the
vertices of a facet of the E8 root polytope with normal vector n.

We continue with Proposition 3.2, and prove it for (a, b, c) = (0, 0, 0). Consider the
sets

V3 = {(e1, e2, e3) ∈ E3 | ∀i 6= j : ei · ej = 0}
and

V4 = {(e1, e2, e3, e4) ∈ E4 | ∀i 6= j : ei · ej = 0}.

We begin by studying V4. To this end, recall the set U defined above Lemma 3.3,
and define the set

Z = {({e1, e2}, {e3, e4}, {e5, e6}, {e7, e8}) | ∀i : ei ∈ E; ∀j 6= i : ei · ej = 1}.

Remark 3.19. We have a surjective map U −→ Z by simply forgetting the order
of ei and ei+1 for i ∈ {1, 3, 5, 7}. Since W acts transitively on U (Proposition 2.12),
it follows from Lemma 2.14 that W acts transitively on Z. By Lemma 3.3, the
action of W on U is free, so we have |U | = |W |, and |Z| = |U |

24 = |W |
24 = 210 ·35 ·52 ·7.

We want to define a map α : Z −→ V4. To do this we use the following lemma.

Lemma 3.20. For an element z = ({e1, e2}, {e3, e4}, {e5, e6}, {e7, e8}) in Z, there
are unique roots f1, f2, f3, f4 ∈ E with

f1 · ei = 0, f1 · ej = 1 for i ∈ {1, 2}, j /∈ {1, 2};
f2 · ei = 0, f2 · ej = 1 for i ∈ {3, 4}, j /∈ {3, 4};
f3 · ei = 0, f3 · ej = 1 for i ∈ {5, 6}, j /∈ {5, 6};
f4 · ei = 0, f4 · ej = 1 for i ∈ {7, 8}, j /∈ {7, 8}.
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For these f1, f2, f3, f4 we have fi · fj = 0 for i 6= j, and 3
∑4
i=1 fi =

∑8
i=1 ei.

Proof. By Lemma 3.3, the elements e1, . . . , e8 generate a full rank sublattice of Λ,
so an element f ∈ E is uniquely determined by the intersection numbers f · ei for
i ∈ {1, . . . , 8}. We will show existence. Set v = 1

3
∑8
i=1 ei. By Corollary 3.4, the

vector v is an element in Λ. We have ‖v‖ =
√

8, and v · ei = 3 for i ∈ {1, . . . , 8}.
For i ∈ {1, 2, 3, 4}, set fi = v − e2i−1 − e2i. Then ‖fi‖ =

√
2, so fi ∈ E. Moreover,

f1, f2, f3, f4 satisfy the conditions in the lemma. �

We now define a map α : Z −→ V4, ({e1, e2}, . . . , {e7, e8}) 7−→ (f1, f2, f3, f4), where
f1, f2, f3, f4 are the unique elements found in Lemma 3.20.

Corollary 3.21. If (f1, f2, f3, f4) is an element in the image of α, then x =
∑4
i=1 fi

is a primitive element of Λ with norm
√

8.

Proof. Take (f1, f2, f3, f4) in the image of α, and let ({e1, e2}, . . . , {e7, e8}) ∈ Z be
such that (f1, f2, f3, f4) = α(({e1, e2}, . . . , {e7, e8})). Set x =

∑4
i=1 fi. Then we

have 3x =
∑8
i=1 ei by Lemma 3.20. It follows that ‖3x‖2 = 72, hence ‖x‖2 = 8.

Moreover, for any i ∈ {1, . . . , 8} we have 3x · ei = 9, hence x · ei = 3. This implies
that if we have x = m · x′ for some m ∈ Z, x′ ∈ Λ, then m|2 and m|3, so m = 1
and x is primitive. �

Remark - analogy with geometry 3.22. Let X be a del Pezzo surface of
degree one over an algebraically closed field, and C the set of exceptional classes
in Pic X. The map α has a nice description in the geometric setting, through the
bijection C −→ E, c 7−→ c + KX . Take z = ({e1, e2}, {e3, e4}, {e5, e6}, {e7, e8}) an
element in Z. The roots e1, . . . , e8 correspond to classes c1, . . . , c8 in C with ci ·cj = 0
for all i 6= j ∈ {1, . . . , 8}. These classes correspond to pairwise disjoint curves on X
that can be blown down to points P1, . . . , P8 in P2 such that ci is the class of the
exceptional curve above Pi for i ∈ {1, . . . , 8} (See [Man74]). The conditions for fi in
Lemma 3.20 are equivalent with fi being the strict transform on X of the line in P2

through P2i−1 and P2i for i ∈ {1, 2, 3, 4}. This geometrical argument immediately
proves the uniqueness of fi.

Let π : V4 −→ V3 be the projection on the first three coordinates. From the maps π
and α, transitivity on V3 will follow (Proposition 3.27). Let Y be the image of α.
We will show that V4 has two orbits under the action of W , given by Y and V4 \ Y
(Proposition 3.28). The following commutative diagram shows the maps and sets
that are defined.

U

Z V4 V3

Y

α π

Lemma 3.23. The map α is injective.
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Proof. Consider the roots in E given by
f1 = (1, 1, 0, 0, 0, 0, 0, 0) , f3 = (0, 0, 0, 0, 1, 1, 0, 0) ,
f2 = (0, 0, 1, 1, 0, 0, 0, 0) , f4 = (1,−1, 0, 0, 0, 0, 0, 0) .

Then v = (f1, f2, f3, f4) is an element in V4. Let ({e1, e2}, {e3, e4}, {e5, e6}, {e7, e8})
be an element in the fiber of α above v. Then we have

e1 · f1 = e2 · f1 = 0 and e1 · fi = e2 · fi = 1 for all i 6= 1;(1)
e3 · f2 = e4 · f2 = 0 and e3 · fi = e4 · fi = 1 for all i 6= 2;
e5 · f3 = e6 · f3 = 0 and e5 · fi = e6 · fi = 1 for all i 6= 3;
e7 · f4 = e8 · f4 = 0 and e7 · fi = e8 · fi = 1 for all i 6= 4.

Write e1 = (a1, . . . , a8). Then (1) implies a1 + a2 = 0 and a1 − a2 = 1, and
a3 +a4 = a5 +a6 = 1. So e1 is

(
1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2

)
or
(

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2

)
,

and e2 is the other. Analogously we find:
{e3, e4} = {(1, 0, 0, 0, 0, 1, 0, 0) , (1, 0, 0, 0, 1, 0, 0, 0)} ,
{e5, e6} = {(1, 0, 0, 1, 0, 0, 0, 0) , (1, 0, 1, 0, 0, 0, 0, 0)} ,

{e7, e8} =
{(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2

)
,
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)}
.

Hence the fiber above v has cardinality one. Since W acts transitively on Z, we
conclude from Lemma 2.14 that all non-empty fibers of α have cardinality one, so α
is injective. �

Remark 3.24. By the previous lemma, there is a bijection between the sets Z and
α(Z) = Y . Since α is a W -map, it follows that Y is a W -set, and that W acts
transitively on Y by Lemma 2.14.

We state two more lemmas before we prove that W acts transitively on V3.

Lemma 3.25. Consider the elements in E given by
e1 = (1, 1, 0, 0, 0, 0, 0, 0); f1 = (0, 0, 0, 0, 0, 0, 1, 1)
e2 = (0, 0, 1, 1, 0, 0, 0, 0); f2 = (0, 0, 0, 0, 0, 0,−1,−1).
e3 = (0, 0, 0, 0, 1, 1, 0, 0);

Then v = (e1, e2, e3, f1) and v′ = (e1, e2, e3, f2) are elements in V4 that are not in Y .

Proof. It is easy to check that v and v′ are in V4. We have

e1 + e2 + e3 + f1 = 2 ·
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
and

e1 + e2 + e3 + f2 = 2 ·
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2

)
,

hence both e1 + e2 + e3 + f1 and e1 + e2 + e3 + f2 are not primitive elements in Λ
and therefore not contained in Y by Corollary 3.21. �

Lemma 3.26. For two elements e1, e2 ∈ E2 with e1 · e2 = 0, there are exactly 60
roots e ∈ E such that e1 · e = e2 · e = 0.

Proof. By Proposition 3.13, it is enough to check this for two orthogonal roots e1, e2
in E. Set e1 = (1, 1, 0, 0, 0, 0, 0, 0), e2 = (0, 0, 1, 1, 0, 0, 0, 0). An element f ∈ E with
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f · e1 = f · e2 = 0 is of the form f = (a1, a2, a3, . . . , a8) with a1 = −a2 and a3 = −a4.
If f is of the form

(
±1

2 , . . . ,±
1
2

)
, then there are 32 such possibilities. If f has two

non-zero entries, given by ±1, then there are 28 possibilities. We find a total of 60
possibilities for f . �

The following graph summarizes the results in Proposition 2.2 and Lemmas 3.8,
3.12 and 3.26. Vertices are roots, and the number in a subset is its cardinality. The
number on an edge between two subsets is the dot product of two roots, one from
each subset.

e1

−e1

126
e2

−e2

60

32

32

0

-2

1

1

-1

-1

0

56

−e3 −e1 − e3

-1

56

e3

2
-2

-1
0

1

Proposition 3.27. Let v = (f1, f2, f3) be an element of V3. The following hold.
(i) We have |V3| = 1814400, and the group W acts transitively on V3.
(ii) We have |π−1(v)| = 26, and |π−1(v) ∩ Y | = 24.
(iii) For {(f1, f2, f3, u), (f1, f2, f3, u

′)} = π−1(v) \ Y , we have u = −u′, and for
(f1, f2, f3, e) ∈ π−1(v) ∩ Y , we have e · u = e · u′ = 0.

Proof. From Proposition 2.2 and Lemma 3.26 it follows that
|V3| = 240 · 126 · 60 = 1814400.

Consider the map λ = π ◦ α : Z → V3. Note that λ is a W -map, since both π and α
are. We want to show that λ is surjective. Set

f1 = (1, 1, 0, 0, 0, 0, 0, 0), f2 = (0, 0, 1, 1, 0, 0, 0, 0), f3 = (0, 0, 0, 0, 1, 1, 0, 0).
Then we have v = (f1, f2, f3) ∈ V3. Define the roots

e1 =
(

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2

)
, e5 = (1, 0, 0, 1, 0, 0, 0, 0) ,

e2 =
(

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2

)
, e6 = (1, 0, 1, 0, 0, 0, 0, 0) ,

e3 = (1, 0, 0, 0, 0, 1, 0, 0) , e7 =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2

)
e4 = (1, 0, 0, 0, 1, 0, 0, 0) , e8 =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
.
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Note that for i 6= j we have ei · ej = 1, so ({e1, e2}, {e3, e4}, {e5, e6}, {e7, e8}) is an
element in Z. We have

f1 · e1 = f1 · e2 = 0 and f1 · ei = 1 for all i 6∈ {1, 2};
f2 · e3 = f2 · e4 = 0 and f2 · ei = 1 for all i 6∈ {3, 4};
f3 · e5 = f3 · e6 = 0 and f3 · ei = 1 for all i 6∈ {5, 6},

so λ (({e1, e2}, {e3, e4}, {e5, e6}, {e7, e8})) = v. Hence the fiber of λ above v is not
empty, and we want to compute its cardinality. We first compute the cardinal-
ity of the fiber of π above v. For an element f = (a1, . . . , a8) ∈ E, we have
(f1, f2, f3, f) ∈ V4 if and only if a1 + a2 = a3 + a4 = a5 + a6 = 0. This gives
16 possibilities for f with ai ∈

{
±1

2

}
for i ∈ {1, . . . , 8}, and 10 possibilities for f

where the two non-zero entries are ±1. We conclude that |π−1(v)| = 26. Set
g1 = (0, 0, 0, 0, 0, 0, 1, 1) and g2 = (0, 0, 0, 0, 0, 0,−1,−1), then u = (f1, f2, f3, g1)
and u′ = (f1, f2, f3, g2) are both elements in π−1(v). By Lemma 3.25, we know
that the fibers of α above u and u′ are empty. Since α is injective, this implies
|λ−1(v)| ≤ 24. Since λ−1(v) is not empty, by Lemma 2.14, we have |λ(Z)| = |Z|

|λ−1(v)| .
Combining this, we find

|Z|
24 ≤

|Z|
|λ−1(v)| = |λ(Z)| ≤ |V3| = 1814400 = |Z|24 .

So we have equality everywhere, hence |λ−1(v)| = 24, and |λ(Z)| = |V3|, so λ is
surjective. Since W acts transitively on Z, we conclude from Lemma 2.14 that W
acts transitively on V3, too. This proves (i). To prove (ii), note that we showed
that |π−1(v)| = 26 and |λ−1(v)| = 24, and since α is injective, we have the equality
|π−1(v) ∩ Y | = |λ−1(v)| = 24. Since π is a W -map, and W acts transitively on V3,
the result holds for all elements in V3. Finally, (iii) is an easy check for the element v,
after writing down the 26 elements in π−1(v). Since W acts transitively on V3, this
holds for all elements in V3. �

Proposition 3.28. The set V4 has two orbits under the action of W , which are Y
and V4\Y . We have |Y | = 43545600 and |V4\Y | = 3628800. An element (e1, . . . , e4)
is in V4 \ Y if and only if

∑4
i=1 ei ∈ 2Λ.

Proof. From Remark 3.24 it follows that Y is an orbit under the action of W on V4.
Therefore O = V4 \ Y is also a W -set. Consider the restriction π|O of π to O. Let
e1, e2, e3, f1, f2 be as in Lemma 3.25, and set v = (e1, e2, e3), u = (e1, e2, e3, f1),
and u′ = (e1, e2, e3, f2). Then we have v ∈ V3, and u, u′ ∈ π|−1

O (v) by Lemma 3.25.
From Proposition 3.27 we know that |π−1(v) ∩ Y | = 24, so

∣∣∣π|−1
O (v)

∣∣∣ = 2. This
implies π|−1

O (v) = {u, u′}. Consider the element r in W given by the reflection
in the hyperplane that is orthogonal to f1. Since e1, e1, e3 are contained in this
hyperplane, the reflection r is contained in the stabilizer Wv in W of v. Moreover,
since f2 = −f1 , the reflection r interchanges f1 and f2, henceWv acts transitively on
π|−1
O (v). Since W acts transitively on V3 by Proposition 3.27, we conclude that W

acts transitively on O from Lemma 2.14. From Proposition 3.27 it follows that
|Y | = |V3| · 24 = 43545600, and |O| = |V3| · 2 = 3628800. By Corollary 3.21, for
every element (g1, g2, g3, g4) in Y the sum

∑4
i=1 gi is primitive. On the other hand,

u = (e1, e2, e3, f1) is an element in O, and e1 +e2 +e3 +f1 = 2 ·
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
.
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So the sum of the coordinates of u is an element in 2Λ, and sinceW acts transitively
on O, this holds for every element in O. �

Now that we proved that W acts transitively on V3, there is one last case of Propo-
sition 3.2 that we prove separately (Lemma 3.32). We state two auxiliary lemmas
first.

Lemma 3.29. Let r be a positive integer, and let G be a graph with vertex set
{v1, . . . , vr, w1 . . . , wr}, and edge set {{vi, wi} | i ∈ {1, . . . , r}}. Let A be the au-
tomorphism group of G. For an element a ∈ A and for i ∈ {1, . . . , r}, define an
integer ai by ai = 1 if a(vi) ∈ {v1, . . . , vr}, and ai = −1 otherwise. There exists
an isomorphism ϕ : A ∼−→ µr2 o Sr, where µ2 is the multiplicative group with two
elements and Sr the symmetric group on r elements, acting on µr2 by permuting the
coordinates, given by

ϕ(a) = ((a1, . . . , ar) , (i 7→ j for a(vi) ∈ {vj , wj})).

Proof. Let a be an element in A. Note that for all i, the image a(vi) of vi is only
connected to a(wi), so there is a j such that {a(vi), a(wi)} = {vj , wj}. Therefore we
have a group homomorphism γ : A −→ Sr, given by

a 7−→ (i 7→ j for a(vi) ∈ {vj , wj}) .
Note that γ is surjective, and its kernel consists of all elements a ∈ A such that, for
all i ∈ {1, . . . , r}, either a(vi) = vi, or a(vi) = wi. We conclude that the kernel of γ
is isomorphic to the group µr2. So we have a short exact sequence

1 −→ µr2 −→ A
γ−→ Sr −→ 1.

Moreover, we have a section Sr −→ A given by g 7−→ {vi 7→ vg(i), wi 7→ wg(i)}, so
the statement follows. �

Lemma 3.30. Let c = {{e1, f1, }, . . . , {e7, f7}} be an element in the set C that is
defined above Lemma 3.14, and let s be the set {e1, . . . , e7, f1, . . . , f7}. Let A the
automophism group of the colored graph associated to s, and let ϕ : A ∼−→ µ7

2 o S7
be the isomorphism from Lemma 3.29. Let Ws be the stabilizer in W of s. Then
there is an injective map Ws −→ A, whose image has index 2 in A, and its image
after composing with ϕ is given by{

((m1, . . . ,m7), g) ∈ µ7
2 o S7 |

7∏
i=1

mi = 1
}
.

Proof. Elements in Ws respect the dot product, so we have a map β : Ws −→ A. If
an element w ∈ Ws fixes every element in s, then it fixes a sublattice of Λ of finite
index by Lemma 3.17, and since Λ is torsion free this implies that w is the identity.
So the action ofWs on s is faithful, hence β is injective, and |β(Ws)| = |Ws|. SinceW
acts transitively on C by Corollary 3.16, and |C| = 2160 by Remark 3.15, we have
|Ws| = |Wc| = |W |

|C| = |W |
2160 = 322560. Moreover, we have |A| = 27 · 7! = 645120, so

|β(Ws)| = |Ws| = 322560 = 1
2 · |A|. Hence β(Ws) is a subgroup of index two in A.

We will now determine which subgroup. Note that ‖e1 − e2‖ =
√

2, so e1 − e2 is an
element e ∈ E, and the reflection in the hyperplane orthogonal to e gives an element
in W , say r12. Note that e1 + f1 = e2 + f2 by Remark 3.18, so e1 − e2 = f2 − f1.
Therefore r12 interchanges e1 with e2 and f1 with f2. Moreover, since all roots in
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{e3, . . . , e7, f3, . . . , f7} are orthogonal to e, the element r12 acts trivially on them.
Analogously, for i, j ∈ {1, . . . , 7}, i 6= j, the reflection rij is an element in Ws that
interchanges ei and ej , and fi with fj . Let γ : A −→ S7 be the projection of ϕ(A)
to S7, then it follows that γ(β(Ws)) = S7. Now consider for i, j ∈ {1, . . . , 7}, i 6= j,
the element ei − fj . Again, this is an element in E, and the reflection tij in the
hyperplane orthogonal to it is an element in Ws interchanging ei with fj , and ej
with fi, and leaving all other roots in s fixed. It follows that the composition tij ◦rij
is an element in Ws with ϕ(β(tij ◦ rij)) = ((−1,−1, 1, 1, 1, 1, 1), id) ∈ µ7

2 o S7. By
composing these automorphisms tij ◦ rij for different i, j, we see that ϕ(β(Wc))
contains all elements ((m1, . . . ,m7), g) ∈ µ7

2 o S7 with
∏7
i=1mi = 1. Therefore, the

reflections rij , tij generate a subgroup of A of order 7! · 26 = 1
2A, and we conclude

that this is all of Ws. �

Corollary 3.31. Let K1 and K2 be two cliques in Γ whose vertices correspond
to a 7-crosspolytope in the E8 root polytope. Let f : K1 −→ K2 be an isomorphism
between them. Then f extends to an automorphism of Λ if and only if for every
subclique S = {e1, . . . , e7} of K1 of 7 vertices that are pairwise connected with edges
of color 1, the vectors

∑7
i=1 ei and

∑7
i=1 f(ei) are either both in 2Λ, or neither are.

Proof. Consider the set H = {c1 . . . , c7, d1, . . . , d7}, where the elements are defined
above Lemma 3.14. Note that the vertices in H correspond to a 7-crosspolytope,
and sinceW acts transitively on the set of cliques corresponding to 7-crosspolytopes
(Corollary 3.16), there are elements α, β in W such that α(K1) = β(K2) = H. So
β ◦ f ◦ α−1 is an element in the automorphism group Aut(H) of H. Of course, f
extends to an element in W if and only if β ◦ f ◦α−1 does. Moreover, since α and β
are automorphisms of Λ, the two sums

∑7
i=1 f(ei) and

∑7
i=1(β ◦ f ◦ α−1)(ei) are

either both in or both not in 2Λ. We conclude that we can reduce to the case where
K1 = K2 = H, and f is an element in Aut(H).
Let WH be the stabilizer of H in W . By Lemma 3.30, there is an injective map
ψ : WH −→ Aut(H), whose image has index 2 in Aut(H). Of course, for all ele-
ments w in the image of ψ, and for all cliques S = {s1, . . . , s7} as in the statement,
the sums

∑7
i=1 si and

∑7
i=1w(si) are either both in, or both not in 2Λ. We will

show that this completely determines the image of ψ, that is, we will show that
every element in Aut(H) \ ψ(WH) does not have this property for all cliques S as
in the statement. To this end, consider the element h in Aut(H) that exchanges c1
and d1, and fixes all other vertices. Since h exchanges an odd number of ci with di,
it is not in the image of ψ. Note that S = {c1, . . . , c7} is a clique as in the statement.
The sum

∑7
i=1 ci = (5, 3, 3, 3,−1, 1, 1, 1) is an element in 2Λ, and its image under h,

which is
∑7
i=1 h(ci) = d1 +

∑7
i=2 ci = (4, 2, 4, 4,−1, 1, 1, 1), is not. Since all elements

in Aut(H) \ ψ(WH) are compositions of h with elements in WH , we conclude that
for all elements a in Aut(H) \ ψ(WH), the sum

∑7
i=1 a(ci) is not an element in 2Λ.

Since the image of ψ consists exactly of those elements in Aut(H) extending to an
element in W , this finishes the proof. �

Lemma 3.32. The group W acts transitively on the set
B = {(e1, e2, e3) ∈ E3 | e1 · e2 = 0, e2 · e3 = e1 · e3 = 1}.

Proof. By Proposition 2.2 and Lemma 3.14, we have |B| = 240 · 126 · 12 = 362880.
Let c, s, A be as defined in Lemma 3.30, and note that b = (e1, f1, e2) is an element
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in B. Let Wb be the stabilizer in W of b. Then we have

|Wb| =
|W |
|Wb|

≥ |W |
|B|

= 1920.

We want to show that this is an equality.
Since c is the unique element in C containing e1, f1 by Lemma 3.14, the stabilizer
Wb of b acts on the set s. If an element w ∈Wb fixes all the roots in s, then it fixes
a full rank sublattice of finite index in Λ, and since Λ is torsion free this implies
that w is the identity. Therefore the action of Wb on s is faithful, so there is an
injective map Wb −→ Ws. Note that f2 is uniquely determined in s as the root
that is orthogonal to e2, so every element in Wb fixes e1, e2, f1, f2, hence Wb acts
faithfully on s′ = {e3, . . . , e7, f3, . . . , f7}. Let A′ be the automorphism group of the
colored graph associated to s′. We know there is an isomorphism ϕ′ : A′ −→ µ5

2oS5
by Lemma 3.29. Since elements in Wb respect the dot product, we have an injective
map β′ : Wb −→ A′. Let β : Ws −→ A be the injective map from Lemma 3.30.
together with the injective maps Wb −→ Ws and A′ −→ A, we have the following
commutative diagram.

Wb A′ µ5
2 o S5

Ws A µ7
2 o S7

β′ ϕ′

∼

β ϕ
∼

By Lemma 3.30, the image ϕ(β(Ws)) is a subset of index 2 in µ7
2 o S7, given by

subset
{

((m1, . . . ,m7), g) ∈ µ7
2 o S7 |

∏7
i=1mi = 1

}
. Intersecting this subset with

µ5
2 o S5 gives a subset of index 2 in µ5

2 o S5, so by the diagram above, the image
ϕ′(β′(Wb)) has index at least 2 in µ5

2 o S5. We find |Wb| ≤ 1
2 · 2

5 · 5! = 1920,
so together with the inequality above we conclude that |Wb| = 1920. So we find
|Wb| = |W |

|Wb| = 362880 = |B|, and W acts transitively on B. �

We can now prove Proposition 3.2.

Proof of Proposition 3.2. Note that for a, b, c fixed and σ any permutation
of them, there is a bijection between the sets Va,b,c and Vσ(a),σ(b),σ(c), so if we prove
that W acts transitively on one of them, then W also acts transitively on the other
by Lemma 2.14. Therefore, we only consider the sets Va,b,c where a ≤ b ≤ c.
There are 4 different sets with a = b = c. There are 12 different sets where two
of a, b, c are equal to each other and unequal to the third, and 4 different sets with
a, b, c all distinct. So there are 20 different sets Va,b,c with a ≤ b ≤ c.
• If Va,b,c is a non-empty set with a = −2, then every element (e1, e2, e3) in Va,b,c
has e1 = −e2, so b = −c. Therefore the set Va,b,c is empty for (a, b, c) in

{(−2,−2,−2),(−2,−2,−1), (−2,−2, 0), (−2,−2, 1),
(−2,−1,−1), (−2,−1, 0), (−2, 0, 1), (−2, 1, 1)}.

• We have proved that W acts transitively on the sets V−1,−1,−1 (Corollary 3.9),
V0,0,0 (Proposition 3.27), V0,0,1 (Lemma 3.11), V0,1,1 (Lemma 3.32), and V1,1,1
(Proposition 2.12).
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• We have the following bijections.
{(e1, e2) ∈ E2 | e1 · e2 = −1} −→ V−2,−1,1, (e1, e2) 7−→ (−e1, e1, e2);
{(e1, e2) ∈ E2 | e1 · e2 = 0} −→ V−2,0,0, (e1, e2) 7−→ (−e1, e1, e2);
V0,1,1 −→ V−1,−1,0, (e1, e2, e3) 7−→ (e1,−e3, e2);
V1,1,1 −→ V−1,−1,1, (e1, e2, e3) 7−→ (e1,−e2, e3);
V0,0,1 −→ V−1,0,0, (e1, e2, e3) 7−→ (−e1, e3, e2);
V0,1,1 −→ V−1,0,1, (e1, e2, e3) 7−→ (−e3, e2,−e1);
V−1,−1,−1 −→ V−1,1,1, (e1, e2, e3) 7−→ (e1, e2,−e3).

We proved thatW acts transitively on the six different sets on the left-hand sides.
From Lemma 2.14 it follows thatW acts transitively on V−2,−1,1, V−2,0,0, V−1,−1,0,
V−1,−1,1, V−1,0,0, V−1,0,1, and V−1,1,1, too.

Since we proved that Va,b,c is either empty orW acts transitively on it for 20 different
sets, we conclude that we proved the proposition.

The following corollary proves Theorem 1.2 for cliques of Type III.

Corollary 3.33. Let K1 and K2 be two cliques of type III, and let f : K1 −→ K2
be an isomorphism between them. Then f extends to an automorphism of Λ.

Proof. Since W acts transitively on the set of ordered sequences of n roots for
1 ≤ n ≤ 3 by Propositions 3.1 and 3.2, there extists an automorphism w ∈ W
of Λ such that w restricted to K1 equals f . �

4. Monochromatic cliques
In this section we study the cliques of type I, that is, cliques in Γ−2, Γ−1, Γ0,
and Γ1. We describe the orbits under the action of W of sequences of roots that
form a clique, thus obtaining the results in Theorem 1.2 for cliques of type I (see
Corollaries 4.5 and 4.9). We also describe all maximal cliques per color. For Γ−2
and Γ−1, everything follows from the previous sections. For Γ1 we already have
Proposition 2.12; we show moreover that there are no cliques of size bigger than
eight, and describe the maximal cliques in Proposition 4.7. Finally, in this section we
prove that W acts transitively on ordered sequences of orthogonal roots of length r
for r ≥ 5. The result is in Proposition 4.4. Throughout this section we do not use
any computer.

Cliques in Γ−2
The maximal size of a clique in Γ−2 is two, since such a maximal clique consists
of an element in E and its inverse (see Proposition 2.2). There are therefore 120
such cliques. In Lemma 3.7 we showed thatW acts transitively on the set of ordered
pairs {(e1, e2) ∈ E2 | e1 = −e2}, soW acts transitively on the set of maximal cliques
in Γ−2.

Cliques in Γ−1
In Γ−1, the maximal size of a clique is three, and there are no maximal cliques
of smaller size, by Lemma 3.8. From Proposition 2.2 and Lemma 3.8 it follows
that there are 240·56

3! = 2240 maximal cliques. By Corollary 3.9, the group W acts
transitively on the set of sequences {(e1, e2, e3) ∈ E3 | e1 ·e2 = e2 ·e3 = e1 ·e3 = −1},
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so W acts transitively on the set of maximal cliques in Γ1. By Lemma 3.7, the
group W acts transitively on the set {(e1, e2) ∈ E2 | e1 · e2 = −1}, so W acts also
transitively on the set of cliques of size two in Γ−1, of which there are 240·56

2 = 6720
(Proposition 2.2).

Cliques in Γ0
Cliques in Γ0 are studied in [DM10], where they are called orthogonal subsets. In
their article, the authors show that the maximal size of cliques in Γ0 is eight ([DM10],
Table 1), that two cliques of the same size r are conjugate if and only if r 6= 4, and
that there are two orbits of cliques of size 4 ([DM10], Corollary 2.3). In the previous
section we showed that W acts transitively on the set of ordered sequences of length
at most 3 of orthogonal roots, and that there are two orbits of sequences of length 4.
In this section we use this to conclude the same results as in [DM10] for cliques of size
r ≤ 4, and we compute the number of these cliques. Moreover, we study the action
of W on ordered sequences of length ≥ 5 of orthogonal roots (Proposition 4.4), and
compute the number of cliques of size ≥ 5 (Proposition 4.6).

The following proposition deals with the cliques of size at most 4.

Proposition 4.1.
(i) There are 15120 cliques of size two in Γ0, and the group W acts transitively
on the set of all of them.
(ii) There are 302400 cliques of size three in Γ0, and the groupW acts transitively
on the set of all of them.
(iii) There are 1965600 cliques of size four in Γ0, and they from two orbits under
the action of W : one of size 151200, in which all cliques have vertices whose roots
sum up to a vector in 2Λ, and one of size 1814400, in which all cliques have vertices
whose roots sum op to a vector that is not in 2Λ.

Proof.
(i) We have shown that the group W acts transitively on the set

A0 = {(e1, e2) ∈ E2 | e1 · e2 = 0}
(Proposition 3.13), and |A0| = 240 ·126 = 30240 (Proposition 2.2). It follows that
there are 30240

2 = 15120 cliques of size two in Γ0, and the groupW acts transitively
on the set of all of them.
(ii) The group W acts transitively on the set

V3 = {(e1, e2, e3) ∈ E3 | ∀i 6= j : ei · ej = 0},
and we have |V3| = 1814400 (Proposition 3.27 (i)). It follows that there are
1814400

6 = 302400 cliques of size three in Γ0, and the group W acts transitively on
the set of all of them.
(iii) By Proposition 3.28 there are two orbits under the action of W on the set

V4 = {(e1, e2, e3, e4) ∈ E4 | ∀i 6= j : ei · ej = 0};
one of size 3628800 where all elements have coordinates that sum up to a vector
that is in 2Λ, and one orbit of size 43545600 where all elements have coordinates
that sum up to a vector that is not in 2Λ. Since the orbit in which an element is
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contained does not depend on the order of its coordinates, we conclude that this
also gives two orbits with the same properties under the action of W on the set
of all cliques of size four in Γ0, of sizes 3628800

4! = 151200 and 43545600
4! = 1814400,

respectively. �

We continue by studying the sequences of orthogonal roots of length greater than
four. Recall the set V4 and its orbits under the action of W , given by Y of size
43545600 and O = V4 \ Y of size 3628800 (Proposition 3.28).

Lemma 4.2. For an element y = (e1, . . . , e4) ∈ Y , define the set
Cy = {e ∈ E | e · ei = 0 for i ∈ {1, 2, 3, 4}}.

The following hold.
(i) The set Cy is the union of four sets {f1,−f1}, {f2,−f2}, {f3,−f3}, {f4,−f4}
with fi · fj = 0 for i 6= j. For such a set {fi,−fi}, there is exactly one triple
{ei1 , ei2 , ei3} of elements in y such that the permutations of (ei1 , ei2 , ei3 , fi) (or
equivalently of (ei1 , ei2 , ei3 ,−fi)) form elements in O. Moreover, for j 6= i, and
j1, j2, j3 such that the permutations of (ej1 , ej2 , ej3 , fj) form elements in O, the
sets {ei1 , ei2 , ei3} and {ej1 , ej2 , ej3} are different.
(ii) The stabilizer of y is generated by the reflections in the hyperplanes orthogonal
to fi for i ∈ {1, 2, 3, 4}.

Proof. Since W acts transtively on Y , it suffices to show this for a fixed element
y ∈ Y . Set

e1 = (1, 1, 0, 0, 0, 0, 0, 0) , e3 = (0, 0, 0, 0, 1, 1, 0, 0) ,
e2 = (0, 0, 1, 1, 0, 0, 0, 0) , e4 = (1,−1, 0, 0, 0, 0, 0, 0) .

Then (e1, e2, e3, e4) is an element in V4 and since
∑4
i=1 ei /∈ 2Λ, it is an element

in Y as well by Proposition 3.28. Take e = (a1, . . . , a8) ∈ E such that e · ei = 0 for
i ∈ {1, 2, 3, 4}. Then we have a1 + a2 = a1 − a2 = a3 + a4 = a5 + a6 = 0. We find
the following possibilities.

± f1 = ± (0, 0, 0, 0, 0, 0, 1,−1) , ± f3 = ± (0, 0, 1,−1, 0, 0, 0, 0) ,
± f2 = ± (0, 0, 0, 0, 1,−1, 0, 0) , ± f4 = ± (0, 0, 0, 0, 0, 0, 1, 1) .

It is an easy check that fi · fj = 0 for i 6= j, and for i, k ∈ 1, 2, 3, 4, the sum(∑
j 6=i ej

)
± fk is contained in 2Λ if and only if i = k. This proves (i). We continue

with (ii). Take i ∈ {1, 2, 3, 4}. Since fi is orthogonal to the elements in y the
reflection ri in the hyperplane orthogonal to fi is an element of Wy. For i 6= j,
the reflections ri and rj commute, since fi and fj are orthogonal. Therefore the
elements r1, r2, r3, r4 generate a subgroup of Wy of order 16. Since we have

|Wy| =
|W |
|Y |

= 696729600
43545600 = 16,

they generate the whole group Wy. �

Corollary 4.3. Set n5 = 1, n6 = 3, n7 = 7, and n8 = 14. Let K be a clique of
size r ∈ {5, 6, 7, 8} in Γ0. Then the number of sets of four vertices e1, e2, e3, e4 in K
such that the permutations of (e1, e2, e3, e4) are elements in O is equal to nr.
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Proof. First let K be a clique of size 5 in Γ0. Assume by contradiction that there are
two distinct subsets, say y1, y2, of four vertices inK that form an element in O. Then
there are three vertices of K, say e1, e2, e3, that are contained both in y1 and y2.
Write y1 = {e1, e2, e3, f1}, y2 = {e1, e2, e3, f2}. By applying Proposition 3.27 (iii)
to the triple (e1, e2, e3), it follows that f1 = −f2, so f1 · f2 = −2. But this gives
a contradiction, since f1, f2 are both in K. So the number of sets of four vertices
in K that form an element in O is at most 1, which means that there is at least one
subset {g1, g2, g3, g4} of K of four roots such that (g1, g2, g3, g4) is an element in Y .
For the fifth element in K, say g5, it follows from the previous lemma that there is
exactly one triple {gα, gβ, gγ} of elements in {g1, . . . , g4} that it forms an element
in O with. We conclude that there is exactly 1 set of four vertices in K that form
an element in O; this proves the statement for r = 5.
We proceed by induction. Take s ∈ {6, 7, 8}. Assume that the statement holds for
5 ≤ r < s, and let K = {e1, . . . , es} be a clique of size s in Γ0. By induction
we know that {e1, . . . , es−1} contains ns−1 subsets of size four that form an element
in O. That means that there are

(s−1
4
)
− ns−1 subsets of size four in {e1, . . . , es−1}

that form an element in Y . By Lemma 4.2, each of these
(s−1

4
)
− ns−1 subsets

contains exacty three elements that, together with es, form an element in O. Let
d1, d2, d3 be three elements in {e1, . . . , es−1} such that (d1, d2, d3, es) is an element
in O. Then for every element d ∈ {e1, . . . , es−1}\{d1, d2, d3}, the set {d1, d2, d3, es, d}
forms a clique of size 5 in Γ0, and since n5 = 1, it follows that (d1, d2, d3, d) is an
element in Y . This means that every set of three roots in {e1, . . . , es−1} that forms
an element in O with es forms an element in Y with all other roots in {e1, . . . , es−1}.
Since every set of three roots in {e1, . . . , es−1} is contained in (s− 1)− 3 subsets of
size four of {e1, . . . , es−1}, this gives (s−1

4 )−ns−1
s−4 distinct sets of three that form an

element in O with es. In total this gives ns−1 + (s−1
4 )−ns−1
s−4 sets of four vertices in K

that form an element in O. This is exactly equal to ns for s = 6, 7, 8. �

For 1 ≤ r ≤ 8, let Vr be the set
Vr = {(e1, . . . , er) ∈ Er | ∀i 6= j : ei · ej = 0}.

Proposition 4.4. For 5 ≤ r ≤ 8, two elements (e1, . . . , er), (f1, . . . , fr) in Vr are
in the same orbit under the action of W if and only if for all 1 ≤ i < j < k < l ≤ r,
the elements (ei, ej , ek, el) and (fi, fj , fk, fl) are conjugate in V4 under the action
of W .

Proof. For 5 ≤ r ≤ 8, define the relation ∼ on Vr by (e1, . . . , er) ∼ (f1, . . . , fr) if and
only if for all 1 ≤ i < j < k < l ≤ r, the elements (ei, ej , ek, el) and (fi, fj , fk, fl)
are conjugate in V4. Note that ∼ is an equivalence relation on Vr, and the group W
acts on the equivalence classes. Our goal is to show that each equivalence class is
an orbit in Vr under the action of W . We do this by induction on r.
For r = 5, Let X5 ⊂ V5 be an equivalence class with respect to ∼. We distinguish
two cases. If for every element in X5 the first four coordinates form an element
in Y , we let p : X5 −→ Y be the projection on the first four coordinates. Note
that this is surjective by Lemma 4.2. Set y = (y1, . . . , y4) ∈ Y . Since the ele-
ments in the fiber p−1(y) are equivalent under ∼, there are exactly two elements
(y1, . . . , y4, f), (y1, . . . , y4,−f) in p−1(y) by Lemma 4.2 (i). Moreover, the stabilizer
Wy acts transitively on these two elements by Lemma 4.2 (ii). From Lemma 2.14
it follows that W acts transitively on X5. If, on the other hand, for every element
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in X5 the first four coordinates form an element in O, then the last four coordi-
nates of every element in X5 form an element in Y by Corollary 4.3. We now let
p : X5 −→ Y be the projection on the last four coordinates, and the proof is the
same.
Now assume that r > 5, and that each equivalence class in Vr−1 is an orbit under
the action of W . Let Xr be an equivalence class in Vr, and pr : Xr −→ Vr−1 the
projection on the first r − 1 coordinates. Then W acts on pr(Xr), and pr(Xr) is
contained in an equivalence class Xr−1 with respect to ∼ in Vr−1. Since W acts
transitively on Xr−1 by hypothesis, it follows that pr(Xr) = Xr−1, andW acts tran-
sitively on pr(Xr). Since r > 5, by Corollary 4.3 there exist i, j, k, l ∈ {1, . . . , r − 1}
such that for all elements (e1, . . . , er) ∈ Xr we have (ei, ej , ek, el) ∈ Y . Fix such
i, j, k, l, and let v = (v1, . . . , vr−1) be an element in pr(Xr). Then (vi, vj , vk, vl) is an
element in Y . Let (v1, . . . , vr−1, f), (v1, . . . , vr−1, g) be elements in the fiber p−1

r (v).
Since (v1, . . . , vr−1, f) is equivalent to (v1, . . . , vr−1, g) with respect to ∼, by applying
Lemma 4.2 to (vi, vj , vk, vl) we see that f = −g, and the fiber p−1

r (v) consists of the
two elements (v1, . . . , vr−1, f) and (v1, . . . , vr−1,−f). Moreover, the reflection in the
hyperplane orthogonal to f fixes v1, . . . , vr−1, hence is an element in the stabilizer
of v that switches f and −f . So the stabilizer of v acts transitively on p−1

r (v), and
again from Lemma 2.14 we conclude that W acts transitively on Xr. �

Corollary 4.5. Let K1 and K2 be two cliques in Γ0, and f : K1 −→ K2 an
isomorphism between them. Then f extends to an automorphism of Λ if and only if
for every subclique S of size 4 in K1, the image f(S) in K2 is conjugate to S under
the action of W .

Proof. If K1 and K2 have size ≤ 3, then f extends always by Corollary 3.33. From
Proposition 4.4 it follows that ifK1 andK2 have size at least four, the isomorphism f
extends to an element in W exactly when f sends every sequence of four roots
that form an element in V4 to a conjugate element in V4. By Proposition 3.28,
there are two orbits of ordered sequences of four pairwise orthogonal roots, that
do not depend on the order of the roots. We conclude that if f and f(S) are
conjugate under the action of W for every set S of four vertices in K1, there exists
an automorphism w ∈W of Λ such that w restricted to K1 equals f . �

Theorem 4.6. In Γ0, the following hold.
(i) There are no maximal cliques of size smaller than eight.
(ii) There are 3628800 cliques of size five, 3628800 cliques of size six, 2073600
cliques of size seven, and 518400 cliques of size eight.
(iii) The group W acts transitively on the cliques of size 5.

Proof.
(i) We know that every root in E is orthogonal to 126 other roots (Proposition 2.2).
Moreover, we know that in Γ0 every clique of size 2 extends to a clique of size 3
(Lemma 3.26), and every clique of size 3 extends to a clique of size 4 (Proposi-
tion 3.27 (ii)). Since n5 = 1 <

(5
4
)
by Corollary 4.3, every clique of size 5 in Γ0

contains both a subclique whose vertices form an element in O, and a subclique
whose vertices form an element in Y . Since W acts transitively on O and on Y ,
and V4 = O ∪ Y , this means that every clique of size 4 in Γ0 extends to a clique
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of size 5. Moreover, by Lemma 4.2 (i), every clique of size 4 whose vertices form
an element in Y can be extended to a clique of size 8. Since every clique of size
at least 5 contains a clique of size 4 whose vertices form an element in Y , there
are no maximal cliques of size smaller than 8.
(ii) By Lemma 4.2, if we fix an element y = (e1, e2, e3, e4) ∈ Y , there are exactly
8 elements in V5, and 8 ·6 elements in V6, and 8 ·6 ·4 elements in V7, and 8 ·6 ·4 ·2
elements in V8, that have ei as the ith coordinate. We call this number mr for
r = 5, 6, 7, 8. For all 5 ≤ r ≤ 8, for S a clique of size r, it follows from Corollary 4.3
that S contains

(r
4
)
−nr cliques of size 4 that, together, form 4! ·(

(r
4
)
−nr) different

elements in Y ; for such a subclique of size 4 in S, the other r− 4 elements can be
permuted in (r− 4)! ways. For all 5 ≤ r ≤ 8, let Dr be the set of cliques of size r
in Γ0. It follows that we have

|Dr| =
|Y | ·mr

4! · (
(r

4
)
− nr) · (r − 4)! .

We find the following results.

|D5| =
|Y | · 8
4! · 4 = 3628800, |D6| =

|Y | · 8 · 6
4! · 12 · 2 = 3628800,

|D7| =
|Y | · 8 · 6 · 4
4! · 28 · 3! = 2073600, |D8| =

|Y | · 8 · 6 · 4 · 2
4! · 56 · 4! = 518400.

(iii) Let K1 = {e1, . . . , e5}, K2 = {f1, . . . , f5} be two cliques in Γ0. We have n5 =
1 by Corollary 4.3, so without loss of generality we can assume that e1, e2, e3, e4
and f1, f2, f3, f4 are the unique four elements in K1 and K2, respectively, that
form an element in O. Then (e1, e2, e3, e4, e5) and (f1, f2, f3, f4, f5) are conjugate
under the action of W by Proposition 4.4, hence so are K1 and K2. �

Cliques in Γ1
We know that cliques in Γ1 form k-simplices that are k-faces of the E8 root polytope
(Proposition 2.4), hence Corollary 2.7 states how many cliques of size n there are
in Γ1 for n ≤ 8. Moreover, we know that W acts transitively on these cliques for
n ≤ 8, n 6= 7 (Proposition 2.12). Proposition 4.7 shows that there are no cliques of
size bigger than eight in Γ1, and that there are two orbits of cliques of size seven
(which was already known, for example by [Cox30] and [Man74]); it shows that all
maximal cliques are of sizes 7 or 8.

Proposition 4.7. In Γ1, the following hold.
(i) There are only maximal cliques of size 7 and 8.
(ii) There are two orbits of cliques of size 7 in Γ1; one of size 138240, which is
given by non-maximal cliques, and one of size 69120, which is given by maximal
cliques. A clique of size seven in Γ1 is maximal if and only if the sum of its vertices
is an element in 2Λ.
(iii) There are 17280 cliques of size 8.

Proof. Consider the clique of size six in Γ1 given by {e1, . . . , e6}, where we define
e1 = (1, 1, 0, 0, 0, 0, 0, 0) , e4 = (1, 0, 0, 0, 1, 0, 0, 0)
e2 = (1, 0, 1, 0, 0, 0, 0, 0) , e5 = (1, 0, 0, 0, 0, 1, 0, 0)
e3 = (1, 0, 0, 1, 0, 0, 0, 0) , e6 = (1, 0, 0, 0, 0, 0, 1, 0) .
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Since W acts transitively on the set of cliques of size smaller than 6 in Γ1 by Propo-
sition 2.12, it follows that every clique of size smaller than 6 in Γ1 is contained in a
clique of size 6 in Γ1. The elements in E that have dot product one with all e1, . . . , e6
are given by:

c1 =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
, c2 = (1, 0, 0, 0, 0, 0, 0, 1), c3 = (1, 0, 0, 0, 0, 0, 0,−1).

Note that c1 ·c2 = 1 and c3 ·c1 = c3 ·c2 = 0, so {e1, . . . , e6, c1, c2} is a maximal clique
of size 8 in Γ1, and {e1, . . . , e6, c3} is a maximal clique of size 7 in Γ1. Since W
acts transitively on the cliques of size 6 in Γ1 by Proposition 2.12, all maximal
cliques in Γ1 are of size 7 or 8. This proves part (i). Moreover, it follows that every
non-maximal clique of size 7 is contained in a unique clique of size 8, so there are
138240

8 = 17280 cliques of size 8. This proves part (iii). We will now prove (ii). From
part (i) it follows that there exist maximal and non-maximal cliques of size 7 in Γ1.
It is obvious that they can not be in the same orbit under the action ofW . Moreover,
there are two orbits of ordered sequences of length 7, hence at most two orbits of
cliques of size 7 by Proposition 2.12. We conclude that the orbits are given exactly
by the maximal cliques and the non-maximal cliques. Since there are 483840 cliques
of size 6 (Corollary 2.7), from the above it follows that there are 483840·2

7 = 138240
non-maximal cliques, and 483840·1

7 = 69120 maximal cliques. Now consider the set
{e1, . . . , e7}, where the elements are defined above Lemma 3.14. This is a clique of
size 7 in Γ1, and it is not hard to check that it is maximal. Moreover, we have

7∑
i=1

ei = (5, 3, 3, 3, 1, 1, 1, 1) ∈ 2Λ.

Since W acts transitively on all maximal cliques of size 7 in Γ1, for all such cliques
the sum of the vertices is an element in 2Λ. On the other hand, consider the set
d = {d1, . . . , d7} as defined above Lemma 3.14. This is a non-maximal clique of size 7
in Γ1, since the union of d with the root

(
−1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)
is a clique of

size 8 in Γ1. Moreover, we have
7∑
i=1

di = (2, 4, 4, 4, 1,−1,−1,−1) 6∈ 2Λ.

Since W acts transitively on all non-maximal cliques of size 7 in Γ1, for all such
cliques the sum of the vertices is not an element in 2Λ. �

Remark 4.8. Note that 138240 + 69120 = 207360, which is the total number of
cliques of size 7 by Corollary 2.7.

Corollary 4.9. Let K1 and K2 be two cliques in Γ1, and f : K1 −→ K2 an
isomorphism between them. If K1 and K2 have size unequal to 7, then f extends
to an automorphism of Λ. If K1 and K2 have size 7, then f extends if and only if
the sum of the vertices of K1 and the sum of the vertices of K2 are either both an
element in 2Λ, or both not.

Proof. Another way of saying that the morphism f extends, is that for {e1, . . . , e7}
the roots in K1, the sequences (e1, . . . , e7) and (f(e1), . . . , f(e7)) are conjugate. By
Proposition 2.12, for r ≤ 8, r 6= 7, there is only one orbit of ordered sequences of
length r of roots that have pairwise dot product 1. This implies that f extends
to an element in W if K1, K2 have size unequal to 7. Furthermore, by the same
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proposition, there are two orbits of ordered sequences of roots of length 7. By Propo-
sition 4.7, there two orbits of cliques of size 7, that are distinguished by whether the
sum of the 7 roots is an element in 2Λ or not. We conclude that the two orbits of
ordered sequences are distinguished in the same way. This implies that f extends if
and only if the sum of the vertices in K1 and the sum of the vertices in f(K1) = K2
are both in 2Λ or both not. �

Remark 4.10. We know that the cliques of size 7 in Γ1 are 6-faces of the E8 root
polytope. We can describe the two orbits of these cliques in this framework as well.
A 6-face of the polytope is an intersection of two facets. There are two types of
facets of the E8 root polyopte: 7-crosspolytopes and 7-simplices (Proposition 2.5).
Since the maximal cliques of size 7 in Γ1 are not contained in a 7-simplex, these are
exactly the intersections of two 7-crosspolytopes.
Consider the set c = {c1, . . . , c7, d1, . . . , d7} as defined above Lemma 3.14. Note
that d = {d1, . . . , d7} is a non-maximal clique of size 7 in Γ1 that is contained
in the 7-crosspolytope with vertices in c, but also in the 7-simplex with vertices
d ∪

{(
−1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)}
. It follows that all non-maximal cliques of size 7

in Γ1 are the intersection of a 7-crosspolytope with a 7-simplex.
From this it also follows that two 7-simplices in the E8 root polytope never intersect.

Remark - analogy with geometry 4.11. Let X be a del Pezzo surface of
degree one over an algebraically closed field, and C the set of exceptional classes in
Pic X. Through the bijection between C and E, cliques in Γ1 are related to sets
of exceptional classes that are pairwise disjoint (see Remark 2.8). These are called
exceptional sets, and can be blown down so that we obtain a del Pezzo surface of
higher degree (see [Man74], Chapter IV). Since a del Pezzo surface can have degree
at most 9 (in which case it is P2), it is clear that the maximal size of a clique
in Γ1 is eight. We can also describe the two orbits of size seven in this setting;
cliques that are maximal correspond to exceptional sets that blow down to a del
Pezzo surface of degree eight that is isomorphic to P1×P1, and cliques that are not
maximal correspond to exceptional sets that blow down to a del Pezzo surface of
degree eight that is isomorphic to P1 blown up in one point ([Man74], remark below
Corollary 26.8).

5. Maximal cliques
In this section we describe all maximal cliques in Γc for c 6= {−1, 0, 1} (cliques of
type IV), and their orbits under the action of W . Note that Γ−1,0,1 is the graph
Γ after removing all edges between roots and their inverses. This means that the
maximal cliques in Γ−1,0,1 are all of size 120: for each root you can either choose
the root or its inverse. There are therefore 2120 maximal cliques in Γ−1,0,1, and at
least

⌈
2120

|W |

⌉
= 1907810427151244719477695595 orbits in the set of maximal cliques

under the action of W . Because of the size of these cliques and their orbits, we did
not compute the orbits.

In the first two subsections of this section we describe all maximal cliques in Γ−2,
Γ−1, Γ0, Γ1, Γ−2,−1, Γ−2,1, Γ−2,0, and Γ−2,−1,0,1 = Γ. Cliques in Γ−2,−1 and Γ−2,1
are monochromatic (Lemma 5.2), and maximal cliques in Γ−2,0 are in bijection with
maximal cliques in Γ0 (Lemma 5.4). Therefore, everything before Section 5.3 follows
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from results in Section 4 and is done without a computer. From Section 5.3 onwards,
we used magma for some computations. The code that we used can be found in [Win].

Our motivation to study the cliques in Γ comes from del Pezzo surfaces of degree
one (see Remark 2.8), and because of that, the maximal cliques in Γ−2,0 and Γ−1,0
are of special interest to us, which is explained in Remark 5.1. For these two graphs
we have some extra results. We compute the structure of the largest cliques in the
graphs, see Propositions 5.6 and 5.20. We also show that for these largest cliques,
their stabilizer in W acts transitively on the clique itself (Corollaries 5.9 and 5.22).
The techniques in Sections 5.2 and 5.3 show how one could prove similar results for
graphs with other colors.

The main results of this section are summarized in the tables in Appendix A and
Remark 6.1.

Notation. To denote cliques of Γ in a compact way, we order the root system E as
follows. Roots of the form

(
±1

2 , . . . ,±
1
2

)
are ordered lexicographically and denoted

by numbers 1−128; for example,
(
−1

2 , . . . ,−
1
2

)
is number 1, and

(
1
2 , . . . ,

1
2

)
number

128. Roots that are permutations of (±1,±1, 0, 0, 0, 0, 0, 0) are ordered lexicograph-
ically and denoted by the numbers 129− 240; for example, (−1,−1, 0, 0, 0, 0, 0, 0) is
number 129, and (1, 1, 0, 0, 0, 0, 0, 0) is number 240.

The table in Appendix A contains the following information.
• Graph: a graph Γc where c is a set of colors in {−2,−1, 0, 1}.
• K: a clique in Γc; we denote vertices by their index as in the notation above.
• |K|: the size of K.
• |WK |: the size of the stabilizer of clique K in the group W .
• |Aut(K)|: the size of the automorphism group of K as a colored graph.
• #O: the number of orbits of the set of all maximal cliques of size |K| in Γc under
the action of W .

For each graph Γc, the list of cliques in Γc in the table in Appendix A gives exactly
one representative for each orbit of the set of maximal cliques in Γc under the
action of W . The proofs of these results are in Proposition 5.3, Corollary 5.13,
Proposition 5.25, Lemma 5.27, Proposition 5.29, and Proposition 5.31.

The following remark shows the connection between del Pezzo surfaces and cliques
in Γ−2,0 and Γ−1,0.

Remark - analogy with geometry 5.1. Let X be a del Pezzo surface of
degree one over an algebraically closed field, and let C be the set of exceptional
classes in Pix X. The question that led us to study the E8 root system was how
many elements of C can go through the same point on X. The linear system |−2KX |
realizes X as a double cover of a cone in P3, ramified over a smooth sextic curve B
that does not contain the vertex of the cone. There are 120 hyperplanes that are
tritangent to B, and such a hyperplane pulls back to the sum of two elements in C
that intersect with multiplicity three. It follows that two elements in C intersecting
with multiplicity three correspond to curves on X intersecting in three points on the
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ramification curve. Conversely, if an element c in C corresponds to a curve on X
that goes trough a point P on the ramification curve, then the unique element c′ ∈ C
with c · c′ = 3 corresponds to a curve on X going through P as well.
Through the bijection C −→ E, c 7−→ c + KX , two elements in C that intersect
with multiplicity a correspond to two roots e1, e2 ∈ E with e1 ·e2 = 1−a. Therefore,
cliques in Γ that correspond to sets of pairwise intersecting lines on X have edges
of colors −2,−1, 0. Since elements in C with intersection multiplicity 3 correspond
to two roots in E with dot product −2, it follows that a set of lines on X that all
go through one point on the ramification curve forms a clique in Γ−2,0, and a set
of lines on X that all go through one point outside the ramification curve forms a
clique in Γ−1,0. This motivates why we have studied these two graphs extensively,
and especially the biggest cliques in them (with respect to number of vertices).

5.1. Maximal cliques in Γ−2, Γ−1, Γ1, Γ−2,−1, Γ−2,1, and Γ−2,−1,0,1

Lemma 5.2. Cliques in Γ−2,−1 and in Γ−2,1 are monochromatic.

Proof. For an element e ∈ E, its inverse −e is the unique element intersecting it with
multiplicity −2 (Proposition 2.2). Take e, f ∈ E with e · f = −1, then −e · f = 1,
hence e, f,−e do not form a clique in Γ−2,−1. Therefore all cliques in Γ−2,−1 are
monochromatic. Analogously, the cliques in Γ−2,1 are monochromatic. �

Proposition 5.3. For
c ∈ {{−2}, {−1}, {1}, {−2,−1}, {−2, 1}, {−2,−1, 0, 1}},

the table in Appendix A gives the complete list of orbits of the maximal cliques in Γc,
as well as a correct representative for each orbit, the size of its stabilizer in W , and
the size of its automorphism group.

Proof. We showed in Section 4 that all maximal cliques in Γ−2 have size 2, and that
they form one orbit of size 120. We also showed that all maximal cliques in Γ−1 have
size 3, and they form one orbit of size 2240. In Proposition 4.7 we showed that there
are two orbits of maximal cliques in Γ1; one of size 69120, which consists of cliques
of size 7, and one of size 17280, which consists of cliques of size 8. For Γ−2,−1 and
Γ−2,1 we proved that all cliques are monochromatic in Lemma 5.2, so the maximal
cliques and their orbits are found by looking at the monochromatic subgraphs Γ−2,
Γ−1, and Γ1.
It is an easy check that for these five graphs, the cliques in the table are correct
representatives of the orbits. The sizes of their stabilizers are found by dividing
the order of W by the size of their orbit. Since all the cliques in these five graphs
are monochromatic, their automorphism group is the permutation group on their
vertices.
Finally, note that Γ−2,−1,0,1 = Γ. The only maximal clique in Γ−2,−1,0,1 is therefore
the whole graph, which forms an orbit of size 1 under the action of W . �

5.2. Cliques in Γ0 and Γ−2,0

The following lemma describes the maximal cliques in Γ−2,0.

Lemma 5.4. In Γ−2,0, the following hold.
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(i) The maximal size of a clique in Γ−2,0 is 16, and there are no maximal cliques
of smaller size.
(ii) The set of maximal cliques in Γ−2,0 is given by

{{e1, . . . , e8,−e1, . . . ,−e8} | ∀i : ei ∈ E; ∀i 6= j : ei · ej = 0} .

Proof. By Theorem 4.6, all maximal cliques in Γ0 are of size 8. Let {e1, . . . , e8} be a
maximal clique in Γ0. Then {e1, . . . , e8,−e1, . . . ,−e8} is a clique in Γ−2,0 of size 16.
Now assume that {c1, . . . , cr} is a clique in Γ−2,0 of size bigger than 16. Since edges
of color −2 connect a root and its inverse, the clique {c1, . . . , cr} contains a subclique
of size at least

⌈
r
2
⌉
with only edges of color 0. But this would give a clique in Γ0 of

size at least
⌈

17
2

⌉
= 9, contradicting Theorem 4.6. We conclude that the maximal

size of a clique in Γ−2,0 is 16. Now assume that S is a maximal clique in Γ−2,0 of size
smaller than 16. Let K be the biggest (with respect to number of vertices) subclique
of S with only edges of color 0. Let K ′ be a maximal clique in Γ0 containing K,
so K ′ has size 8. Then the clique consisting of all vertices of K ′ and their inverses
is a clique in Γ−2,0 of size 16 that strictly contains S, contradicting the maximality
of S. We conclude that there are no maximal cliques of size smaller than 16 in Γ−2,0,
concluding the proof of (i). Part (ii) is now obvious. �

To show that the group W acts transitively on the maximal cliques in Γ−2,0, we use
the following lemma, which builds on results in previous sections. Recall the set Y
as defined above Lemma 3.20.

Lemma 5.5. The following hold.
(i) For every element y = (e1, . . . , e4) ∈ Y , there is a unique maximal clique in
Γ−2,0 containing e1, . . . , e4.
(ii) Every maximal clique in Γ−2,0 contains 896 distinct subsets of four roots
e1, . . . , e4 such that (e1, . . . , e4) is an element in Y .

Proof.
(i) From Lemma 4.2 it follows that an element in Y is contained in a unique clique
of size 8 in Γ0. But such a clique extends uniquely to a maximal clique in Γ−2,0
by adding all inverses of the roots.
(ii) By Lemma 5.4, a maximal clique in Γ−2,0 consists of eight pairwise orthogonal
roots and their inverses. Let K be such a clique. Eight pairwise orthogonal roots
in K contain

(8
4
)
− 14 = 56 distinct subsets of four roots that form an element in

Y by Corollary 4.3. Let D = {e1, e2, e3, e4} be such a subset. If we replace a root
in D by its inverse, then the roots in D still form an element in Y . This gives
56 · 24 = 896 distinct subsets of K of that form an element in Y . Since a set of
four roots that contains both a root and its inverse never forms an element in Y ,
these are all of them. �

Let S be the set of all cliques of size 16 in Γ−2,0. By Lemma 5.4, this is exactly the
set of maximal cliques in Γ−2,0. By Lemma 5.5 we have a surjective map

s : Y −→ S.

Corollary 5.6. The group W acts transitively on S, and we have |S| = 2025.
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Proof. Since the map s is surjective andW acts transitively on Y (Proposition 3.28),
it follows from Lemma 2.14 thatW acts transitively on S. From Lemma 5.5 it follows
that |S| = |Y |

|896·4!| = 2025. �

Let K be an element of S, and WK its stabilizer in W . Now that we fully described
all maximal cliques in Γ−2,0 and the action ofW on the set of these maximal cliques,
we finish the study of Γ−2,0 by studying the action of WK on K, and concluding
thatW acts transitively on cliques of sizes 6, 7, 8 in Γ0 in Proposition 5.12. Consider
the sets

I = {(e1, e2, e3) ∈ K3 | e1 · e2 = e1 · e3 = e2 · e3 = 0},
and

J = {(e1, e2) ∈ K2 | e1 · e2 = 0}.

Proposition 5.7. The group WK acts transitively on I.

Proof. Since K consists of eight pairwise orthogonal roots and their inverses by
Lemma 5.4, we have |I| = 16 · 14 · 12 = 2688. Fix an element ι = (e1, e2, e3) in I.
We want to show that its orbit WKι has size 2688, hence is equal to I. Let WK,ι be
the stabilizer in WK of ι. We have |WKι| = |WK |

|WK,ι| , and

|W |
|WK,ι|

= |W |
|WK |

· |WK |
|WK,ι|

.

By Corollary 5.6 we have |W |
|WK | = |WK| = 2025. Moreover, we have

|W |
|WK,ι|

= |W |
|Wι|

· |Wι|
|Wι,K |

.

By Proposition 3.27 we have |W ||Wι| = |Wι| = 240·126·60 = 1814400. We now compute
|Wι|
|Wι,K | = |WιK|. From Proposition 3.27 we know that there are 24 roots e ∈ E such
that (e1, e2, e3, e) is an element in Y . Since Wι acts transitively on those 24 roots
by Proposition 3.28, the orbit WιK contains the cliques s((e1, e2, e3, e)) for all 24
roots e. Now fix e and set y = (e1, e2, e3, e), and L = s(y). From Lemma (i) we
know that L contains exactly eight roots f such that (e1, e2, e3, f) is an element
in Y . Therefore, they determine the same unique clique of size sixteen as e. We
conclude that there are 24

8 = 3 different cliques containing ι. So we have |WιK| ≥ 3,
and we find |W |

|WK,ι| ≥ 1814400 · 3 = 5443200. It follows that |WK |
|WK,ι| ≥

5443200
2025 = 2688.

Since on the other hand we have |WK |
|WK,ι| = |WKι| ≤ |I| = 2688, we have equality

everywhere and we conclude that WKι = I. This finishes the proof. �

Corollary 5.8. The group WK acts transitively on J .

Proof. We have a projection map λ : I −→ J on the first two coordinates. Since K
consists of eight pairwise orthogonal roots and their inverses, if we fix two elements
e1, e2 such that (e1, e2) ∈ J , there are 16 − 4 = 12 elements e ∈ K such that
(e1, e2, e) ∈ I. Therefore, λ is surjective. From Proposition 5.7 and Lemma 2.14, it
follows that WK acts transitively on J . �

Corollary 5.9. The group WK acts transitively on K.
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Proof. We have a projection map λ : J −→ K on the first coordinate. For every
element e in K there are 14 elements c such that (e, c) ∈ J , so λ is surjective. From
Corollary 5.8 and Lemma 2.14 it follows that WK acts transitively on K. �

Proposition 5.10. For n ∈ {2, 3, 5, 6, 7, 8}, the group W acts transitively on the
set

Dn = {{e1, . . . , en,−e1, . . . ,−en} | ∀i : ei ∈ E; ∀i 6= j : ei · ej = 0} .

Proof. For n = 2, 3, 5, this follows from the fact that W acts transitively on the
cliques of size n in Γ0 (Propositions 4.1 and 4.6), and the fact that there is a surjective
map from the set of cliques in Γ0 of size n to Dn. The case n = 8 is Corollary 5.6.
From Proposition 5.8, it follows that the stabilizer WK in W of K acts transitively
on the set

{(e1, e2,−e1,−e2) ∈ K4 | e1 · e2 = 0}
Since K consists of eight pairwise orthogonal roots and their inverses, the cliques
of six pairwise orthogonal roots and their inverses in K are the complements of the
cliques of two orthogonal roots and their inverses in K, so this implies that WK acts
transitively on the set of cliques of six pairwise orthogonal roots and their inverses
in K, too. From Corollary 5.6, the statement now follows for n = 6. The case n = 7
is proved analogously since we showed that WK acts transitively on K. �

Remark 5.11. There are two orbits under the action of W on the set
{{e1, . . . , e4,−e1, . . . ,−e4} | ∀i : ei ∈ E; ∀i 6= j : ei · ej = 0} .

Indeed, this follows from Proposition 4.1 and the fact that there is a surjective map
from the set of cliques of size 4 in Γ0 to this set.

As we mentioned before, the fact that W acts transitively on the set of cliques of
size r for 1 ≤ r ≤ 8 in Γ0 is in [DM10]. The following proposition shows how it
follows from our results about Γ−2,0 as well.

Proposition 5.12. for n = 6, 7, 8, the group W acts transitively on the cliques of
size n in Γ0.

Proof. We know that W acts transitively on the set
Dn = {{e1, . . . , en,−e1, . . . ,−en} | ∀i : ei ∈ E; ∀i 6= j : ei · ej = 0}

from Proposition 5.10. Let Fn be the set of cliques of size n in Γ0. We have an
obvious map f : Fn −→ Dn which adds adds the inverses to all roots in an element
in Fn. Let D = {e1, . . . en,−e1, . . . ,−en} be an element in Dn and consider its fiber
f−1(D) in Fn. This consists of all cliques {±e1, . . . ,±en}, where for each root either
itself or its inverse is chosen. The stabilizer WD of D acts on f−1(D). Note that for
i ∈ {1, . . . , n}, the reflection in the hyperplane orthogonal to ei switches ei and −ei
and fixes all other roots in D, hence it is an element in WD. Therefore, WD acts
transitively on f−1(D), and by Lemma 2.14, W acts transitively on Fn. �

Corollary 5.13. The table in Appendix A gives the complete list of orbits of the
maximal cliques in Γ0 and Γ−2,0, as well as a correct representative for each orbit,
the size of its stabilizer in W , and the size of its automorphism group.
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Proof. Al maximal cliques in Γ−2,0 are of size 16 (Lemma 5.4) and there is only one
orbit of them, of size 2025 (Corollary 5.6). It is an easy check that the clique in
the table is a representative of this orbit. Its stabilizer size is |W |

|2025| = 344064. Its
automorphism group is isomorphic to µ8

2 oS8 by Lemma 3.29, hence has size 28 · 8!.
In Theorem 4.6 we showed that all maximal cliques in Γ0 have size 8, and that there
are 518400 of them. In Proposition 5.12 we showed that W acts transitively on
the set of these cliques. Therefore the stabilizer of the clique in the table has size
|W |

518400 = 1344. Its automorphism group is the symmetric group on the 8 vertices. �

We finish this subsection by proving Theorem 1.2 for maximal cliques in Γ−2,0.

Lemma 5.14. LetK1 andK2 be two maximal cliques in Γ−2,0, and let f : K1 −→ K2
be an isomorphism between them. Then f extends to an automorphism of Λ if and
only if for every subclique S of four pairwise orthogonal roots in K1, the image f(S)
in K2 is conjugate to S under the action of W .

Proof. By Corollary 5.6, the groupW acts transitively on the set of maximal cliques
in Γ−2,0. Therefore there is an element α in W such that α(K1) = K2. So α−1 ◦ f is
an element in the automorphism group Aut(K1) of K1. Of course, f extends to an
element in W if and only if α−1 ◦ f does. Moreover, for every set S of four pairwise
orthogonal roots, f(S) and (α−1 ◦ f)(S) are conjugate. We conclude that we can
reduce to the case where K1 = K2, and f is an element in Aut(K1).
By Lemma 5.4, we can choose a subclique H = {e1, . . . , e8} of K1 of eight pairwise
orthogonal roots, such that we have K1 = {e1, . . . , e8,−e1, . . . ,−e8}. Let Aut(H) be
the automorphism group of H as colored graph, and let (Aut(K1))H be the stabilizer
of H in Aut(K1). Since for every element e ∈ K1 we have e ∈ H or −e ∈ H, an
element in Aut(H) determines a unique element in (Aut(K1))H , and conversely,
every element in (Aut(K1))H , when restricted to H, determines a unique element
in Aut(H). So we have an isomorphism ϕ : Aut(H) ∼−→ (Aut(K1))H . Let f be an
element in Aut(K1). Using Lemma 3.29, write f = a◦r|K1 , where a is an element in
ϕ(Aut(H)), and r is a composition of reflections ri in the hyperplanes orthogonal to
ei for certain i ∈ {1, . . . , 8}. By definition, r|K1 extends to the element r in W , and
r(S) and S are conjugate for all cliques S of four orthogonal roots, so the statement
in the lemma is true for f if and only if it is true for a. Of course, if a extends to an
automorphism of Λ, then a and a(S) are conjugate for all subcliques S of K1 of four
orthogonal roots. Conversely, assume that a(S) and S are conjugate for all such S.
Then in particular, for every subclique S′ of size 4 in H, the sets a|H(S′) and S′

are conjugate. From Corollary 4.5 it follows that a|H extends to an element in W .
Write w for an element in W with w|H = a|H . Then w|K1 and a are both elements
in (Aut(K1))H , that are identical on H, hence also on K1. We conclude that w|K1
and a are the same, so a extends to w ∈W . This finishes the proof. �



36 ROSA WINTER AND RONALD VAN LUIJK

5.3. Cliques in Γ−1,0

Consider the following twelve elements in E.

t1 = (1, 1, 0, 0, 0, 0, 0, 0); t7 =
(
−1

2 ,
1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)
t2 = (0, 0, 1, 1, 0, 0, 0, 0); t8 =

(
−1

2 ,
1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2

)
t3 = (0, 0, 0, 0, 1, 1, 0, 0); t9 =

(
−1

2 ,−
1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2

)
t4 = (0, 0, 0, 0, 0, 0,−1, 1); t10 =

(
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)
t5 =

(
−1

2 ,−
1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2

)
; t11 =

(
1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2

)
t6 =

(
−1

2 ,
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2

)
; t12 =

(
1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2

)
One can easily check that these twelve elements form a clique in Γ−1,0, depicted
below (where edges of color 0 are not drawn). We call this clique T .

t1 t5

t9

t3 t7

t11

t4 t8

t12

t2 t6

t10

-1

-1-1

-1

-1-1

-1

-1-1

-1

-1-1

The existence of this clique implies that the maximal size of cliques in Γ−1,0 is at
least twelve. We will show that this is in fact the maximum. Moreover, we will show
that all cliques of size twelve in Γ−1,0 are isomorphic, and that W acts transitively
on the set of cliques of size twelve (Propositions 5.20 and 5.21). To describe all
maximal cliques of smaller size in Γ−1,0 and their orbits under the action of W , we
use magma for part of the computations.

Lemma 5.15. Take e1, e2, e3 ∈ E with e1 ·e2 = e2 ·e3 = e1 ·e3 = −1. For e ∈ E with
e 6= e1, e2, e3, we have e ·ei 6= 1 for all i = 1, 2, 3 if and only if e ·e1 = e ·e2 = e ·e3 = 0.

Proof. Take e1, e2, e3 ∈ E with e1 · e2 = e2 · e3 = e1 · e3 = −1. Then we have
‖e1 + e2 + e3‖ = 0, so e1 + e2 + e3 = 0. For an element e ∈ E with e 6= e1, e2, e3 we
have e · ei ∈ {−2,−1, 0, 1} for i = 1, 2, 3, so e · ei 6= 1 for i = 1, 2, 3 implies e · ei ≤ 0
for i = 1, 2, 3. But e · (e1 + e2 + e3) = e · 0 = 0, so we have e · ei 6= 1 for i = 1, 2, 3 if
and only if e · ei = 0 for i = 1, 2, 3. �

Lemma 5.16. The maximum size of a clique in Γ−1,0 that contains e1, e2, e3 ∈ E
with e1 · e2 = 0 and e1 · e3 = e2 · e3 = −1, is ten.

Proof. Consider the elements e1 = (1, 1, 0, 0, 0, 0, 0, 0), e2 = (0, 0, 1, 1, 0, 0, 0, 0), and
e3 = (−1, 0,−1, 0, 0, 0, 0, 0). By Lemma 3.32, it is enough to prove that the maximal
size of all cliques in Γ−1,0 containing e1, e2, e3 is ten. Let A be the set

{e ∈ E | for i ∈ {1, 2, 3} : e · ei ∈ {−1, 0}}.
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For an element e = (a1 . . . , a8) in A, we have a1 + a2 ∈ {−1, 0}, a3 + a4 ∈ {−1, 0},
and −a1 − a3 ∈ {−1, 0}. This gives the following possibilities for (a1, a2, a3, a4):

(a1, a2, a3, a4) =
(
−1

2 ,±
1
2 ,

1
2 ,−

1
2

)
(16 roots)(

1
2 ,−

1
2 ,±

1
2 ,−

1
2

)
(16 roots)(

1
2 ,−

1
2 ,−

1
2 ,

1
2

)
(8 roots)

(0,−1, 0,−1) (1 roots)
(0, 0, 1,−1) (1 root)
(1,−1, 0, 0) (1 root)
(0,−1, 0, 0) (8 roots)
(0, 0, 0,−1) (8 roots)
(0, 0, 0, 0) (24 roots)

We conclude that the cardinality of A is 83. As it is too tedious to compute the
maximal size of the cliques in Γ−1,0 with only vertices in A by hand, we compute
this with magma. This number is seven, which implies that the maximal size of a
clique in Γ−1,0 containing e1, e2 and e3 is ten. �

Lemma 5.17. The maximum size of a clique in Γ−1,0 that contains a clique of five
pairwise orthogonal vertices is ten.

Proof. Consider the set
V5 = {{e1, . . . , e5} | ∀i : ei ∈ E; ∀i 6= j : ei · ej = 0} .

The group W acts transitively on V5 by Theorem 4.6, so it suffices to take
e1 = (1, 1, 0, 0, 0, 0, 0, 0); e4 = (0, 0, 0, 0, 0, 0, 1, 1);
e2 = (0, 0, 1, 1, 0, 0, 0, 0); e5 = (0, 0, 0, 0, 0, 0, 1,−1),
e3 = (0, 0, 0, 0, 1, 1, 0, 0);

and show that a clique in Γ−1,0 containing e1, . . . , e5 has size at most ten. Let A be
the set

{e ∈ E | for i ∈ {1, . . . , 5} : e · ei ∈ {−1, 0}}.
For an element e = (a1, . . . , a8) ∈ A, we have ai + ai+1 ∈ {−1, 0} for i ∈ {1, 3, 5, 7},
and a7−a8 ∈ {−1, 0}. If e is of the form

(
±1

2 , . . . ,±
1
2

)
, then a7+a8, a7−a8 ∈ {−1, 0}

implies that a7 = −1
2 . Moreover, for i ∈ {1, 3, 5}, we have either ai = ai+1 = −1

2 or
ai = −ai+1. This gives three possibilities for each tuple (ai, ai+1) for i ∈ {1, 3, 5},
and a8 is then determined since an even number of the entries of e should be negative.
We find 33 = 27 possibilities.
If e has two non-zero entries that are ±1, then a7 + a8, a7 − a8 ∈ {−1, 0} implies
that either (a7, a8) = (−1, 0), or (a7, a8) = (0, 0). Moreover, for i ∈ {1, 3, 5} we have
{ai, ai+1} = {−1, 0} or {ai, ai+1} = {−1, 1}. It is easy to check that this gives 24
possibilities.
We find that the cardinality of A is 51. As it is too tedious to compute the maximal
size of the cliques in Γ−1,0 with all vertices in A by hand, we compute this with
magma. The maximal size of a clique in Γ−1,0 with all vertices in A is five, so the
maximal size of a clique in Γ−1,0 containing e1, . . . , e5 is ten. �
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We recall some known Ramsey numbers.

Theorem 5.18. (Ramsey Numbers). For two integers l, k, let R(l, k) be the least
positive integer n such that every undirected graph with n verices contains either
a clique of order 4 or an independent set of order 5. Then we have R(3, 3) = 6,
R(3, 4) = 9, and R(4, 5) = 25.

Proof. See [GRS90], Table 4.1 for R(3, 3) and R(3, 4), and [MR95] for R(4, 5). �

Proposition 5.19. Every clique in Γ−1,0 of size bigger than ten contains a sub-
clique of size four with only edges of color 0.

Proof. Let K be a clique in Γ−1,0 of size bigger than ten. Consider the subgraph K ′
of K whose vertex set consists of all vertices of K, and whose edge set is obtained
by taking only the edges in K of color −1. We consider different cases depending
on the number of connected components of K ′.
If K ′ has at least four connected components, then we can take four vertices, each
from a different connected component, and these vertices form a clique of size four
with only edges of color 0 in K.
Now assume that K ′ has at most three connected components. We first show that
every connected component of K ′ that contains a clique of size three is a clique of
size three in itself. To this end, assume that K ′ contains a clique of size three, given
by {e1, e2, e3}. By Lemma 3.8, we have e1 + e2 + e3 = 0. If e is another vertex
of K ′, then e · ei ∈ {−1, 0} for i ∈ {1, 2, 3}, and e · (e1 + e2 + e3) = 0, from which it
follows that e · ei = 0 for i ∈ {1, 2, 3}. We conclude that the vertices e1, e2, e3 form a
connected component of K ′. Since there are at most three connected components by
assumption, and K ′ has more than ten vertices, we conclude that not all components
contain a clique of size three. Now remove a vertex from every connected component
in K ′ that is a clique of size three (of which there are at most two), then we are
left with a subgraph of K ′ with at least 9 vertices, and no cliques of size three left.
Hence by Theorem 5.18, there must be a set of four vertices that are pairwise disjoint
in K ′, meaning that they form a clique with edges of color 0 in K. �

Let V3, V4, Z, α, π and Y be as in the diagram above Lemma 3.23.

Proposition 5.20. The following hold.
(i) Let v = (e1, e2, e3, e4) be an element in V4. Then e1, e2, e3 and e4 are contained
in a clique of size bigger than ten in Γ−1,0 if and only if v is an element of Y .
(ii) Every maximal clique of size at least eleven in Γ−1,0 is of the form


e1, . . . , e4,
f1, . . . , f4,

−e1 − f1, . . . ,−e4 − f4


∣∣∣∣∣∣
∀i 6= j : ei · ej = fi · fj = 0;

∀i : ei · fi = −1;
∀i 6= j : ei · fj = 0.

 .
(iii) The maximal size of a clique in Γ−1,0 is twelve, and there are no maximal
cliques of size eleven in Γ−1,0.
(iv) For an element v ∈ Y , there are eight cliques of size twelve in Γ−1,0 containing
the elements of v.
(v) For K a clique of size twelve in Γ−1,0, we have |K4 ∩ V4| = |K4 ∩ Y | = 1944.
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Proof. Let K be a clique of size bigger than ten in Γ−1,0. By Proposition 5.19,
we know that K contains a subclique of size four with only edges of color 0. Let
{e1, e2, e3, e4} be such a subclique in K. Let e be another element in K. By Lem-
mas 5.16 and 5.17, there is exactly one i ∈ {1, 2, 3, 4} such that e · ei = −1, and
e · ej = 0 for i 6= j ∈ {1, 2, 3, 4}. It follows that e · (e1 + e2 + e3 + e4) = −1, hence∑4
i=1 ei /∈ 2Λ. By Proposition 3.28, this implies that (e1, e2, e3, e4) is an element

in Y . Conversely, the tuple (t1, t2, t3, t4) is an element in Y and it is contained in
the clique T (page 36), so by Proposition 3.28, every element in Y is contained in a
clique of size twelve in Γ−1,0. This proves (i).
Recall the clique T defined above Lemma 5.15. We define the following sets for
i ∈ {1, 2, 3, 4}.

Fi =
{
e ∈ E

∣∣∣∣ e · ti = −1,
e · tj = 0 for j ∈ {1, 2, 3, 4}, j 6= i

}
.

Let K be a clique in Γ−1,0 of size at least eleven. Such a K exists, since the clique T
is an example. By Proposition 5.19, the clique K contains four vertices that form
an element of V4, and by part (i) this is an element of Y . By Proposition 3.28 we
can without loss of generality assume that K contains the four vertices t1, t2, t3, t4.
By Lemma 5.16 and Lemma 5.17, for every element t in K \ {t1, t2, t3, t4} there is
an i ∈ {1, 2, 3, 4} such that t · ti = −1 and t · tj = 0 for i 6= j ∈ {1, 2, 3, 4}. Therefore
we have

K \ {t1, t2, t3, t4} =
⋃

i∈{1,2,3,4}
K ∩ Fi.

Fix i ∈ {1, 2, 3, 4}. For an element f ∈ Fi we have f ·ti = −1, so by Lemma 3.8 there
is a unique element g ∈ E such that f ·g = ti ·g = −1, given by g = −ti − f . Note
that this element is also in Fi, since (−ti− f) · tj = 0 for j ∈ {1, 2, 3, 4} with j 6= i.
So for i ∈ {1, 2, 3, 4}, the set Fi is the union of different sets {f,−ti − f}, and we
claim thatK∩Fi is contained in one of these sets. To prove this, fix i and f ∈ K∩Fi.
Assume by contradiction that there is an element h ∈ (K ∩ Fi)\{f,−ti−f}. Then h
is in Fi, so h · f 6= −1 by uniqueness of g. But h, f are both elements in K, so this
implies h · f = 0. But then we have h · ti = f · ti = −1 and h · f = 0, so by
Lemma 5.16, the clique K has size at most ten, which gives a contradiction. So for
i ∈ {1, 2, 3, 4}, there are fi ∈ Fi such that K ∩ Fi ⊆ {fi,−ti − fi}, and we have

K ⊆
⋃

i∈{1,2,3,4}
{ti, fi,−ti − fi}.

Fix such fi ∈ Fi for i ∈ {1, 2, 3, 4}. We have fi · fj = 0 for i 6= j ∈ {1, 2, 3, 4},
because if this were not the case then K would contain a triple ti, fi, fj with ti · fi =
fi · fj = −1, fj · ti = 0, which contradicts the fact that K has size bigger than
ten by Lemma 5.16. Hence

⋃
i∈{1,2,3,4}{ti, fi,−ti − fi} forms a clique in Γ−1,0 of the

required form, and if K is maximal, it is equal to this clique. This proves part (ii),
and part (iii) follows directly.
We proceed by proving (iv). Note that (t1, t2, t3, t4) is an element in Y . We count
the number of cliques of size twelve in Γ−1,0 containing t1, . . . , t4. By (ii), we know
that such a clique is of the form

⋃
i∈{1,2,3,4}{ti, fi,−ti − fi}, where fi and −ti − fi

are elements in Fi for i ∈ {1, 2, 3, 4}. By simply considering all elements in E we
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find

F1 =


(
−1

2 ,−
1
2 , a3, a4, a5, a6, a7, a8

) ∣∣∣∣∣∣∣∣
{a3, a4} =

{
−1

2 ,
1
2

}
,

{a5, a6} =
{
−1

2 ,
1
2

}
,

a7 = a8

 .
Since |F1| = 8, there are four choices for the set {f1,−t1 − f1}. Fix f1, and write
f1 =

(
−1

2 ,−
1
2 , a3, . . . , a8

)
. Then f2, −t2−f2 are elements in F2 that are orthogonal

to f1 by (ii). Again, by considering all elements in E we find

F2 =


(
b1, b2,−1

2 ,−
1
2 , b5, b6, b7, b8

) ∣∣∣∣∣∣∣∣
{b1, b2} =

{
−1

2 ,
1
2

}
,

{b5, b6} =
{
−1

2 ,
1
2

}
,

b7 = b8

 .
Let f = (b1, . . . , b8) be an element in F2. Then f is orthogonal to f1 if and only
if 0 =

∑8
i=5 aibi = 2(a5b5 + a7b7), which holds if and only if b5

b7
= −a7

a5
. This gives

two choices for the tuple (b5, b7), and together with the two choices for (b1, b2) we
find four elements in F2 that are orthogonal to f1. This gives two choices for the
set {f2,−t2 − f2}. Fix one. Then f3, −t3 − f3, and f4, −t4 − f4, are elements in
F3 and F4 respectively, that are orthogonal to f1 and f2. It is an easy check that
this determines the sets {f3,−t3− f3} and {f4,−t4− f4} uniquely. So for f1 we had
four choices, for f2 we had two, and the set {f3,−t3−f3, f4,−t4−f4} is determined
after choosing f1, f2. We conclude that there are 4 · 2 = 8 cliques of size twelve in
Γ−1,0 containing t1, . . . , t4. By Proposition 3.28, this holds for every element in Y .
This proves (iv).
Let K be a clique of size twelve in Γ−1,0. Using the notation in (ii), write

K = {e1, . . . , e4, f1, . . . , f4,−e1 − f1, . . . ,−e4 − f4} .
It follows from (ii) that the sets of four pairwise orthogonal roots in K are given by

{{a1, a2, a3, a4} | ai ∈ {ei, fi,−ei − fi} for i ∈ {1, 2, 3, 4}}.
This gives 34 = 81 such sets, and these give rise to 81 ·4! = 1944 elements in K4∩V4.
From (i) it follows that K4 ∩ V4 = K4 ∩ Y . This proves (v). �

Proposition 5.21. Let T be the set of all cliques of size twelve in Γ−1,0, and R
an element in T . The following hold.

(i) We have |T | = 179200, and the group W acts transitively on T .
(ii) The stabilizer WR in W of R acts transitively on R4 ∩ Y .

Proof. Let T be the clique {t1, . . . , t12}, as defined above Lemma 5.15. Define the
set

S = {((e1, e2, e3, e4),K) ∈ Y × T | e1, . . . , e4 ∈ K}.
We have projections λ : S −→ Y and µ : S −→ T .
From the previous proposition we know that the fibers of λ have cardinality 8, and
the fibers of µ have cardinality 1944. Therefore we have |S| = |Y | · 8 = 348364800
(Proposition 3.28), and |T | = |S|

1944 = 179200. We will show that W acts transitively
on S, which implies that it acts transitively on T by the projection µ. Consider
the clique T ∈ T , and set y = (t1, t2, t3, t4) ∈ T 4 ∩ Y . Then (y, T ) is in the fiber
of λ above y. The stabilizer Wy in W of y acts on this fiber. We show that this
action is transitive, that is, that the orbit WyT is equal to the whole fiber. We
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have |WyT | = |Wy |
|Wy,T | , and |Wy| = |W |

|Wy| = |W |
|Y | = 16. Note that t1, t2, t3, t4 are all

orthogonal to the four roots
e1 = (1,−1, 0, 0, 0, 0, 0, 0), e2 = (0, 0, 1,−1, 0, 0, 0, 0),
e3 = (0, 0, 0, 0, 1,−1, 0, 0), e4 = (0, 0, 0, 0, 0, 0, 1, 1).

Therefore, for i ∈ {1, 2, 3, 4}, the reflection ri in the hyperplane orthogonal to ei is
contained in the stabilizerWy. Since the subgroup generated by these four reflections
has cardinality 16, we conclude that this is the whole group Wy. We can now
compute that for every element r in Wy we have rT 6= T , except for the identity
and the composition of all four reflections r1, r2, r3, r4. So |Wy,T | = 2, and we
have |WyT | = |Wy |

|Wy,T | = 16
2 = 8. Since the fiber of λ above y has cardinality 8, we

conclude that Wy acts transitively on this fiber. Since W acts transitively on Y ,
we conclude from Lemma 2.14 that W acts transitively on S. Finally, from the
surjective projection µ and Lemma 2.14, it follows that W acts transitively on T .
This proves (i). Since W acts transitively on S, the stabilizer WR in W of the clique
R acts transitively on the fiber µ−1(R). Since there is a bijection µ−1(R) −→ R4∩Y
given by the projection λ, the group W acts transitively on R4 ∩ Y by Lemma 2.14.
This proves (ii). �

Corollary 5.22. let R be a clique of size twelve in Γ−1,0. Let WR be its stabilizer
in W . Then WR acts transitively on R.

Proof. We have a surjective map R4 ∩ Y −→ R projecting on the first coordinate,
so this follows from the previous proposition and Lemma 2.14. �

Now that we described all the largest cliques (with respect to number of vertices)
in Γ−1,0, we continue to describe all other maximal cliques. Since the size of the
stabilizer of a clique is the same for every two cliques that are in the same orbit, we
make the following definition.

Definition 5.23. The stabilizer size of an orbit is the size of the stabilizer of any
of the elements in the orbit.

As one can see in the table in Appendix A, for a set c that contains 0 in combination
with either −1 or 1, there are many maximal cliques in Γc with small stabilizer
sizes, which means large orbits. This means that, even though we use magma to find
all cliques and orbits, computations can become very large and time consuming.
Therefore we use the following lemma throughout.

Lemma 5.24. Let H be a finite group acting on a finite set X and consider its
induced action on the power set of X. Let A and S be subsets of X and let m
denote the number of H-conjugates of A that are contained in S. Then the number
of H-conjugates of S that contain A equals

m · |HA|
|HS |

,

where HA and HS denote the stabiliser subgroups of A and S, respectively.

Proof. Let Z denote the H-subset of the product HA ×HS consisting of all pairs
(B, T ) with B ∈ HA and T ∈ HS satisfying B ⊂ T . The group H acts transitively
on the codomains of the projection maps π : Z → HA and ρ : Z → HS. This
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implies that all fibers of π have the same size, say r, as the fiber above A, which is
the number of H-conjugates of S that contain A, that is, the number that we are
looking for. All fibers of ρ have the same size as the fiber above S, which equals m.
Hence, we can express the size of Z as both |HA| · r and |HS| ·m. Since the orbits
HA and HS have size |H|/|HA| and |H|/|HS |, respectively, we find

r = m · |HS|
|HA|

= m · |HA|
|HS |

. �

Note that for A = ∅, we recover the well-known fact that the length of the orbit of S
equals the index [H : HS ].
The following proposition describes all maximal cliques and their orbits in Γ−1,0.

Proposition 5.25. For two maximal cliques K1 and K2 of the same size in Γ−1,0,
the following are equivalent.

(i) K1 and K2 are conjugate under the action of W .
(ii) K1 and K2 are isomorphic.
(iii) K1 and K2 have the same stabilizer size.
(iv) The automorphism groups of K1 and K2 have the same cardinality, and, if
this cardinality is 16 and K1 and K2 have size 9, then K1 and K2 both contain a
monochromatic clique of size 7 and color 0, or they both do not.

Moreover, the table in Appendix A gives a complete list of representatives of the
orbits of the maximal cliques in Γ−1,0, as well as for each representative its stabilizer
size and the size of its automorphism group.

Proof. The implications (i)⇒(ii), (i)⇒(iii), (i) ⇒(iv), and (ii)⇒(iv) are immediate.
We will show (iii)⇒(i) and (iv)⇒(i), which together with the immediate implica-
tions prove all equivalences. To this end, we first show that the table is complete
and correct as stated. From Propositions 5.20 and 5.21 we know that the maximal
size of all cliques in Γ−1,0 is twelve, that there are 179200 cliques of size twelve, and
that these cliques form one orbit under the action ofW , proving the equivalences for
K1, K2 of size at least 12. The clique of size 12 in the table is the clique T that is
defined above Lemma 5.15. The size of its stabilizer inW is |W |

179200 = 3888. From the
description of T we see that its automorphism group is isomorphic to the semidirect
product S4

3 o S4, where S4 works on S4
3 by permuting the four coordinates. This

group has order 64 · 24 = 31104.
To find maximal cliques in Γ−1,0 of size smaller than 12, note that there are no
maximal cliques in Γ−1,0 of size 11 by Proposition 5.20, so we only have to look
at the cliques of size at most ten. To make computations easier, we first show
that every maximal clique in Γ−1,0 contains at least one edge of color 0. We
know that the only maximal cliques in Γ−1 are the cliques of size three. Set e1 =
(1, 1, 0, 0, 0, 0, 0, 0, 0, 0), e2 = (−1, 0, 1, 0, 0, 0, 0, 0), and e3 = (0,−1,−1, 0, 0, 0, 0, 0),
then {e1, e2, e3} is a maximal clique in Γ−1. Note that for e4 = (0, 0, 0, 0, 0, 0, 1, 1),
the set {e1, e2, e3, e4} forms a clique in Γ−1,0, hence {e1, e2, e3} is not a maximal
clique in Γ−1,0. Since W acts transitively on the set of maximal cliques in Γ−1
(Corollary 3.9), it follows that all maximal cliques in Γ−1 are not maximal in Γ−1,0.
Thus we can assume that the maximal cliques in Γ−1,0 contain at least one pair of
orthogonal roots. Fix the roots c1 = (1, 1, 0, 0, 0, 0, 0, 0), c2 = (0, 0, 1, 1, 0, 0, 0, 0).
Since W acts transitively on the pairs of orthogonal roots, every maximal clique in
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Γ−1,0 is conjugate to a clique containing c1, c2, so by considering only the maximal
cliques in Γ−1,0 that contain c1 and c2, we find representatives for all orbits of the
maximal cliques in Γ−1,0 under the action of W . This reduces computations, since
there are only 136 roots that have dot product −1 or 0 with both c1 and c2, which is
quickly computed with magma, as well as the number of maximal cliques containing
c1, c2. We find the following.

r Number of maximal cliques of size r
in Γ−1,0 containing c1 and c2

≤ 7 0
8 261600
9 2779392
10 228408

We now turn to the table in the appendix. One can easily check with magma that
the sets in the table for Γ−1,0 are indeed maximal cliques in Γ−1,0; in Remark 5.26.
For each of these cliques we compute the automorphism groups with magma. We see
that apart from the cliques

L1 = {19, 41, 48, 50, 65, 150, 172, 214, 240}
and

L2 = {41, 48, 50, 55, 65, 78, 178, 214, 240}
of size 9, which both have an automorphism group of size 16, every two cliques of
the same size in the table have a different automorphism group. One can check that
L2 contains a subclique with only edges of color zero of size 7, and L1 does not, so
L1 and L2 are not isomorphic. This shows that any two cliques of the same size in
the table are not isomorphic, and therefore not conjugate.
We claim that every maximal clique in Γ−1,0 is conjugate to one of these cliques in
the table. To this end, set A = {c1, c2}, and let WA be the stabilizer of A in W .
From Proposition 4.1 it follows that |WA| = |W |

|WA| = |W |
15120 = 46080. We now show

how to proceed for the cliques of size 8, the proof for sizes 9 and 10 goes completely
analogous. For each of the five cliques of size 8 in the table we compute the size
of its stabilizer (144,128,16,14, and 8) and the number of conjugates of A contained
in it (21,20,20,21, and 21, respectively), with magma. Lemma 5.24 now gives us the
number of conjugates of each clique that contain A. This sums up to the number
261600 we find in the table above, proving our claim.
We have showed that the table in the appendix gives exactly one representative for
each orbit of the maximal cliques in Γ−1,0, so K1 and K2 are both conjugate to an
element in the table. If either (iii) or (iv) holds, then by looking at the table we
see that this implies that K1 and K2 are conjugate to the same clique in the table,
and in particular, they are conjugate to each other, implying (i). This finishes the
proof. �

Remark 5.26. In the proof of Proposition 5.25 we found 261600 cliques of size 8
in Γ−1,0 containig c1 = (1, 1, 0, 0, 0, 0, 0, 0) and c2 = (0, 0, 1, 1, 0, 0, 0, 0). One can
check for any two of them whether they are conjugate with magma, but this takes
a very long time. To reduce computations, we first sort the cliques by size of their
stabilizer. We then go through each set of cliques with the same stabilizer size by
taking one clique, and removing all cliques that are conjugate to it from the set.
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5.4. Maximal cliques of other colors
In this subsection we prove Theorem 1.1 and 1.2 for all maximal cliques in Γc with
c ∈ {{−1, 1}, {−2,−1, 1}, {0, 1}, {−2,−1, 0}, {−2, 0, 1}}. We make use of magma in
all cases. The following lemma deals with the cases for which this is straightforward.

Lemma 5.27. For c ∈ {{−1, 1}, {−2,−1, 1}}, and for two maximal cliques K1 and
K2 of the same size in Γc, the following are equivalent.

(i) K1 and K2 are conjugate under the action of W .
(ii) K1 and K2 are isomorphic.
(iii) K1 and K2 have the same stabilizer size.
(iv) The automorphism groups of K1 and K2 have the same cardinality.

Moreover, for c ∈ {{−1, 1}, {−2,−1, 1}}, the table in Appendix A gives a complete
list of representatives of the orbits of maximal cliques in Γc, as well as for each
representative its stabilizer size and the size of its automorphism group.

Proof. In these two graphs there are not so many maximal cliques, and we can
ask magma to compute them, compute the orbits under the action of W , and a
representative of each orbit directly. The results are in the table. The size of
the stabilizers is found by dividing the order of W by the size of the orbit. The
automorphism group of the cliques is also easily found with magma. Since cliques of
the same size in the table have automorphism groups of different size, they are not
isomorphic. The equivalence of the statements (i), (ii), (iii), and (iv) now follows
from the table. �

Corollary 5.28. For c ∈ {{−1, 1}, {−2,−1, 1}}, let K1 and K2 be two maximal
cliques in Γc, and f : K1 −→ K2 an isomorphism between them. Then f extends to
an automorphism of Λ.

Proof. Since K1 and K2 are isomorphic, from Lemma 5.27 it follows that they are
both conjugate to the same clique in the table in de appendix; call this clique H.
Then there are elements α, β in W such that α(K1) = β(K2) = H. So β ◦ f ◦ α−1

is an element in the automorphism group Aut(H) of H. Of course, f extends to an
element in W if and only if β ◦ f ◦α−1 does. We conclude that we can reduce to the
case where K1 = K2 = H, and f is an element in Aut(H).
For each clique H in the table, we construct in magma the mapWH −→ Aut(H) from
the stabilizer WH to the automorphism group Aut(H) given by restriction. For all
these cliques, this is a surjective map. It follows that every element in Aut(H)
extends to an element in W . �

The final three cases are much more work, because of the large numbers of maximal
cliques and their sizes. The most extreme case is that of maximal cliques of size 29
in Γ0,1 and Γ−2,0,1; we treat this separately in Section 5.4.1.

Proposition 5.29. For two maximal cliquesK1 andK2 of the same size in Γ−2,−1,0,
the following are equivalent.

(i) K1 and K2 are conjugate under the action of W .
(ii) K1 and K2 are isomorphic.
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(iii) K1 and K2 have the same stabilizer size, and, if the stabilizer size is 32 and
K1 and K2 have size 10, then K1 and K2 both contain a pair of inverse roots, or
they both do not.
(iv) The automorphism groups of K1 and K2 have the same cardinality, and, if
this cardinality is 80 and K1 and K2 have size 9, or this cardinality is 64 and K1
and K2 have size 10, then K1 and K2 both contain a pair of inverse roots, or they
both do not.
(v) K1 and K2 have the same stabilizer size and their automorphism groups have
the same cardinality.

Moreover, the table in Appendix A gives a complete list of representatives of the
orbits of maximal cliques in Γ−2,−1,0, as well as for each representative its stabilizer
size and the size of its automorphism group.

Proof. This proof follows the same steps as the proof of Proposition 5.25. See also
Remark 5.26 on how we found the representatives of each orbit that are written in
the table.
Cliques in Γ−2,−1,0 without an edge of color 0 are monochromatic and not maximal
in Γ−2,−1,0 (follows from the results in Γ−2,−1,Γ−2,0,Γ−1,0). Therefore, to find the
maximal cliques in Γ−2,−1,0, we only consider cliques that contain two orthogonal
roots, and we can choose these arbitrarily since W acts transitively on the set of
pairs of orthogonal roots. Define the following roots.

e1 =
(
−1

2 ,−
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)
, e2 =

(
−1

2 ,−
1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
.

We find the following.
r Number of maximal cliques of size r

in Γ−2,−1,0 containing e1 and e2
≤ 7 0
8 192480
9 1961088
10 743536
11 111680
12 8290
13 2100

14-15 0
16 15
≥ 17 0

We turn to the table in the appendix. One can check that all the sets in the table
for Γ−2,−1,0 are indeed maximal cliques in Γ−2,−1,0. For each of these cliques we
compute the automorphism group with magma. As one can see in the table, except
from two cliques
L1 = {1, 8, 26, 47, 51, 86, 121, 128, 228}, L2 = {1, 8, 26, 47, 51, 86, 124, 125, 228}

of size 9 that both have an automorphism group of size 80, and two cliques
M1 = {1, 8, 26, 31, 43, 46, 84, 98, 103, 125},
M2 = {1, 8, 26, 31, 43, 46, 84, 101, 226, 238}
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of size 10 that both have an automorphism group of size 64, any two cliques of
the same size have different automorphism groups and are therefore not isomorphic.
Moreover, L1 contains the roots 1 and 128, which are each other’s inverse, whereas
L2 contains no pairs of inverse roots. And M1 contains the roots 26 and 103, which
are each other’s inverse, andM2 contains no pairs of inverse roots. So also L1, L2,M1
and M2 are pairwise not isomorphic. We conclude that any two of the cliques in the
table are not isomorphic, hence not conjugate.
For each size r in the table above, as we do in the proof of Proposition 5.25, we
compute with Lemma 5.24 and magma the number of maximal cliques of size r
containing e1 and e2 that are conjugate to one of the cliques in the table in the
appendix. This gives exactly the number of maximal cliques of size r containing
e1 and e2 in the table above. So every maximal clique in Γ−2,0,1 containing e1
and e2 is conjugate to a clique in the table in the appendix, hence the same holds
for every maximal clique in Γ−2,0,1. We conclude that the table in the appendix
gives a unique representative for each orbit of the set of maximal cliques under
the action of W . Finally, for each clique in the table, we compute the size of its
stabilizer in W . We see that except for N1 = {1, 8, 26, 31, 43, 86, 106, 115, 224, 234}
and N2 = {1, 8, 26, 31, 43, 46, 84, 101, 226, 238}, two cliques of the same size in the
table have different stabilizer sizes. In N1, we have roots 43 and 86, and these are
each other’s inverse; in N2, there are no two roots that are each other’s inverse.
Finally, N1 and N2 have different automorphism groups.
The equivalence of statements (i) - (v) follows in a similar way as in the proof
of Proposition 5.25. The implications (i)⇒(ii), (i)⇒(iii), (i)⇒(iv), (i)⇒(v) and
(ii)⇒(iv) are immediate. Since both K1 and K2 are conjugate to one of the cliques
in the table, if any of (iii) - (v) are true, by looking at the table we see that this implies
that K1 and K2 are conjugate to the same clique in the table, and in particular,
they are conjugate to each other, implying (i). This proves that all 5 statements are
equivalent. �

We can now prove Theorem 1.2 for maximal cliques in Γ−1,0 and Γ−2,−1,0; the
statement is the same for these two graphs. Recall the following graphs that are
defined in the introduction, where any two disjoint vertices have an edge of color 0
between them.

−1 −1

A C−1

Lemma 5.30. Let K1 and K2 be two maximal cliques, both in Γ−1,0 or both in
Γ−2,−1,0, and let f : K1 −→ K2 be an isomorphism between them. The following
hold.

(i) The map f extends to an automorphism of Λ if and only if for every ordered
sequence S = (e1, . . . , er) of distinct roots in K1 such that the colored graph on
them is isomorphic to A or C−1, its image f(S) = (f(e1), . . . , f(er)) is conjugate
to S under the action of W ;
(ii) If S = (e1, . . . , e5) is a sequence of distinct roots in K1 such that the colored
graph on them is isomorphic to C−1 with e1 · e4 = e2 · e5 = −1, then S and f(S)
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are conjugate under the action of W if and only if both e = e1 + e2 + e3 − e4 − e5
and f(e) are in the set {2f1 + f2 | f1, f2 ∈ E}, or neither are.

Proof. Since K1 and K2 are isomorphic, from Propositions 5.25, and 5.29 it follows
that they are both conjugate to the same clique in the table in de appendix; call
this clique H. Then there are elements α, β in W such that α(K1) = β(K2) = H,
so β ◦ f ◦ α−1 is an element in the automorphism group Aut(H) of H. Of course,
f extends to an element in W if and only if β ◦ f ◦ α−1 does. Moreover, for every
sequence S as in the statement, f(S) and (β◦f ◦α−1)(S) are conjugate. We conclude
that we can reduce to the case where K1 = K2 = H, and f is an element in Aut(H).
Let g : WH −→ Aut(H) be the map from the stabilizer of H to the automorphism
group that restricts elements in WH to H, and TH a set of representatives of the
classes in the cokernel of g. Since f is a composition of (restrictions of) elements in
WH with an element in TH , we can reduce further to the case where f is an element
in TH .
For each of the 56 cliques H in the table at Γ−1,0 and Γ−2,−1,0, we compute the map
g : WH −→ Aut(H) with magma. In all cases, this map is injective. This means that
for all cliques with |WH | = |Aut(H)|, every element in the automorphism group
of H extends to a unique automorphism of Λ. We see in the list that this holds for
the first five cliques and the 11th, 12th, 15th, and 16th clique in Γ−1,0, and the
first five cliques and the 8th, 10th, 11th, 13th, 17th, 20th, 23rd, and 24th clique
in Γ−2,−1,0.
For each clique H of the remaining 34 cliques, we compute the following with the
function CokernelClassesTypeCminus1 ([Win]). First, we create a set TH of rep-
resentatives of the classes of the cokernel of the map from WH to Aut(H). We then
check for each t in TH , and for all sequences S = (e1, e2, e3, e4, e5) of distinct roots in
H such that the colored graph on S is isomorphic to C−1 with e1 · e4 = e2 · e5 = −1,
whether S and t(S) are not conjugate. For all t and S for which this is the case, we
verify that either e = e1 + e2 + e3 − e4 − e5 is in the set F = {2f1 + f2 | f1, f2 ∈ E}
and t(e) is not, or vice versa. This proves part (ii).
For H equal to the 7th − 10th , 13th , 14th, and 18th − 23rd clique in Γ−1,0 and
the 7th, 9th, 12th, 14th, 16th , 18th , 19th , 21st , 22nd , 25th − 29th, and 31st
clique in Γ−2,−1,0, the check we just described gives us for all t in TH a sequence
S with distinct roots in H and graph isomorphic to C−1, such that S and t(S) are
not conjugate. For the remaining 7 cliques in the table, we do an almost analogous
check with the function CokernelClassesTypeA in magma ([Win]), where S is now
a clique whose graph is isomorphic to A. For all 7 cliques H, for all elements in
TH , there exists such an S with S not conjugate to t(S). This finishes the proof
of (i). �

Proposition 5.31. For c ∈ {{0, 1}, {−2, 0, 1}}, and K1, K2 two maximal cliques
of the same size r 6= 29 in Γc, the following are equivalent.

(i) K1 and K2 are conjugent under the action of W .
(ii) K1 and K2 are isomorphic.
(iii) K1 and K2 have the same stabilizer size, and they contain the same number
of pairs of orthogonal roots.
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(iv) The automorphism groups of K1 and K2 have the same cardinality, and K1
and K2 contain the same number of pairs of orthogonal roots.

Moreover, the table in Appendix A gives a complete list of representatives of the
orbits of maximal cliques in Γc, as well as for each representative its stabilizer size
and the size of its automorphism group.

Proof. We show that the table is correct and complete for each c. The steps in the
proof are the same as in the proofs of Propositions 5.25 and 5.29, and the equivalence
of statements (i) - (iv) follows in the same way as in these propositions. See also
Remark 5.26 on how we found the representatives of each orbit that are written in
the table.
• c = {0, 1}
We know that the maximal cliques in Γ1 form two orbits; one with cliques of size 7
and one with the cliques of size 8 (Proposition 4.7). Note that the clique of size 7
in Γ1 in the table is contained in the clique of size 22 in Γ0,1, and the clique of
size 8 in Γ1 is contained in the clique of size 33 in Γ0,1. This means that there are
no maximal cliques with only edges of color 1 in Γ0,1. We fix two orthogonal roots
e1 =

(
−1

2 ,−
1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2

)
, e2 = (−1, 0, 0, 0,−1, 0, 0, 0). With magma we

compute that there are only 136 roots that have dot product 0 or 1 with e1 and e2,
and we find the following.

r Number of maximal cliques of size r
in Γ0,1 containing e1 and e2

≤ 21 0
22 3120

23-27 0
28 21120
30 16263276
31 2792800
32 655680
33 105120
34 18800
35 0
36 304
≥ 37 0

For each set K in the table in Appendix A, one can check that it is indeed a
maximal clique in Γ0,1. We compute the automorphism groups of all cliques. As
we see in the table, for all sizes except 30, two cliques of the same size have a
different automorphism group, so they are not isomorphic, hence not conjugate.
For size 30, all cliques whose automorphism groups have the same cardinality have
a different number of pairs of orthogonal roots that they contain; for example,
the cliques of size 30 with stabilizer size 48 contain (in order of appearence in the
table) 171, 179, 180, 183, 198 subsets of two orthogonal roots. This shows that
no two cliques in the table are isomorphic, hence not conjugate. Moreover, using
the stabilizer size and the number of subsets of orthogonal roots of each clique K
in the list, we can find the number of conjugates of K that contain {e1, e2} with
Lemma 5.24. Adding all these numbers up we recover the numbers in the table above,
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which shows that every maximal clique in Γ−1,0 of size unequal to 29 is conjugate
to one of the cliques in the list. We conclude that the table in Appendix A is
complete. Finally, we see that for each clique in the table, the stabilizer size and the
cardinality of the automorphism group is the same. Therefore, by what we showed
above, different cliques of the same size and with the same stabilizer size in the table
have a different number of subsets of two orthogonal roots.
• c = {−2, 0, 1}
We start with cliques in Γ−2,0,1 containing an edge of color −2. We fix a root e and
compute the maximal cliques in Γ−2,0,1 containing e and −e. We find the following.

r Number of maximal cliques of size r
in Γ−2,0,1 containing e and −e

≤ 12 0
13 370440
14 250236
15 0
16 77895

17-18 0
19 7019208
20 861840
21 120960
22 44352
23 0
24 4032

25-28 0
≥ 30 0

Since there are no maximal cliques of size bigger than 29 containing an edge of
color -2, we conclude that all the maximal cliques in Γ0,1 of size at least 29 are
also maximal cliques in Γ−2,0,1. This leaves us with the maximal cliques in Γ0,1 of
size 22 and 28. Looking at the table in the appendix, we see that for both sizes
there is only one orbit, and it is an easy check that for the listed representatives
L22 of size 22 and L28 of size 28 of both these orbits, there are no roots that can
be added to extend the clique in Γ−2,0,1. Therefore L22 and L28 are still maximal
in Γ−2,0,1. We now turn to the cliques in Γ−2,0,1 in the table. First of all, one can
check easily with magma that these are indeed maximal cliques in Γ−2,0,1. For K1
and K2 of size 28 or ≥ 30, everything is exactly the same as for Γ0,1, and we showed
that the proposition holds in these cases. For the other cliques, we see that for
all sizes except 13, 19, and 20, two different cliques of the same size have different
automorphism groups. For sizes 13, 19, and 20, we compute, completely analogously
to what we did for c = {0, 1}, that the number of subsets of two orthogonal roots
in two different cliques whose automorphism groups have the same cardinality is
different. For example, the cliques of size 19 whose automorphism group has size
96, contain (in order of appearence in the table) 91, 95, 94, 98, 103 subsets of
two orthogonal roots. This proves that all the cliques in the table are pairwise not
isomorphic, hence not conjugate. Again using Lemma 5.24, we can check that every
maximal clique in Γ−2,0,1 that is conjugate to one of the cliques in the table, showing
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that the table is complete. Finally, except for the cliques
L1 = {1, 8, 12, 14, 15, 20, 22, 23, 36, 38, 39, 128, 136, 137, 138, 139, 149, 160, 169}

and
L2 = {1, 8, 12, 14, 50, 68, 70, 74, 128, 136, 137, 154, 169, 170, 176, 177, 181, 182, 215}

of size 19, any two different cliques of the same size that have the same stabilizer
size have the same cardinality of their automorphism groups as well. We already
showed that this means that they contain a different number of pairs of orthogonal
roots. We compute that L1 contains 109 such pairs, and L2 contains 79. Therefore
we can conclude that different cliques of the same size and with the same stabilizer
size in the table have a different number of subsets of two orthogonal roots. �

5.4.1. Cliques of size 29 in Γ0,1 and Γ−2,0,1

Cliques of size 29 in Γ0,1

The graph Γ0,1 contains a surprisingly large number of maximal cliques of size 29,
so we will treat this case separately in this section. As before, we say that the
stabiliser size of an orbit is the size of the stabiliser of any of the elements in the
orbit (Definition 5.23).

Proposition 5.32. In the graph Γ0,1 there are 62825152320 maximal cliques of
size 29. They form 432 orbits under the automorphism group W . The multiset of
their stabiliser sizes is{

1(8),2(81), 4(107), 6(5), 8(50), 10, 12(41), 14(2), 16(28), 18(2), 20(5), 24(28), 32(4), 36,

48(21), 60, 64(2), 72(7), 96(3), 120, 128(2), 144(4), 192(7), 240(6), 360, 384(3),

432(2), 720(2), 1152(2), 1440, 1920, 40320, 51840, 103680
}
,

where the superscripts indicate the multiplicity of the elements in the multiset. For
two maximal cliques K1 and K2 of size 29 in Γ0,1, the following are equivalent.

(i) K1 and K2 are conjugate under the action of W .
(ii) K1 and K2 are isomorphic.
(iii) K1 and K2 have the same stabilizer size, and the same number of maximal
monochromatic subcliques of color 1 of size r, for all r ∈ {1, . . . , 8}.
(iv) The automorphism groups of K1 and K2 have the same cardinality, and K1
and K2 have the same number of maximal monochromatic subcliques of color 1
of size r, for all r ∈ {1, . . . , 8}.

Moreover, the table in Appendix B gives a complete list of representatives of the
orbits of maximal cliques of size 29 in Γ0,1.

The number of cliques mentioned in Proposition 5.32 is too large to fit in most com-
puters’ memory: even if we were to use only 30 bytes per clique to store the vertices
in the clique, then all cliques together would still require close to two terrabytes of
storage. Instead of doing this, we will use the fact that each 29-clique contains a
monochromatic 5-clique of color 0 or a monochromatic 4-clique of color 1.

Proof. The Ramsey number R(4, 5) equals 25 (Theorem 5.18). This implies that
a 29-clique in Γ0,1 contains a 5-clique of edges of color 1 or a 4-clique of edges of
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color 0. Under the action of the automorphism group W there is only one orbit of
5-cliques with only edges of color 1 (see Proposition 2.12; we call these cliques of
type K5(1)), and there are two orbits of 4-cliques with pairwise orthogonal roots
(See Proposition 4.1; we call the 4-cliques of which the sum is a double root of type
Ka

4 (0) and those of which the sum is not a double of type Kb
4(0)). Therefore, if

we fix a representative clique for each of these three orbits, then each 29-clique is
conjugate to a 29-clique that contains one of our three cliques of size 4 or 5.
We pick the clique A = {1, 2, 129, 130, 131} of type K5(1). There are 109 other
vertices that are connected with color 0 or 1 to each of the 5 vertices of A. With
magma, we count that the graph on these 109 vertices with only edges of color 0 or 1
has exactly n1 = 127168449 maximal cliques of size 24. After adding to each the
vertices of A, this yields n1 maximal 29-cliques that contain A in the graph Γ0,1.
Similarly, for the cliques B1 = {1, 8, 26, 31} and B2 = {1, 8, 26, 43} of typeKa

4 (0) and
Kb

4(0), respectively, we count with magma that there are n2 = 16685128 maximal 29-
cliques in Γ0,1 that contain B1, and n3 = 504 maximal 29-cliques that contain B2.
One can easily verify with magma that the 432 cliques of size 29 in the table in
Appendix B are maximal cliques in Γ0,1. For each cliqueK of size 29, for each integer
1 ≤ r ≤ 8, we can consider the number χr of maximal monochromatic subcliques
of K of color 1 of size r. These eight invariants together pin down 430 out of the
432 cliques in the table. Only the sequence (χ1, χ2, . . . , χ8) = (0, 0, 0, 0, 0, 4, 138, 17)
occurs twice: for the 67-th and 299-th cliques in the table. These two cliques have
16 and 18 subcliques of type Ka

4 (0), respectively, so they are not isomorphic. We
conclude that any two cliques in the table are not isomorphic, hence not conjugate.
So there are at least 432 orbits of maximal 29-cliques. We know that there are
483840 cliques of size 5 in Γ1 from Corollary 2.7, so the stabiliser of A has size
|W |
|WA| = |W |

483840 = 1440. The table also lists for each clique c the number of subcliques
of type K5(1), as well as the stabiliser size, so we can use Lemma 5.24 to calculate
the number of conjugates of c that contain A. Summing over all these 432 cliques, we
obtain exactly the number n1, so we conclude that all n1 maximal 29-cliques in Γ0,1
that contain A are accounted for in these 432 orbits. Similarly, the stabilisers of B1
andB2 have sizes 4608 and 384, respectively. The table lists the number of subcliques
of type Ka

4 (0) and Kb
4(0) for every given clique c, so we can use Lemma 5.24 again

to calculate the number of conjugates of c that contain Bi for i = 1, 2. Summing
over all 432 cliques, we find again that all maximal 29-cliques containing B1 or B2
are accounted for in these 432 orbits.
We conclude that there are 432 orbits of 29-cliques in Γ0,1, as claimed, and since
no two cliques in the table are isomorphic, this proves (i) ⇔ (ii). The multiset of
stabiliser sizes follows from the table. The length of the orbit of any clique c is
|W |
|Wc| . Summing over all 432 cliques in the table, we find that the total number of
29-cliques is also as claimed. Finally, as we saw before, the invariant χr is different
for all cliques except for the 67-th and 299-th cliques in the table. These two cliques
have stabiliser size 4 and 8, respectively, so the stabiliser size, together with the χr
form a set of invariants that uniquely determine each of the 432 orbits of maximal 29-
cliques. This proves (i)⇔ (iii). The stabiliser of a clique maps to the automorphism
group of this clique as a colored graph. In all 432 cases, the clique generates a full
rank sublattice of our lattice, so this map is injective. It turns out that in all cases,
it is in fact a bijection. This proves (iii) ⇔ (iv). �
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Corollary 5.33. LetK1 andK2 be two maximal cliques in Γ0,1, and f : K1 −→ K2
an isomorphism between them. Then f extends to a unique automorphism of Λ.

Proof. Since K1 and K2 are isomorphic, from Propositions 5.31 and 5.32 it follows
that they are conjugate to each other; this means that they are both conjugate to
the same clique in the tables in de appendix; call this clique H. Then there are
elements α, β in W such that α(K1) = β(K2) = H, so β ◦ f ◦ α−1 is an element in
the automorphism group Aut(H) of H. Of course, f extends to an element in W
if and only if β ◦ f ◦ α−1 does. We conclude that we can reduce to the case where
K1 = K2 = H, and f is an element in Aut(H).
In Proposition 5.31 we computed the stabilizers and automorphism groups of all
cliques in Γ0,1 of size unequal to 29, and in Proposition 5.32 we did the same for
cliques of 29. In magma we construct for each clique in the table the map between
the stabilizer and the automorphism group that is given by restriction. In all cases,
this is an isomorphism. We conclude that all automorphisms of the cliques in the
table extend to an element in W . �

The table in Appendix B contains the results of the previous proposition, with a
representative of each orbit. The notation in the table means the following.
• K: a clique in Γ0,1; we denote vertices by their index as in the notation above
Remark 5.1.
• |WK |: the size of the stabilizer of clique K in the group W .
• #K5(1): the number of cliques of size 5 with only edges of color 0 in K.
• #Ka

4 (1): the number of cliques in K of four roots that sum up to a double root
in Λ, with only edges of color 1.
• #Kb

4(1): the number of cliques in K of four roots that do not sum up to a double
root in Λ, with only edges of color 1.

Remark 5.34. In the proof of Proposition 5.32, we found more than 127 million
cliques of size 29 that contain A = {1, 2, 129, 130, 131}. To find that they represent
exactly 432 different orbits, one might naively try to just verify for each pair whether
they are conjugate. This takes too much time; as described in Remark 5.26, we
divided the big set into smaller sets according to the stabilizer sizes.

Cliques of size 29 in Γ−2,0,1

It is an easy check that all 432 cliques of size 29 in Γ0,1 in the table are maximal
in Γ−2,0,1 as well. We conclude that the orbits of maximal cliques of size 29 in Γ−2,0,1
are exactly the 432 that we found in Γ0,1, and the orbits of maximal cliques of size 29
that contain an edge of color −2.
As we did in Proposition 5.31, we fix a root e and compute all maximal cliques of
size 29 in Γ−2,0,1 that contain e and −e with magma. There are 56 of these, and they
form one orbit under the action of the stabilizer We of e. Since W acts transitively
on pairs of inverse roots, we conclude that all maximal cliques of size 29 in Γ−2,0,1
that contain an edge of color −2 are in the same orbit; call this orbit A. One
can easily check with magma that the clique of size 29 that is written in the table
for Γ−2,0,1 is maximal, and moreover, it contains the roots 1 and 128, that are each
other’s inverse. We conclude that it is a representative of A. The stabilizer and
automorphism group are computed with magma.
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We finish with the proof of Theorem 1.2 for maximal cliques in Γ−2,0,1. This is very
similar to the proof of Lemma 5.30. Recall the graphs A, C1, D, and F as defined
before Theorem 1.2.

Lemma 5.35. Let K1 and K2 be two maximal cliques in Γ−2,0,1, and f : K1 −→ K2
an isomorphism between them. The following hold.

(i) The map f extends to an automorphism of Λ if and only if for every subclique
S = {e1, . . . , er} of K1 that is isomorphic to A, C1, D, or F , its image f(S) in K2
is conjugate to S under the action of W .
Let S be a subclique of K1.
(ii) If S is isomorphic to C1, then f and f(S) are conjugate if and only if both∑5
i=1 ei and

∑5
i=1 f(ei) are in the set {2f1 + f2 | f1, f2 ∈ E}, or neither are.

(iii) If S is isomorphic to D, then f and f(S) are conjugate if and only if both∑5
i=1 ei and

∑5
i=1 f(ei) are in the set {2f1 + 2f2 | f1, f2 ∈ E}, or neither are.

(iv) If S is isomorphic to F , then f and f(S) are conjugate if and only if both∑5
i=1 ei and

∑6
i=1 f(ei) are in 2Λ, or neither are.

Proof. This proof is very similar to the proof of Lemma 5.30, so will sketch what we
did and refer to the other proof for details.
We reduce again to the case K1 = K2 = H, with H one of the 54 cliques in the list
for Γ−2,0,1 in the appendix, and f a representative of a class of the cokernel of the
map g : WH −→ Aut(H), where WH is the stabilizer of H in W , and Aut(H) is the
automorphism group of H.
For each clique H of those 54 in the table, we check with magma that the map
g : WH −→ AutH is injective; for the 13th, 15th, and 17th − 54th clique it is an
isomorphism. It follows that for those cliques, every automorphism extends to an
element in W , so we are done. Here we refer to Lemma 5.33 for the cliques that are
the same as in Γ0,1.
For each clique H of the remaining 14 cliques in the list, we do the following
in magma with the functions CokernelClassesTypeF, CokernelClassesTypeD, and
CokernelClassesTypeC1 ([Win]). We construct a set TH of representatives of the
classes of the cokernel of the map from WH to Aut(H). We then check for each t in
TH , and for all subcliqes S = {e1, . . . , er} of H that are isomorphic to F (or D, or
C1, respectively), whether S and t(S) are not conjugate. For all t and S for which
this is the case, we verify that

∑r
i=1 ei is in 2Λ (or in the set {2f1 +2f2 | f1, f2 ∈ E},

or in the set {2f1 + f2 | f1, f2 ∈ E}, respectively), and
∑r
i=1 t(ei) is not, or vice

versa. This proves (ii), (iii), and (iv).
For H equal to the 4th, 8th, 10th, 14th, and 16th clique, for each non-trivial ele-
ment t in TH there is a subclique S of H that is isomorphic to F , and such that t
and t(S) are not conjugate. Similarly, for each clique H of the remaining 9 cliques
in the list, for each non-trivial element t of TH , there is a subclique S of H that is
isomorphic to either C1, D, or A, and such that S and t(S) are not conjugate. This
finishes the proof of (i). �

6. Proof of main theorems
We now put together all the results that form the proofs of Theorem 1.1 and Theo-
rem 1.2, which are both stated in the Introduction.
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Proof of Theorem 1.1. Part (i) is Proposition 4.1 (iii), and part (ii) is Propo-
sition 4.7 (ii). We proceed with (iii). Of course, if K1 and K2 are conjugate under
the action of W , they are isomorphic as colored graphs, since W respects the dot
product. Now assume that K1 and K2 are isomorphic as colored graphs. We will
show that they are conjugate under the action of W . First of all, by Lemma 2.13,
we can assume that there is a type I, II, III, or IV, that both K1 and K2 belong to.
Therefore we continue to prove the result per type.
For type I, the results for colors -2 and -1 are at the beginning of Section 4; the
results for color 0 are in Propositions 4.1, 4.6 (iii), and 5.12, and the results for
color 1 are in Proposition 2.12.
For type II, from Proposition 2.5 we know what the cliques look like, and the results
are then in Proposition 2.12 and Corollary 3.16.
For type III, the results follow from Propositions 3.1 and 3.2.
Finally, for type IV, the results follow from Propositions 5.3, 5.25, Lemma 5.27,
Propositions 5.29and 5.31, and Section 5.4.1.

Proof of Theorem 1.2. By Lemma 2.13, we can assume that there is a type
I, II, III, or IV, that both K1 and K2 belong to. Therefore we continue to prove (i)
per type. First of all, if K1 and K2 are of type III, then f always extends; this is
shown in Corollary 3.33.
If K1 and K2 are of type I, they are monochromatic. If they have color −2 or −1,
then they are of type III (See Section 4). For color 0 the proof is in Corollary 4.5,
and for color 1 in Corollary 4.9.
For type II, by Proposition 2.5, K1 and K2 are either monochromatic of color 0,
hence of type I, or they are both sets of the vertices of a 7-crosspolytope, in which
case the statement is in Corollary 3.31.
If K1 and K2 are of type IV, they are maximal cliques in a graph Γc, where there are
14 different possibilities for c. For c ∈ {{−2}, {−1}, {0}, {1}}, the cliques K1 and
K2 are of type I, which we already covered (note that for K1 and K2 maximal in Γ1,
there is always an automorphism extending f !). For c in {{−2,−1}, {−2, 1}}, the
cliques K1 and K2 are of type I as well (Lemma 5.2). For c = {−2, 0}, the proof is
in Lemma 5.14. For c ∈ {{−1, 1}, {−2,−1, 1}}, an isomorphism of maximal cliques
always extends, see Corollary 5.28. The same holds for c = {0, 1}, see Corollary 5.33.
For c ∈ {{−1, 0}, {−2,−1, 0}}, the statement is in Lemma 5.30.
For c = {−2, 0, 1} the statement is Lemma 5.35.
Finally, for c = {−2,−1, 0, 1} there is one clique, which is Γ itself, and every auto-
morphism of Γ is an element in W . This finishes (i).
Part (ii) follows from Propositions 3.28 and 4.1 for type A, and it follows from Propo-
sitions 2.12 and 4.7 for type B. Finally, part (iii) is in Lemma 5.30, and part (iv) is
in Lemma 5.35.

Remark 6.1. From Theorem 1.2 it follows that for an isomorphism f of two cliques
K1 and K2 of types I, II, III, or IV, one can determine whether f extends to an
automorphism of Λ by checking for all subcliques of K1 of the form A, B, Cα, D,
or F , if f restricted to an associated ordered sequence extends. However, one never
has to check all subcliques of those six forms. The following table shows for each
type of K1 and K2 which subcliques are sufficient to check.
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Type Subtype All isomorphisms extend A B C−1 C1 D F
I Γ−2 x
I Γ−1 x
I Γ0 x
I Γ1 x
II k-simplex, k ≤ 7 x
II 7-crosspolyopte x
III all x
IV Γ−2 x
IV Γ−1 x
IV Γ0 x
IV Γ1 x
IV Γ−2,−1 x
IV Γ−2,0 x
IV Γ−2,1 x
IV Γ−1,0 x x
IV Γ−1,1 x
IV Γ0,1 x
IV Γ−2,−1,0 x x
IV Γ−2,−1,1 x
IV Γ−2,0,1 x x x x
IV Γ−2,−1,0,1 x
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Appendices
A. Table results Section 5
See Section 5, above Remark 5.1, for an explanation of this table.

Graph |K| #O |WK | |Aut(K)| K

Γ−2 2 1 5806080 2 {1, 128}
Γ−1 3 1 311040 6 {1, 32, 240}
Γ0 8 1 1344 40320 {1, 8, 26, 31, 43, 46, 52, 53}
Γ1 7 1 10080 5040 {1, 2, 3, 5, 129, 130, 131}

8 1 40320 40320 {1, 2, 3, 4, 129, 130, 131, 132}
Γ−2,−1 2 1 5806080 2 {1, 128}

3 1 311040 6 {1, 32, 240}
Γ−2,0 16 1 344064 10321920 {25, 32, 51, 54, 75, 78, 97, 104, 130, 144, 177, 181, 188, 192, 225, 239}
Γ−2,1 2 1 5806080 2 {1, 128}

7 1 10080 5040 {1, 2, 3, 5, 129, 130, 131}
8 1 40320 40320 {1, 2, 3, 4, 129, 130, 131, 132}

Γ−1,0 8 5 144 144 {41, 48, 50, 78, 144, 187, 214, 240}
128 128 {12, 17, 41, 71, 170, 193, 214, 240}
16 16 {12, 17, 40, 41, 71, 86, 214, 240}
14 14 {12, 23, 41, 50, 70, 168, 214, 240}
8 8 {7, 41, 48, 50, 75, 86, 214, 240}

9 11 64 192 {3, 6, 41, 48, 50, 55, 214, 227, 240}
48 96 {19, 41, 48, 50, 75, 146, 193, 214, 240}
40 80 {12, 23, 41, 50, 67, 86, 163, 214, 240}
30 60 {12, 23, 40, 41, 50, 65, 86, 214, 240}
24 48 {19, 41, 48, 50, 70, 75, 193, 214, 240}
18 18 {12, 23, 41, 50, 163, 168, 214, 227, 240}
16 16 {19, 41, 48, 50, 65, 150, 172, 214, 240}
8 16 {41, 48, 50, 55, 65, 78, 178, 214, 240}
4 8 {3, 41, 48, 50, 55, 66, 152, 214, 240}
2 2 {3, 41, 48, 50, 55, 72, 77, 214, 240}
1 1 {7, 41, 48, 50, 68, 78, 85, 214, 240}

10 6 192 1152 {41, 48, 50, 55, 66, 152, 178, 184, 214, 240}
128 256 {3, 6, 41, 48, 50, 55, 76, 77, 214, 240}



Graph |K| #O |WK | |Aut(K)| K

100 200 {12, 23, 40, 41, 50, 67, 77, 86, 214, 240}
36 72 {6, 19, 41, 48, 50, 65, 76, 192, 214, 240}
32 64 {3, 6, 41, 48, 50, 55, 76, 85, 214, 240}
18 36 {19, 41, 48, 50, 65, 76, 86, 192, 214, 240}

12 1 3888 31104 {11, 22, 36, 46, 49, 69, 74, 84, 184, 196, 214, 240}
Γ−1,1 3 2 311040 6 {55, 80, 173}

103680 2 {84, 88, 194}
7 4 10080 5040 {118, 126, 191, 195, 213, 224, 237}

1440 720 {8, 24, 32, 113, 129, 138, 151}
480 240 {42, 72, 103, 120, 136, 193, 237}
288 144 {37, 39, 53, 74, 167, 235, 238}

8 5 40320 40320 {33, 41, 49, 57, 132, 133, 134, 142}
5040 5040 {6, 7, 21, 24, 135, 148, 193, 201}
1440 1440 {24, 32, 99, 107, 139, 152, 195, 213}
1152 1152 {34, 63, 111, 114, 180, 182, 196, 203}
720 720 {33, 91, 98, 101, 148, 151, 153, 154}

Γ0,1 22 1 1344 1344 {1, 2, 3, 5, 9, 12, 17, 29, 33, 38, 51, 129, 130, 131, 132, 133, 134, 135, 136, 144, 158, 173}
28 1 336 336 {1, 2, 3, 5, 7, 9, 13, 14, 15, 17, 25, 29, 33, 43, 45, 53, 129, 130, 131, 132, 133, 134, 136, 137, 139, 140, 149, 157}
29 432 separate section
30 25 3840 3840 {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 17, 18, 20, 22, 26, 33, 129, 130, 131, 132, 133, 134, 136, 137, 143, 144, 145, 146, 149}

1152 1152 {1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 19, 21, 23, 26, 33, 129, 130, 131, 132, 133, 134, 136, 137, 140, 141, 145, 146, 149}
720 720 {1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 19, 21, 23, 26, 33, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 143, 144, 147}
192 192 {1, 2, 3, 5, 7, 8, 9, 13, 14, 17, 22, 29, 33, 37, 39, 53, 65, 129, 130, 131, 132, 133, 134, 136, 144, 147, 157, 160, 166, 184}
72 72 {1, 2, 3, 5, 6, 8, 9, 13, 14, 15, 17, 22, 29, 33, 37, 39, 53, 65, 129, 130, 131, 132, 133, 134, 136, 144, 147, 157, 160, 181}
64 64 {1, 2, 3, 5, 6, 7, 8, 9, 14, 17, 22, 29, 33, 129, 130, 131, 132, 133, 134, 136, 139, 143, 144, 146, 147, 149, 157, 160, 166, 169}
48 48 {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 17, 18, 19, 21, 26, 33, 129, 130, 131, 132, 133, 134, 135, 136, 143, 144, 145, 146, 147}
48 48 {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 17, 18, 19, 20, 26, 33, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 143, 144, 147}
48 48 {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 15, 17, 19, 21, 26, 33, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 143, 144, 147}
48 48 {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 15, 17, 33, 36, 37, 42, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 143, 158}
48 48 {1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 23, 26, 33, 129, 130, 131, 132, 133, 134, 136, 138, 139, 140, 143, 147, 149}
32 32 {1, 2, 3, 4, 5, 6, 8, 9, 10, 17, 18, 26, 33, 129, 130, 131, 132, 133, 134, 135, 136, 143, 144, 145, 146, 147, 156, 157, 165, 166}
24 24 {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 17, 18, 19, 21, 26, 33, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 143, 144, 149}
16 16 {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 15, 17, 19, 20, 21, 26, 33, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 143, 144, 147}
16 16 {1, 2, 3, 4, 5, 6, 8, 9, 10, 15, 17, 33, 35, 36, 37, 38, 42, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 143, 158}



Graph |K| #O |WK | |Aut(K)| K

12 12 {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 17, 18, 20, 22, 26, 33, 129, 130, 131, 132, 133, 134, 135, 136, 138, 143, 144, 145, 147}
12 12 {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 17, 18, 20, 22, 26, 33, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 143, 144, 147}
12 12 {1, 2, 3, 4, 5, 6, 8, 9, 10, 15, 17, 33, 35, 36, 37, 38, 42, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 143, 156, 158}
10 10 {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 17, 18, 22, 26, 33, 36, 38, 65, 129, 130, 131, 132, 133, 134, 136, 143, 144, 149, 157, 165}
8 8 {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 17, 18, 19, 22, 26, 33, 129, 130, 131, 132, 133, 134, 135, 136, 138, 143, 144, 145, 147}
8 8 {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 15, 17, 33, 35, 36, 37, 42, 129, 130, 131, 132, 133, 134, 135, 136, 139, 140, 143, 157, 158}
4 4 {1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 17, 18, 19, 21, 27, 29, 33, 129, 130, 131, 132, 133, 134, 135, 136, 139, 140, 143, 146, 147}
4 4 {1, 2, 3, 5, 7, 9, 10, 11, 13, 17, 18, 19, 21, 33, 37, 41, 65, 129, 130, 131, 132, 133, 134, 136, 143, 146, 147, 155, 174, 179}
4 4 {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 17, 18, 19, 21, 27, 33, 129, 130, 131, 132, 133, 134, 135, 136, 139, 140, 143, 146, 147}
4 4 {1, 2, 3, 5, 7, 9, 10, 11, 13, 17, 18, 19, 33, 37, 41, 65, 129, 130, 131, 132, 133, 134, 136, 143, 146, 147, 155, 156, 174, 179}

31 7 480 480 {1, 3, 5, 9, 11, 17, 19, 25, 27, 33, 65, 67, 73, 75, 81, 83, 89, 129, 132, 134, 145, 147, 158, 167, 174, 179, 183, 184, 187, 199, 208}
120 120 {1, 3, 5, 9, 11, 15, 17, 19, 25, 27, 65, 67, 73, 75, 83, 89, 129, 132, 134, 143, 144, 145, 147, 148, 153, 156, 158, 174, 179, 183, 187}
72 72 {1, 3, 5, 9, 11, 17, 18, 19, 21, 23, 25, 27, 33, 49, 51, 81, 89, 129, 132, 133, 134, 141, 144, 145, 147, 165, 167, 174, 179, 183, 208}
48 48 {1, 3, 5, 9, 11, 17, 19, 21, 23, 25, 27, 49, 65, 81, 89, 129, 132, 133, 134, 144, 145, 146, 147, 148, 158, 165, 167, 174, 179, 183, 208}
16 16 {1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 25, 27, 31, 41, 67, 73, 89, 129, 132, 134, 145, 147, 158, 167, 174, 179, 183, 184, 187, 199, 208}
12 12 {1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 25, 27, 31, 41, 67, 73, 89, 129, 132, 134, 145, 146, 147, 148, 158, 167, 174, 179, 183, 199, 208}
8 8 {1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 25, 27, 31, 41, 67, 73, 89, 129, 132, 134, 145, 147, 148, 158, 167, 174, 179, 183, 187, 199, 208}

32 3 144 144 {2, 3, 5, 9, 12, 17, 20, 26, 27, 29, 65, 74, 75, 82, 83, 89, 129, 132, 136, 143, 145, 146, 147, 149, 153, 160, 173, 174, 176, 181, 184, 201}
48 48 {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 35, 41, 43, 75, 129, 130, 132, 134, 136, 143, 145, 147, 155, 156, 157, 158, 160, 162, 164}
24 24 {1, 3, 5, 9, 11, 17, 18, 19, 20, 21, 23, 25, 26, 27, 29, 33, 49, 57, 129, 131, 132, 133, 134, 135, 136, 140, 141, 145, 146, 147, 174, 208}

33 1 96 96 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 17, 18, 20, 33, 34, 129, 130, 131, 132, 133, 134, 135, 136, 137, 143, 144, 145, 146, 155, 156}
34 2 2880 2880 {1, 2, 5, 6, 8, 14, 17, 18, 22, 33, 34, 36, 37, 38, 42, 50, 53, 54, 129, 130, 131, 132, 133, 136, 137, 139, 142, 155, 157, 166, 169, 170, 181, 182}

720 720 {1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 17, 20, 22, 23, 26, 33, 36, 38, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 143, 144, 149, 160, 169}
36 1 40320 40320 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20, 33, 34, 35, 36, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 145, 155, 156, 165}

Γ−2,−1,0 8 4 144 144 {1, 8, 26, 31, 43, 54, 227, 240}
128 128 {1, 8, 26, 47, 83, 102, 226, 238}
16 16 {1, 8, 26, 47, 83, 110, 226, 233}
8 8 {1, 8, 26, 31, 43, 54, 228, 239}

9 9 80 80 {1, 8, 26, 47, 51, 86, 121, 128, 228}
64 192 {1, 8, 26, 31, 43, 46, 84, 85, 240}
40 80 {1, 8, 26, 47, 51, 86, 124, 125, 228}
28 28 {1, 8, 26, 47, 51, 86, 110, 121, 236}
24 48 {1, 8, 26, 31, 43, 54, 100, 125, 227}
18 18 {1, 8, 26, 47, 51, 86, 110, 124, 232}
12 12 {1, 8, 26, 31, 43, 86, 106, 115, 125}



Graph |K| #O |WK | |Aut(K)| K

4 8 {1, 8, 26, 31, 43, 46, 84, 113, 237}
1 1 {1, 8, 26, 31, 43, 54, 100, 113, 238}

10 10 288 576 {1, 8, 26, 47, 51, 77, 121, 128, 185, 229}
192 1152 {1, 8, 26, 31, 43, 46, 52, 53, 227, 240}
100 200 {1, 8, 26, 47, 51, 86, 91, 125, 222, 228}
64 64 {1, 8, 26, 31, 43, 46, 84, 98, 103, 125}
60 120 {1, 8, 26, 47, 51, 86, 91, 128, 218, 228}
48 96 {1, 8, 26, 31, 43, 86, 101, 106, 115, 128}
32 32 {1, 8, 26, 31, 43, 86, 106, 115, 224, 234}
32 64 {1, 8, 26, 31, 43, 46, 84, 101, 226, 238}
18 36 {1, 8, 26, 31, 43, 54, 100, 109, 119, 227}
4 4 {1, 8, 26, 31, 43, 46, 84, 98, 117, 238}

11 5 2304 2304 {1, 8, 26, 31, 43, 54, 98, 103, 121, 128, 227}
648 2592 {1, 8, 26, 47, 51, 77, 108, 121, 185, 213, 229}
192 384 {1, 8, 26, 31, 43, 54, 100, 101, 121, 128, 227}
32 64 {1, 8, 26, 31, 43, 46, 52, 85, 98, 103, 238}
72 144 {1, 8, 26, 31, 43, 54, 100, 109, 113, 128, 227}

12 3 3888 31104 {1, 8, 26, 47, 51, 77, 91, 108, 185, 213, 218, 229}
1024 3072 {1, 8, 26, 31, 43, 46, 84, 85, 98, 103, 121, 128}
512 1024 {1, 8, 26, 31, 43, 46, 84, 85, 98, 103, 226, 238}

13 1 1536 9216 {1, 8, 26, 31, 43, 46, 52, 53, 76, 77, 83, 86, 240}
16 1 344064 10321920 {1, 8, 26, 31, 43, 46, 52, 53, 76, 77, 83, 86, 98, 103, 121, 128}

Γ−2,−1,1 6 1 622080 12 {24, 33, 96, 105, 131, 238}
14 1 20160 10080 {11, 41, 88, 118, 135, 159, 169, 175, 183, 186, 194, 200, 210, 234}
16 1 80640 80640 {11, 22, 43, 54, 75, 86, 107, 118, 156, 172, 174, 178, 191, 195, 197, 213}

Γ−2,0,1 13 7 1536 9216 {1, 8, 31, 40, 71, 98, 128, 136, 150, 164, 178, 191, 205}
768 4608 {1, 8, 31, 40, 98, 128, 136, 137, 150, 164, 178, 191, 205}
512 1024 {1, 8, 31, 98, 128, 136, 137, 149, 150, 162, 163, 171, 172}
384 768 {1, 8, 12, 14, 15, 128, 136, 137, 138, 139, 154, 169, 215}
384 768 {1, 8, 12, 38, 47, 82, 128, 136, 137, 152, 160, 161, 171}
192 384 {1, 8, 31, 39, 45, 51, 98, 128, 136, 137, 149, 162, 172}
64 128 {1, 8, 12, 23, 38, 47, 82, 128, 136, 137, 152, 160, 171}

14 4 15360 30720 {1, 27, 43, 51, 57, 59, 128, 136, 138, 140, 141, 142, 177, 192}
3072 18432 {1, 12, 23, 30, 45, 47, 77, 79, 99, 106, 117, 128, 163, 199}
192 384 {1, 29, 30, 47, 54, 78, 82, 93, 117, 128, 152, 191, 198, 209}



Graph |K| #O |WK | |Aut(K)| K

64 128 {1, 46, 70, 72, 79, 83, 100, 101, 103, 128, 160, 172, 228, 231}
16 3 344064 10321920 {1, 22, 46, 57, 72, 83, 107, 128, 138, 153, 160, 177, 192, 209, 216, 231}

336 336 {1, 39, 40, 43, 51, 53, 55, 115, 128, 141, 142, 169, 192, 216, 218, 219}
192 384 {1, 16, 38, 42, 68, 70, 74, 77, 102, 106, 113, 128, 160, 182, 215, 228}

19 29 2880 2880 {1, 8, 12, 14, 15, 20, 22, 23, 36, 38, 39, 128, 136, 137, 138, 139, 149, 160, 169}
2880 5760 {1, 8, 12, 14, 50, 68, 70, 74, 128, 136, 137, 154, 169, 170, 176, 177, 181, 182, 215}
2304 2304 {1, 8, 12, 14, 23, 24, 39, 40, 68, 70, 128, 136, 137, 151, 152, 162, 163, 169, 170}
1440 1440 {1, 8, 12, 15, 16, 20, 23, 24, 36, 39, 40, 70, 128, 136, 137, 139, 151, 162, 171}
384 384 {1, 8, 12, 15, 23, 24, 38, 40, 68, 70, 128, 136, 137, 150, 152, 162, 163, 169, 171}
144 144 {1, 8, 12, 14, 23, 24, 39, 40, 68, 128, 136, 137, 138, 151, 152, 162, 163, 169, 170}
120 120 {1, 8, 12, 14, 20, 24, 36, 39, 128, 136, 137, 138, 139, 149, 151, 161, 162, 169, 170}
96 96 {1, 8, 12, 14, 15, 22, 26, 38, 45, 128, 136, 137, 138, 139, 149, 152, 160, 161, 169}
96 96 {1, 8, 12, 14, 15, 24, 40, 128, 136, 137, 138, 139, 150, 151, 152, 161, 162, 163, 169}
96 96 {1, 8, 12, 14, 20, 23, 38, 39, 128, 136, 137, 138, 139, 149, 152, 160, 162, 169, 170}
96 96 {1, 8, 12, 14, 39, 40, 128, 136, 137, 138, 139, 151, 152, 160, 161, 162, 163, 169, 170}
96 96 {1, 8, 12, 15, 16, 22, 23, 24, 36, 39, 40, 68, 70, 128, 136, 137, 151, 163, 171}
72 72 {1, 8, 12, 14, 15, 22, 24, 38, 40, 128, 136, 137, 138, 139, 150, 152, 161, 163, 169}
48 48 {1, 8, 12, 14, 20, 22, 39, 40, 128, 136, 137, 138, 139, 151, 152, 160, 161, 169, 170}
32 32 {1, 8, 12, 14, 15, 20, 22, 23, 36, 38, 40, 128, 136, 137, 138, 139, 150, 160, 169}
32 32 {1, 8, 12, 14, 23, 39, 128, 136, 137, 138, 139, 149, 151, 152, 160, 162, 163, 169, 170}
32 32 {1, 8, 12, 14, 23, 24, 39, 68, 128, 136, 137, 138, 149, 151, 152, 162, 163, 169, 170}
24 24 {1, 8, 12, 14, 15, 23, 36, 38, 40, 128, 136, 137, 138, 139, 150, 160, 162, 163, 169}
24 24 {1, 8, 12, 14, 15, 24, 38, 40, 128, 136, 137, 138, 139, 150, 152, 161, 162, 163, 169}
24 24 {1, 8, 12, 14, 23, 24, 38, 39, 68, 128, 136, 137, 138, 149, 152, 162, 163, 169, 170}
20 20 {1, 8, 12, 14, 20, 24, 39, 128, 136, 137, 138, 139, 149, 151, 152, 161, 162, 169, 170}
16 16 {1, 8, 12, 14, 15, 20, 23, 38, 40, 128, 136, 137, 138, 139, 150, 152, 160, 162, 169}
16 16 {1, 8, 12, 14, 23, 40, 128, 136, 137, 138, 139, 150, 151, 152, 160, 162, 163, 169, 170}
12 12 {1, 8, 12, 14, 15, 22, 23, 38, 40, 128, 136, 137, 138, 139, 150, 152, 160, 163, 169}
8 8 {1, 8, 12, 14, 15, 20, 23, 36, 38, 40, 128, 136, 137, 138, 139, 150, 160, 162, 169}
8 8 {1, 8, 12, 14, 15, 23, 38, 40, 128, 136, 137, 138, 139, 150, 152, 160, 162, 163, 169}
8 8 {1, 8, 12, 14, 15, 23, 24, 38, 40, 128, 136, 137, 138, 139, 150, 152, 162, 163, 169}
8 8 {1, 8, 12, 14, 20, 24, 38, 39, 128, 136, 137, 138, 139, 149, 152, 161, 162, 169, 170}
8 8 {1, 8, 12, 14, 20, 39, 40, 128, 136, 137, 138, 139, 151, 152, 160, 161, 162, 169, 170}

20 5 192 192 {1, 8, 12, 14, 15, 16, 20, 22, 23, 36, 38, 39, 128, 136, 137, 138, 139, 140, 149, 160}
128 128 {1, 8, 12, 14, 15, 16, 20, 23, 38, 40, 128, 136, 137, 138, 139, 140, 150, 152, 160, 162}



Graph |K| #O |WK | |Aut(K)| K

96 96 {1, 8, 12, 14, 15, 16, 20, 38, 39, 40, 128, 136, 137, 138, 139, 140, 152, 160, 161, 162}
16 16 {1, 8, 12, 14, 15, 16, 20, 22, 38, 39, 40, 128, 136, 137, 138, 139, 140, 152, 160, 161}
16 16 {1, 8, 12, 14, 15, 16, 20, 22, 38, 39, 128, 136, 137, 138, 139, 140, 149, 152, 160, 161}

21 1 48 48 {1, 8, 12, 14, 15, 16, 22, 38, 39, 45, 128, 136, 137, 138, 139, 140, 149, 152, 160, 161, 163}
22 3 1440 1440 {1, 26, 30, 42, 46, 58, 74, 78, 90, 106, 114, 121, 128, 177, 182, 185, 197, 198, 200, 207, 218, 231}

1344 1344 {1, 2, 3, 5, 9, 12, 17, 29, 33, 38, 51, 129, 130, 131, 132, 133, 134, 135, 136, 144, 158, 173}
144 144 {1, 12, 26, 28, 36, 42, 43, 44, 50, 52, 57, 58, 59, 106, 128, 176, 177, 178, 197, 206, 217, 230}

24 1 1440 1440 {1, 8, 12, 14, 15, 16, 38, 39, 40, 45, 46, 47, 128, 136, 137, 138, 139, 140, 152, 160, 161, 162, 163, 164}
28 as in 0,1
29 433 103680 103680 {1, 8, 12, 14, 15, 16, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 128, 136, 137, 138, 139, 140, 142, 160, 161, 162, 163, 164, 215}

rest as in 0,1
30 as in 0,1
31 as in 0,1
32 as in 0,1
33 as in 0,1
34 as in 0,1
36 as in 0,1

Γ 240 1 |W | |W | Γ



B. Table cliques of size 29 in Γ0,1

See Section 5.4.1 for an explanation of this table.

Nr. |WK | #K5(1) #Ka
4 (0) #Kb

4(0) K

1 12 1176 36 0 { 1, 2, 3, 4, 5, 9, 17, 19, 34, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 146, 148, 155, 156, 158, 165, 166, 167, 173, 174 }
2 48 2352 8 0 { 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 17, 18, 20, 22, 26, 129, 130, 131, 132, 133, 134, 137, 138, 143, 144, 145, 148, 149 }
3 12 2008 12 0 { 1, 2, 3, 4, 5, 6, 8, 9, 10, 17, 34, 42, 66, 129, 130, 131, 132, 133, 137, 143, 145, 146, 150, 155, 156, 157, 160, 165, 166 }
4 8 1256 32 0 { 1, 2, 3, 4, 5, 6, 9, 12, 14, 17, 34, 42, 50, 65, 66, 129, 130, 131, 132, 133, 145, 146, 150, 155, 156, 157, 160, 169, 173 }
5 96 1288 36 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 19, 21, 25, 35, 37, 41, 65, 129, 130, 131, 132, 133, 134, 143, 147, 148, 158, 165, 166, 173 }
6 16 1256 28 0 { 1, 2, 3, 4, 5, 6, 9, 17, 19, 25, 37, 41, 129, 130, 131, 132, 133, 134, 135, 143, 146, 147, 148, 156, 158, 165, 166, 167, 173 }
7 1 800 45 0 { 1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 16, 34, 37, 38, 41, 43, 129, 130, 131, 132, 133, 138, 139, 142, 155, 158, 159, 160, 161 }
8 4 816 49 0 { 1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 15, 16, 35, 38, 41, 43, 129, 130, 131, 132, 133, 139, 142, 155, 157, 158, 159, 160, 161 }
9 1 800 45 0 { 1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 16, 34, 39, 41, 43, 129, 130, 131, 132, 133, 139, 142, 155, 157, 158, 159, 160, 161 }

10 4 800 45 0 { 1, 2, 3, 4, 5, 7, 9, 13, 14, 16, 34, 37, 38, 39, 41, 43, 129, 130, 131, 132, 133, 138, 142, 155, 156, 158, 159, 160, 161 }
11 2 792 43 0 { 1, 2, 3, 4, 5, 7, 9, 12, 14, 16, 34, 36, 38, 39, 41, 43, 129, 130, 131, 132, 133, 139, 142, 155, 157, 158, 159, 160, 161 }
12 2 808 47 0 { 1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 15, 16, 38, 39, 41, 43, 129, 130, 131, 132, 133, 139, 142, 155, 157, 158, 159, 160, 161 }
13 12 832 53 0 { 1, 2, 3, 5, 7, 9, 11, 12, 13, 14, 16, 34, 39, 41, 43, 45, 129, 130, 131, 132, 133, 135, 137, 142, 155, 156, 157, 159, 161 }
14 4 808 47 0 { 1, 2, 3, 5, 7, 9, 11, 12, 14, 16, 34, 36, 39, 41, 43, 45, 129, 130, 131, 132, 133, 135, 137, 138, 142, 155, 156, 159, 161 }
15 4 1440 25 0 { 1, 2, 3, 4, 5, 6, 8, 9, 17, 20, 34, 38, 42, 65, 66, 129, 130, 131, 132, 133, 143, 146, 150, 155, 156, 160, 165, 166, 169 }
16 4 1400 28 0 { 1, 2, 3, 4, 5, 6, 9, 17, 19, 25, 34, 35, 37, 65, 129, 130, 131, 132, 133, 134, 143, 144, 148, 156, 158, 165, 166, 167, 173 }
17 2 1392 26 0 { 1, 2, 3, 4, 5, 6, 9, 17, 19, 35, 37, 41, 129, 130, 131, 132, 133, 134, 135, 143, 147, 148, 155, 156, 158, 165, 166, 167, 173 }
18 16 976 42 0 { 1, 2, 3, 5, 9, 13, 17, 19, 34, 35, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 148, 155, 156, 158, 166, 167, 173, 174, 179 }
19 16 1240 32 0 { 1, 2, 3, 4, 5, 6, 7, 9, 17, 19, 21, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 146, 147, 148, 155, 158, 165, 166, 167 }
20 2 632 52 0 { 1, 2, 3, 5, 7, 9, 10, 19, 21, 34, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 146, 148, 155, 158, 159, 165, 166, 174, 179 }
21 2 624 50 0 { 1, 2, 3, 5, 7, 9, 10, 13, 19, 21, 34, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 148, 155, 158, 159, 166, 174, 179 }
22 4 624 50 0 { 1, 2, 3, 5, 7, 9, 11, 13, 18, 19, 21, 34, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 146, 148, 155, 159, 167, 174, 179 }
23 4 640 54 0 { 1, 2, 3, 5, 6, 7, 9, 10, 19, 25, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 156, 158, 159, 165, 166, 179 }
24 16 616 48 0 { 1, 2, 3, 5, 7, 11, 18, 19, 25, 34, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 146, 148, 156, 159, 165, 167, 168, 174, 179 }
25 4 632 52 0 { 1, 2, 3, 5, 7, 10, 18, 19, 25, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 156, 159, 165, 166, 168, 174, 179 }
26 32 648 56 0 { 1, 2, 3, 5, 6, 11, 18, 19, 25, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 156, 159, 165, 167, 168, 173, 179 }
27 48 680 64 0 { 1, 2, 3, 4, 5, 13, 21, 25, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 146, 147, 148, 157, 158, 159, 166, 167, 168, 173, 174 }
28 2 656 50 0 { 1, 2, 3, 5, 7, 9, 12, 14, 16, 34, 36, 38, 39, 41, 43, 45, 129, 130, 131, 132, 133, 135, 138, 142, 155, 156, 158, 159, 161 }
29 2 648 48 0 { 1, 2, 3, 5, 7, 9, 11, 14, 15, 16, 36, 37, 39, 41, 43, 45, 129, 130, 131, 132, 133, 135, 137, 139, 142, 155, 157, 159, 161 }
30 1 664 52 0 { 1, 2, 3, 5, 7, 9, 10, 12, 15, 16, 35, 36, 38, 41, 43, 45, 129, 130, 131, 132, 133, 135, 138, 139, 142, 155, 158, 159, 161 }
31 4 664 52 0 { 1, 2, 3, 5, 7, 9, 10, 12, 15, 16, 35, 36, 38, 41, 43, 45, 129, 130, 131, 132, 133, 137, 138, 139, 142, 155, 159, 160, 161 }



Nr. |WK | #K5(1) #Ka
4 (0) #Kb

4(0) K

32 4 648 48 0 { 1, 2, 3, 5, 7, 9, 10, 14, 15, 16, 36, 37, 38, 41, 43, 45, 129, 130, 131, 132, 133, 135, 138, 140, 142, 156, 158, 159, 161 }
33 8 680 56 0 { 1, 2, 3, 5, 7, 9, 10, 15, 16, 35, 36, 37, 38, 41, 43, 45, 129, 130, 131, 132, 133, 138, 139, 140, 143, 158, 159, 160, 161 }
34 4 656 50 0 { 1, 2, 3, 5, 7, 9, 10, 12, 15, 16, 35, 36, 38, 41, 43, 45, 129, 130, 131, 132, 133, 137, 139, 140, 142, 157, 159, 160, 161 }
35 16 664 52 0 { 1, 2, 3, 5, 7, 18, 20, 22, 23, 24, 36, 38, 40, 49, 51, 53, 129, 130, 131, 132, 133, 135, 141, 144, 165, 166, 167, 168, 170 }
36 2 656 50 0 { 1, 2, 3, 5, 7, 18, 19, 20, 24, 34, 35, 36, 40, 49, 51, 53, 129, 130, 131, 132, 133, 138, 139, 141, 144, 167, 168, 169, 170 }
37 12 688 58 0 { 1, 2, 3, 4, 5, 21, 22, 23, 24, 37, 38, 39, 40, 49, 50, 51, 129, 130, 131, 132, 133, 135, 139, 141, 144, 166, 167, 168, 170 }
38 48 1416 34 0 { 1, 2, 3, 4, 5, 9, 13, 17, 34, 35, 37, 41, 49, 65, 129, 130, 131, 132, 133, 134, 148, 155, 156, 157, 158, 166, 167, 173, 174 }
39 48 1184 36 0 { 1, 2, 3, 4, 5, 6, 9, 17, 25, 35, 37, 41, 49, 65, 129, 130, 131, 132, 133, 134, 147, 148, 156, 157, 158, 165, 166, 167, 173 }
40 2 952 38 0 { 1, 2, 3, 4, 5, 6, 9, 12, 17, 18, 22, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 149, 150, 155, 157, 165, 169, 173 }
41 2 968 42 0 { 1, 2, 3, 4, 5, 6, 9, 12, 14, 17, 18, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 149, 150, 155, 156, 157, 169, 173 }
42 2 960 40 0 { 1, 2, 3, 4, 5, 6, 9, 12, 14, 17, 20, 34, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 146, 150, 155, 156, 160, 169, 173 }
43 1 952 38 0 { 1, 2, 3, 4, 5, 6, 9, 14, 17, 20, 36, 42, 50, 65, 66, 129, 130, 131, 132, 133, 145, 149, 150, 155, 156, 160, 166, 169, 173 }
44 2 960 40 0 { 1, 2, 3, 4, 5, 6, 9, 14, 17, 22, 36, 42, 50, 65, 66, 129, 130, 131, 132, 133, 145, 149, 150, 155, 157, 160, 166, 169, 173 }
45 4 640 56 0 { 1, 2, 3, 5, 7, 9, 10, 19, 21, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 147, 148, 155, 158, 159, 165, 166, 174, 179 }
46 2 616 50 0 { 1, 2, 3, 5, 7, 9, 11, 19, 21, 34, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 146, 148, 155, 158, 159, 165, 167, 174, 179 }
47 8 624 52 0 { 1, 2, 3, 5, 7, 9, 19, 21, 34, 41, 49, 66, 129, 130, 131, 132, 133, 135, 145, 146, 148, 155, 158, 159, 165, 166, 167, 174, 179 }
48 2 624 52 0 { 1, 2, 3, 5, 7, 9, 10, 19, 21, 25, 34, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 148, 158, 159, 165, 166, 174, 179 }
49 24 656 60 0 { 1, 2, 3, 5, 6, 9, 10, 19, 21, 25, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 158, 159, 165, 166, 173, 179 }
50 2 624 52 0 { 1, 2, 3, 5, 7, 11, 13, 18, 25, 35, 49, 66, 129, 130, 131, 132, 133, 135, 144, 145, 147, 148, 156, 157, 159, 167, 168, 174, 179 }
51 2 616 50 0 { 1, 2, 3, 5, 7, 10, 11, 18, 19, 25, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 146, 147, 148, 156, 159, 165, 168, 174, 179 }
52 4 624 52 0 { 1, 2, 3, 5, 7, 11, 18, 25, 35, 49, 65, 66, 129, 130, 131, 132, 133, 144, 145, 147, 148, 156, 157, 159, 165, 167, 168, 174, 179 }
53 4 640 56 0 { 1, 2, 3, 4, 5, 10, 11, 13, 21, 25, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 146, 147, 148, 157, 158, 159, 168, 173, 174 }
54 4 480 56 0 { 1, 2, 3, 5, 10, 13, 21, 25, 35, 49, 65, 66, 129, 130, 131, 132, 133, 144, 145, 147, 148, 157, 158, 159, 166, 168, 173, 174, 179 }
55 4 488 58 0 { 1, 2, 3, 5, 11, 13, 19, 25, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 146, 147, 148, 156, 158, 159, 167, 168, 173, 174, 179 }
56 48 504 62 0 { 1, 2, 3, 5, 11, 13, 25, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 156, 157, 158, 159, 167, 168, 173, 174, 179 }
57 1152 1032 44 0 { 1, 2, 3, 4, 9, 10, 11, 17, 18, 21, 25, 33, 34, 35, 41, 49, 67, 69, 129, 130, 131, 134, 135, 145, 157, 165, 173, 174, 175 }
58 4 376 62 0 { 1, 2, 3, 5, 11, 18, 21, 25, 37, 41, 66, 67, 129, 130, 131, 132, 135, 143, 146, 147, 148, 157, 159, 165, 167, 168, 173, 174, 179 }
59 36 384 64 0 { 1, 2, 3, 5, 11, 18, 21, 25, 34, 37, 41, 65, 66, 67, 129, 130, 131, 132, 143, 146, 148, 157, 159, 165, 167, 168, 173, 174, 179 }
60 16 392 66 0 { 1, 2, 3, 5, 19, 21, 25, 34, 37, 41, 66, 67, 129, 130, 131, 132, 135, 143, 146, 148, 158, 159, 165, 166, 167, 168, 173, 174, 179 }
61 20 368 60 0 { 1, 2, 3, 5, 10, 19, 25, 37, 41, 49, 66, 67, 129, 130, 131, 132, 135, 146, 147, 148, 156, 158, 159, 165, 166, 168, 173, 174, 179 }
62 96 424 74 0 { 1, 2, 3, 4, 5, 10, 13, 19, 21, 25, 37, 41, 49, 65, 66, 67, 129, 130, 131, 132, 146, 147, 148, 158, 159, 166, 168, 173, 174 }
63 1440 488 90 0 { 1, 2, 3, 4, 5, 13, 21, 25, 37, 41, 49, 65, 66, 67, 129, 130, 131, 132, 146, 147, 148, 157, 158, 159, 166, 167, 168, 173, 174 }
64 24 360 58 0 { 1, 2, 3, 9, 11, 13, 18, 19, 37, 49, 66, 69, 129, 130, 131, 133, 135, 144, 146, 147, 148, 155, 156, 159, 167, 173, 174, 175, 179 }
65 240 1888 20 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 34, 35, 37, 41, 65, 129, 130, 131, 132, 133, 134, 143, 148, 155, 156, 157, 158, 165, 166, 173 }
66 4 1744 18 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 15, 17, 19, 20, 23, 26, 129, 130, 131, 132, 133, 134, 137, 138, 139, 143, 144, 148, 149 }



Nr. |WK | #K5(1) #Ka
4 (0) #Kb

4(0) K

67 4 1776 16 0 { 1, 2, 3, 4, 5, 6, 8, 9, 12, 13, 17, 18, 19, 22, 23, 26, 129, 130, 131, 132, 133, 134, 135, 138, 143, 144, 145, 147, 148 }
68 4 1616 20 0 { 1, 2, 3, 4, 5, 6, 8, 9, 14, 17, 18, 20, 21, 22, 23, 26, 129, 130, 131, 132, 133, 134, 139, 140, 143, 146, 147, 148, 149 }
69 24 1632 24 0 { 1, 2, 3, 4, 5, 6, 8, 9, 12, 17, 20, 33, 34, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 146, 155, 156, 160, 165, 169 }
70 192 2264 7 84 { 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 17, 18, 21, 26, 129, 130, 131, 132, 133, 134, 135, 143, 144, 145, 146, 147, 148, 157, 165 }
71 8 872 42 0 { 1, 2, 3, 4, 5, 9, 11, 13, 17, 19, 21, 34, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 148, 155, 158, 167, 173, 174 }
72 4 880 44 0 { 1, 2, 3, 4, 5, 9, 11, 13, 17, 21, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 157, 158, 167, 173, 174 }
73 12 1344 33 0 { 1, 2, 3, 4, 5, 9, 13, 17, 34, 35, 41, 49, 65, 129, 130, 131, 132, 133, 134, 145, 148, 155, 156, 157, 158, 166, 167, 173, 174 }
74 8 736 48 0 { 1, 2, 3, 5, 7, 9, 18, 19, 21, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 147, 148, 155, 159, 165, 166, 167, 174, 179 }
75 16 1952 12 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 17, 18, 20, 23, 26, 129, 130, 131, 132, 133, 134, 135, 137, 138, 143, 144, 145, 148 }
76 4 1584 20 0 { 1, 2, 3, 4, 5, 6, 9, 10, 11, 17, 18, 21, 25, 35, 37, 65, 129, 130, 131, 132, 133, 134, 143, 144, 147, 148, 157, 165, 173 }
77 8 1592 22 0 { 1, 2, 3, 4, 5, 6, 9, 10, 11, 17, 19, 21, 25, 35, 37, 65, 129, 130, 131, 132, 133, 134, 143, 144, 147, 148, 158, 165, 173 }
78 240 1208 40 0 { 1, 2, 3, 5, 7, 8, 9, 11, 12, 15, 33, 35, 36, 39, 43, 45, 129, 130, 131, 132, 133, 138, 139, 140, 142, 158, 159, 160, 161 }
79 6 1232 34 0 { 1, 2, 3, 4, 5, 9, 13, 17, 18, 34, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 148, 155, 156, 157, 166, 167, 173, 174 }
80 8 520 53 0 { 1, 2, 3, 5, 7, 18, 22, 23, 24, 36, 37, 38, 40, 49, 51, 53, 129, 130, 131, 132, 133, 135, 138, 141, 144, 165, 167, 168, 170 }
81 2 520 53 0 { 1, 2, 3, 5, 7, 18, 19, 22, 24, 34, 36, 37, 40, 49, 51, 53, 129, 130, 131, 132, 133, 138, 139, 141, 144, 167, 168, 169, 170 }
82 4 536 57 0 { 1, 2, 3, 5, 7, 18, 20, 22, 24, 34, 36, 38, 40, 49, 51, 53, 129, 130, 131, 132, 133, 138, 139, 141, 144, 167, 168, 169, 170 }
83 4 528 55 0 { 1, 2, 3, 5, 7, 18, 24, 34, 35, 36, 37, 38, 40, 49, 51, 53, 129, 130, 131, 132, 133, 138, 139, 141, 144, 167, 168, 169, 170 }
84 2 528 55 0 { 1, 2, 3, 5, 7, 18, 23, 24, 35, 36, 37, 38, 40, 49, 51, 53, 129, 130, 131, 132, 133, 138, 141, 144, 165, 167, 168, 169, 170 }
85 4 528 55 0 { 1, 2, 3, 5, 7, 20, 22, 24, 34, 36, 38, 39, 40, 49, 51, 53, 129, 130, 131, 132, 133, 138, 141, 144, 165, 167, 168, 169, 170 }
86 16 544 59 0 { 1, 2, 3, 5, 6, 18, 19, 23, 24, 35, 36, 37, 40, 49, 50, 53, 129, 130, 131, 132, 133, 138, 139, 141, 144, 167, 168, 169, 170 }
87 2 536 57 0 { 1, 2, 3, 4, 5, 21, 22, 23, 24, 37, 38, 39, 40, 49, 50, 51, 129, 130, 131, 132, 133, 135, 138, 141, 144, 165, 167, 168, 170 }
88 20 528 55 0 { 1, 2, 3, 4, 5, 19, 22, 23, 24, 36, 37, 39, 40, 49, 50, 51, 129, 130, 131, 132, 133, 135, 139, 141, 144, 166, 167, 168, 170 }
89 24 552 61 0 { 1, 2, 3, 4, 5, 23, 24, 35, 36, 37, 38, 39, 40, 49, 50, 51, 129, 130, 131, 132, 133, 138, 139, 141, 144, 167, 168, 169, 170 }
90 8 560 63 0 { 1, 2, 3, 4, 5, 21, 22, 23, 24, 37, 38, 39, 40, 49, 50, 51, 129, 130, 131, 132, 133, 138, 139, 141, 144, 167, 168, 169, 170 }
91 240 608 75 0 { 1, 2, 3, 5, 9, 19, 20, 23, 27, 35, 36, 39, 43, 67, 68, 129, 130, 131, 132, 138, 143, 151, 162, 165, 167, 169, 174, 176, 184 }
92 12 784 49 0 { 1, 2, 3, 5, 7, 19, 20, 21, 22, 24, 34, 39, 40, 49, 51, 53, 129, 130, 131, 132, 133, 135, 137, 144, 155, 165, 166, 168, 170 }
93 8 600 52 0 { 1, 2, 3, 5, 11, 18, 19, 25, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 146, 147, 148, 156, 159, 165, 167, 168, 173, 174, 179 }
94 4 608 54 0 { 1, 2, 3, 5, 10, 11, 13, 25, 35, 49, 65, 66, 129, 130, 131, 132, 133, 144, 145, 147, 148, 156, 157, 158, 159, 168, 173, 174, 179 }
95 240 1568 35 0 { 1, 2, 3, 5, 8, 9, 12, 14, 15, 17, 20, 22, 23, 26, 27, 29, 129, 130, 131, 132, 133, 134, 137, 139, 140, 141, 146, 148, 149 }
96 12 1344 32 0 { 1, 2, 3, 4, 5, 6, 9, 17, 25, 34, 35, 37, 41, 65, 129, 130, 131, 132, 133, 134, 143, 148, 156, 157, 158, 165, 166, 167, 173 }
97 8 1520 26 0 { 1, 2, 3, 4, 5, 6, 9, 17, 19, 34, 35, 37, 41, 65, 129, 130, 131, 132, 133, 134, 143, 148, 155, 156, 158, 165, 166, 167, 173 }
98 12 992 40 0 { 1, 2, 3, 4, 5, 9, 13, 17, 19, 34, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 148, 155, 156, 158, 166, 167, 173, 174 }
99 2 1632 20 0 { 1, 2, 3, 4, 5, 6, 9, 11, 17, 25, 34, 35, 65, 129, 130, 131, 132, 133, 134, 143, 144, 145, 148, 156, 157, 158, 165, 167, 173 }

100 2 1632 20 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 19, 25, 34, 35, 41, 65, 129, 130, 131, 132, 133, 134, 143, 145, 148, 156, 158, 165, 166, 173 }
101 4 1808 15 0 { 1, 2, 3, 4, 5, 6, 8, 9, 13, 14, 17, 18, 21, 22, 23, 26, 129, 130, 131, 132, 133, 134, 137, 138, 139, 143, 144, 148, 149 }
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102 8 720 48 0 { 1, 2, 3, 5, 7, 9, 13, 18, 19, 21, 25, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 147, 148, 159, 166, 167, 174, 179 }
103 2 1072 34 0 { 1, 2, 3, 4, 5, 6, 9, 11, 13, 17, 18, 19, 21, 35, 37, 41, 65, 66, 129, 130, 131, 132, 133, 143, 147, 148, 155, 167, 173 }
104 1 1080 36 0 { 1, 2, 3, 4, 5, 6, 9, 10, 11, 17, 19, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 146, 147, 148, 155, 156, 158, 165, 173 }
105 2 1072 34 0 { 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 17, 19, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 156, 158, 173 }
106 4 1088 38 0 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 17, 19, 21, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 158, 165, 166 }
107 2 496 56 0 { 1, 2, 3, 5, 7, 11, 13, 18, 25, 34, 35, 49, 65, 66, 129, 130, 131, 132, 133, 144, 145, 148, 156, 157, 159, 167, 168, 174, 179 }
108 4 488 54 0 { 1, 2, 3, 5, 7, 13, 18, 25, 35, 49, 65, 66, 129, 130, 131, 132, 133, 144, 145, 147, 148, 156, 157, 159, 166, 167, 168, 174, 179 }
109 8 504 58 0 { 1, 2, 3, 5, 7, 11, 13, 18, 25, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 156, 157, 159, 167, 168, 174, 179 }
110 4 512 60 0 { 1, 2, 3, 4, 5, 10, 13, 21, 25, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 157, 158, 159, 166, 168, 173, 174 }
111 4 1376 28 0 { 1, 2, 3, 4, 5, 6, 9, 17, 18, 21, 35, 41, 65, 66, 129, 130, 131, 132, 133, 143, 145, 147, 148, 155, 157, 165, 166, 167, 173 }
112 12 1376 28 0 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 17, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 156, 157, 158 }
113 4 1168 36 0 { 1, 2, 3, 4, 5, 6, 9, 17, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 156, 157, 158, 165, 166, 167, 173 }
114 4 736 46 0 { 1, 2, 3, 5, 7, 9, 11, 21, 34, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 148, 155, 157, 158, 159, 165, 167, 174, 179 }
115 2 744 48 0 { 1, 2, 3, 5, 7, 9, 21, 34, 35, 41, 49, 66, 129, 130, 131, 132, 133, 135, 145, 148, 155, 157, 158, 159, 165, 166, 167, 174, 179 }
116 8 760 52 0 { 1, 2, 3, 5, 7, 9, 10, 19, 21, 25, 35, 37, 41, 66, 129, 130, 131, 132, 133, 135, 143, 147, 148, 158, 159, 165, 166, 174, 179 }
117 2 744 48 0 { 1, 2, 3, 5, 7, 9, 10, 19, 21, 25, 35, 41, 49, 66, 129, 130, 131, 132, 133, 135, 145, 147, 148, 158, 159, 165, 166, 174, 179 }
118 8 1568 22 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 14, 15, 17, 20, 21, 23, 26, 129, 130, 131, 132, 133, 134, 137, 138, 139, 143, 144, 148, 149 }
119 4 1992 12 0 { 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 18, 20, 22, 23, 26, 129, 130, 131, 132, 133, 134, 135, 137, 139, 143, 144, 146, 148 }
120 2 784 45 0 { 1, 2, 3, 4, 5, 7, 9, 12, 14, 15, 16, 36, 38, 39, 41, 43, 129, 130, 131, 132, 133, 137, 139, 142, 155, 157, 159, 160, 161 }
121 2 784 45 0 { 1, 2, 3, 5, 7, 9, 13, 14, 16, 34, 37, 38, 39, 41, 43, 45, 129, 130, 131, 132, 133, 135, 138, 142, 155, 156, 158, 159, 161 }
122 16 792 47 0 { 1, 2, 3, 5, 7, 9, 12, 16, 34, 35, 36, 38, 39, 41, 43, 45, 129, 130, 131, 132, 133, 135, 138, 139, 142, 155, 158, 159, 161 }
123 4 792 47 0 { 1, 2, 3, 5, 7, 9, 10, 15, 16, 35, 36, 37, 38, 41, 43, 45, 129, 130, 131, 132, 133, 135, 139, 142, 155, 157, 158, 159, 161 }
124 4 792 47 0 { 1, 2, 3, 5, 7, 9, 10, 15, 16, 35, 36, 37, 38, 41, 43, 45, 129, 130, 131, 132, 133, 135, 138, 140, 143, 156, 158, 159, 161 }
125 24 416 64 0 { 1, 2, 3, 5, 11, 13, 18, 25, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 156, 157, 159, 167, 168, 173, 174, 179 }
126 4 400 60 0 { 1, 2, 3, 5, 10, 13, 19, 25, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 156, 158, 159, 166, 168, 173, 174, 179 }
127 16 432 68 0 { 1, 2, 3, 5, 6, 11, 19, 25, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 146, 147, 148, 156, 158, 159, 165, 167, 168, 173, 179 }
128 4 392 58 0 { 1, 2, 3, 5, 11, 18, 25, 37, 41, 66, 67, 129, 130, 131, 132, 135, 143, 146, 147, 148, 156, 157, 159, 165, 167, 168, 173, 174, 179 }
129 4 408 62 0 { 1, 2, 3, 5, 11, 18, 21, 25, 34, 37, 41, 66, 67, 129, 130, 131, 132, 135, 143, 146, 148, 157, 159, 165, 167, 168, 173, 174, 179 }
130 4 408 62 0 { 1, 2, 3, 5, 11, 18, 21, 25, 35, 37, 41, 66, 67, 129, 130, 131, 132, 135, 143, 147, 148, 157, 159, 165, 167, 168, 173, 174, 179 }
131 16 416 64 0 { 1, 2, 3, 5, 21, 25, 34, 37, 41, 66, 67, 129, 130, 131, 132, 135, 143, 146, 148, 157, 158, 159, 165, 166, 167, 168, 173, 174, 179 }
132 192 480 80 0 { 1, 2, 3, 4, 5, 13, 19, 21, 25, 37, 41, 49, 65, 66, 67, 129, 130, 131, 132, 146, 147, 148, 158, 159, 166, 167, 168, 173, 174 }
133 128 416 64 0 { 1, 2, 3, 4, 9, 10, 21, 25, 37, 41, 49, 67, 69, 129, 130, 131, 134, 135, 146, 147, 148, 157, 158, 159, 165, 166, 173, 174, 175 }
134 64 384 56 0 { 1, 2, 3, 9, 11, 13, 18, 19, 35, 37, 49, 66, 69, 129, 130, 131, 133, 135, 144, 147, 148, 155, 156, 159, 167, 173, 174, 175, 179 }
135 720 728 60 0 { 1, 2, 3, 5, 9, 19, 21, 25, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 158, 159, 165, 166, 167, 173, 174, 179 }
136 12 624 60 0 { 1, 2, 3, 5, 7, 9, 10, 19, 21, 25, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 158, 159, 165, 166, 174, 179 }
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137 4 592 52 0 { 1, 2, 3, 5, 7, 9, 18, 21, 25, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 147, 148, 157, 159, 165, 166, 167, 174, 179 }
138 16 608 56 0 { 1, 2, 3, 5, 11, 13, 25, 49, 65, 66, 129, 130, 131, 132, 133, 144, 145, 146, 147, 148, 156, 157, 158, 159, 167, 168, 173, 174, 179 }
139 24 592 52 0 { 1, 2, 3, 5, 11, 13, 18, 25, 34, 41, 66, 67, 129, 130, 131, 132, 135, 143, 145, 146, 148, 156, 157, 159, 167, 168, 173, 174, 179 }
140 192 1344 33 0 { 1, 2, 3, 5, 9, 10, 17, 34, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 148, 155, 156, 157, 158, 165, 166, 173, 174, 179 }
141 20 1808 15 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 20, 33, 42, 66, 129, 130, 131, 132, 133, 137, 143, 145, 146, 149, 155, 156, 160, 165, 166, 173 }
142 8 1960 12 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 17, 18, 19, 23, 26, 129, 130, 131, 132, 133, 134, 137, 143, 144, 145, 146, 148, 149 }
143 16 664 52 0 { 1, 2, 3, 5, 7, 11, 13, 18, 25, 49, 66, 129, 130, 131, 132, 133, 135, 144, 145, 146, 147, 148, 156, 157, 159, 167, 168, 174, 179 }
144 18 648 48 0 { 1, 2, 3, 5, 7, 10, 11, 13, 18, 19, 25, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 146, 147, 148, 156, 159, 168, 174, 179 }
145 24 664 52 0 { 1, 2, 3, 4, 5, 10, 11, 13, 19, 21, 25, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 146, 147, 148, 158, 159, 168, 173, 174 }
146 432 696 60 0 { 1, 2, 3, 4, 5, 6, 11, 13, 25, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 156, 157, 158, 159, 167, 168, 173 }
147 4 680 52 0 { 1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 16, 36, 37, 38, 41, 43, 129, 130, 131, 132, 133, 138, 139, 142, 155, 158, 159, 160, 161 }
148 2 664 48 0 { 1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 34, 38, 39, 41, 43, 129, 130, 131, 132, 133, 138, 139, 142, 155, 158, 159, 160, 161 }
149 6 672 50 0 { 1, 2, 3, 5, 7, 9, 11, 12, 14, 16, 34, 36, 39, 41, 43, 45, 129, 130, 131, 132, 133, 135, 137, 139, 142, 155, 157, 159, 161 }
150 4 672 50 0 { 1, 2, 3, 5, 7, 9, 10, 12, 16, 34, 35, 36, 38, 41, 43, 45, 129, 130, 131, 132, 133, 138, 139, 140, 143, 158, 159, 160, 161 }
151 72 712 60 0 { 1, 2, 3, 4, 5, 6, 9, 10, 15, 16, 35, 36, 37, 38, 41, 42, 129, 130, 131, 132, 133, 138, 139, 140, 142, 158, 159, 160, 161 }
152 8 760 48 0 { 1, 2, 3, 5, 7, 9, 11, 13, 19, 21, 34, 41, 49, 66, 129, 130, 131, 132, 133, 135, 145, 146, 148, 155, 158, 159, 167, 174, 179 }
153 48 1704 25 0 { 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 18, 20, 22, 23, 26, 129, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 148, 149 }
154 4 1640 18 0 { 1, 2, 3, 4, 5, 6, 8, 9, 10, 17, 36, 42, 66, 129, 130, 131, 132, 133, 137, 143, 145, 149, 150, 155, 156, 157, 160, 165, 166 }
155 8 1648 20 0 { 1, 2, 3, 4, 5, 6, 9, 10, 14, 17, 20, 33, 36, 42, 66, 129, 130, 131, 132, 133, 137, 143, 145, 149, 155, 156, 160, 166, 173 }
156 4 1408 24 0 { 1, 2, 3, 4, 5, 6, 9, 11, 17, 21, 25, 35, 37, 41, 129, 130, 131, 132, 133, 134, 135, 143, 147, 148, 157, 158, 165, 167, 173 }
157 12 1200 34 0 { 1, 2, 3, 4, 5, 6, 9, 11, 13, 17, 19, 21, 35, 37, 41, 66, 129, 130, 131, 132, 133, 135, 143, 147, 148, 155, 158, 167, 173 }
158 24 1032 41 0 { 1, 2, 3, 5, 7, 8, 9, 11, 15, 33, 35, 36, 37, 39, 43, 45, 129, 130, 131, 132, 133, 137, 138, 139, 140, 142, 159, 160, 161 }
159 12 1592 22 0 { 1, 2, 3, 4, 5, 6, 9, 13, 17, 18, 34, 35, 41, 65, 66, 129, 130, 131, 132, 133, 143, 145, 148, 155, 156, 157, 166, 167, 173 }
160 24 1600 24 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 22, 34, 36, 42, 65, 66, 129, 130, 131, 132, 133, 143, 145, 150, 155, 157, 160, 165, 166, 173 }
161 2 1080 37 0 { 1, 2, 3, 4, 5, 9, 14, 17, 34, 36, 42, 50, 66, 129, 130, 131, 132, 133, 137, 145, 150, 155, 156, 157, 160, 166, 169, 173, 176 }
162 4 1080 37 0 { 1, 2, 3, 4, 5, 8, 9, 14, 17, 20, 22, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 146, 149, 150, 155, 160, 166, 169, 176 }
163 8 1088 39 0 { 1, 2, 3, 5, 9, 10, 11, 13, 17, 34, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 148, 155, 156, 157, 158, 173, 174, 179 }
164 12 1072 35 0 { 1, 2, 3, 5, 9, 12, 14, 17, 18, 20, 22, 36, 38, 50, 66, 129, 130, 131, 132, 133, 137, 144, 149, 150, 155, 169, 173, 176, 181 }
165 72 1088 39 0 { 1, 2, 3, 5, 7, 8, 9, 11, 12, 16, 34, 35, 36, 39, 43, 45, 129, 130, 131, 132, 133, 135, 137, 138, 142, 155, 156, 159, 161 }
166 4 768 44 0 { 1, 2, 3, 4, 5, 7, 9, 11, 18, 21, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 146, 147, 148, 155, 157, 159, 165, 167, 174 }
167 2 776 46 0 { 1, 2, 3, 4, 5, 7, 9, 13, 18, 19, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 146, 147, 148, 155, 156, 159, 166, 167, 174 }
168 8 800 52 0 { 1, 2, 3, 4, 5, 7, 9, 10, 13, 18, 21, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 147, 148, 155, 157, 159, 166, 174 }
169 2 768 44 0 { 1, 2, 3, 4, 5, 7, 9, 10, 13, 18, 19, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 146, 147, 148, 155, 156, 159, 166, 174 }
170 12 1168 38 0 { 1, 2, 3, 5, 8, 9, 12, 14, 17, 18, 20, 22, 36, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 149, 150, 155, 169, 176, 181 }
171 12 1776 19 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 17, 20, 23, 26, 129, 130, 131, 132, 133, 134, 137, 138, 139, 143, 144, 148, 149 }
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172 14 1288 28 0 { 1, 2, 3, 4, 5, 6, 9, 11, 17, 18, 19, 35, 37, 41, 66, 129, 130, 131, 132, 133, 135, 143, 147, 148, 155, 156, 165, 167, 173 }
173 48 1304 32 0 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 17, 18, 19, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 156, 165 }
174 240 1568 30 0 { 1, 2, 3, 4, 5, 6, 7, 9, 17, 25, 34, 35, 37, 65, 129, 130, 131, 132, 133, 134, 143, 144, 148, 156, 157, 158, 165, 166, 167 }
175 12 1936 14 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 17, 18, 23, 26, 129, 130, 131, 132, 133, 134, 135, 137, 143, 144, 145, 146, 148 }
176 48 896 50 0 { 1, 2, 3, 5, 7, 9, 10, 17, 19, 21, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 158, 165, 166, 174, 179 }
177 4 1216 30 0 { 1, 2, 3, 4, 5, 6, 9, 13, 17, 18, 19, 21, 35, 41, 65, 66, 129, 130, 131, 132, 133, 143, 145, 147, 148, 155, 166, 167, 173 }
178 2 1224 32 0 { 1, 2, 3, 4, 5, 6, 9, 17, 18, 19, 21, 35, 37, 41, 65, 66, 129, 130, 131, 132, 133, 143, 147, 148, 155, 165, 166, 167, 173 }
179 16 1760 19 0 { 1, 2, 3, 4, 5, 6, 9, 17, 18, 34, 35, 41, 65, 129, 130, 131, 132, 133, 134, 143, 145, 148, 155, 156, 157, 165, 166, 167, 173 }
180 2 1240 30 0 { 1, 2, 3, 4, 5, 6, 9, 13, 17, 18, 21, 35, 41, 66, 129, 130, 131, 132, 133, 135, 143, 145, 147, 148, 155, 157, 166, 167, 173 }
181 2 1240 30 0 { 1, 2, 3, 4, 5, 6, 9, 17, 18, 19, 35, 37, 41, 66, 129, 130, 131, 132, 133, 135, 143, 147, 148, 155, 156, 165, 166, 167, 173 }
182 24 1264 36 0 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 17, 18, 21, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 147, 148, 155, 157, 166 }
183 4 1248 32 0 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 17, 18, 19, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 156, 165, 166 }
184 16 1440 25 0 { 1, 2, 3, 4, 5, 6, 9, 17, 20, 36, 42, 65, 66, 129, 130, 131, 132, 133, 143, 145, 149, 150, 155, 156, 160, 165, 166, 169, 173 }
185 24 1440 25 0 { 1, 2, 3, 4, 5, 6, 9, 10, 12, 14, 17, 20, 22, 36, 38, 42, 66, 129, 130, 131, 132, 133, 137, 143, 149, 150, 155, 160, 173 }
186 32 1512 26 0 { 1, 2, 3, 4, 5, 6, 9, 17, 34, 41, 49, 65, 129, 130, 131, 132, 133, 134, 145, 146, 148, 155, 156, 157, 158, 165, 166, 167, 173 }
187 12 1480 27 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 20, 22, 33, 36, 38, 42, 65, 66, 129, 130, 131, 132, 133, 143, 149, 155, 160, 165, 166, 173 }
188 2 1464 23 0 { 1, 2, 3, 4, 5, 6, 9, 17, 20, 33, 38, 42, 66, 129, 130, 131, 132, 133, 137, 143, 146, 149, 155, 156, 160, 165, 166, 169, 173 }
189 192 808 46 0 { 1, 2, 3, 4, 9, 10, 13, 17, 18, 21, 25, 33, 34, 35, 41, 49, 67, 69, 129, 130, 131, 134, 135, 145, 157, 166, 173, 174, 175 }
190 12 920 42 0 { 1, 2, 3, 5, 7, 9, 10, 14, 16, 34, 36, 37, 38, 41, 43, 45, 129, 130, 131, 132, 133, 134, 138, 142, 155, 156, 158, 159, 160 }
191 8 928 44 0 { 1, 2, 3, 5, 7, 9, 11, 14, 16, 34, 36, 37, 39, 41, 43, 45, 129, 130, 131, 132, 133, 134, 137, 142, 155, 156, 157, 159, 160 }
192 4 920 42 0 { 1, 2, 3, 5, 7, 9, 12, 16, 34, 35, 36, 38, 39, 41, 43, 45, 129, 130, 131, 132, 133, 135, 142, 155, 156, 157, 158, 159, 161 }
193 8 928 44 0 { 1, 2, 3, 5, 7, 9, 10, 11, 15, 16, 35, 36, 37, 41, 43, 45, 129, 130, 131, 132, 133, 135, 138, 139, 142, 155, 158, 159, 161 }
194 144 1216 36 0 { 1, 2, 3, 4, 5, 7, 9, 11, 13, 34, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 146, 148, 155, 156, 157, 158, 159, 167, 174 }
195 72 1200 32 0 { 1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 21, 34, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 148, 155, 157, 158, 159, 174 }
196 8 1408 28 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 19, 25, 34, 35, 37, 41, 65, 129, 130, 131, 132, 133, 134, 143, 148, 156, 158, 165, 166, 173 }
197 2 1400 26 0 { 1, 2, 3, 4, 5, 6, 9, 17, 19, 25, 34, 35, 37, 41, 129, 130, 131, 132, 133, 134, 135, 143, 148, 156, 158, 165, 166, 167, 173 }
198 24 1392 28 0 { 1, 2, 3, 4, 5, 6, 9, 17, 19, 21, 35, 37, 41, 65, 129, 130, 131, 132, 133, 134, 143, 147, 148, 155, 158, 165, 166, 167, 173 }
199 4 1032 38 0 { 1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 21, 34, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 148, 155, 157, 158, 167, 174 }
200 24 1048 42 0 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 21, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 157, 158, 166, 167, 174 }
201 24 1152 40 0 { 1, 2, 3, 5, 7, 9, 17, 19, 34, 35, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 148, 155, 156, 158, 165, 166, 167, 174, 179 }
202 4 1424 24 0 { 1, 2, 3, 4, 5, 6, 9, 10, 11, 17, 21, 25, 34, 35, 37, 65, 129, 130, 131, 132, 133, 134, 143, 144, 148, 157, 158, 165, 173 }
203 48 1920 16 0 { 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 17, 18, 19, 21, 25, 35, 37, 65, 129, 130, 131, 132, 133, 134, 143, 144, 147, 148, 173 }
204 2 1424 26 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 19, 21, 25, 34, 35, 37, 65, 129, 130, 131, 132, 133, 134, 143, 144, 148, 158, 165, 166, 173 }
205 2 1416 24 0 { 1, 2, 3, 4, 5, 6, 9, 11, 17, 19, 21, 25, 34, 35, 37, 65, 129, 130, 131, 132, 133, 134, 143, 144, 148, 158, 165, 167, 173 }
206 48 1232 40 0 { 1, 2, 3, 5, 9, 17, 34, 35, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 148, 155, 156, 157, 158, 165, 166, 167, 173, 174, 179 }
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207 2 920 40 0 { 1, 2, 3, 4, 5, 6, 9, 13, 17, 19, 21, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 147, 148, 155, 158, 166, 167, 173 }
208 12 944 46 0 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 18, 21, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 147, 148, 155, 157, 166, 167, 174 }
209 16 928 42 0 { 1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 18, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 146, 147, 148, 155, 156, 157, 167, 174 }
210 12 1696 22 0 { 1, 2, 3, 4, 5, 6, 9, 17, 34, 35, 37, 41, 129, 130, 131, 132, 133, 134, 135, 143, 148, 155, 156, 157, 158, 165, 166, 167, 173 }
211 24 520 61 0 { 1, 2, 3, 5, 11, 21, 25, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 146, 147, 148, 157, 158, 159, 165, 167, 168, 173, 174, 179 }
212 16 496 55 0 { 1, 2, 3, 4, 9, 10, 18, 21, 25, 33, 37, 41, 49, 67, 69, 129, 130, 131, 134, 135, 146, 147, 157, 159, 165, 166, 173, 174, 175 }
213 8 1072 38 0 { 1, 2, 3, 4, 5, 6, 9, 13, 17, 21, 34, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 148, 155, 157, 158, 166, 167, 173 }
214 48 1000 45 0 { 1, 2, 3, 5, 7, 9, 11, 15, 16, 35, 36, 37, 39, 41, 43, 45, 129, 130, 131, 132, 133, 135, 138, 139, 140, 142, 158, 159, 161 }
215 24 1416 31 0 { 1, 2, 3, 4, 5, 6, 9, 12, 14, 15, 17, 20, 22, 23, 25, 26, 129, 130, 131, 132, 133, 134, 137, 138, 139, 143, 144, 148, 149 }
216 48 1368 32 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 18, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 156, 157, 165, 166, 173 }
217 4 1072 36 0 { 1, 2, 3, 4, 5, 6, 9, 11, 17, 19, 21, 35, 37, 41, 65, 66, 129, 130, 131, 132, 133, 143, 147, 148, 155, 158, 165, 167, 173 }
218 4 1064 34 0 { 1, 2, 3, 4, 5, 6, 9, 17, 19, 21, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 146, 147, 148, 155, 158, 165, 166, 167, 173 }
219 8 1080 38 0 { 1, 2, 3, 4, 5, 6, 7, 9, 13, 17, 21, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 147, 148, 155, 157, 158, 166, 167 }
220 20 1568 20 0 { 1, 2, 3, 4, 5, 6, 9, 17, 19, 34, 35, 41, 129, 130, 131, 132, 133, 134, 135, 143, 145, 148, 155, 156, 158, 165, 166, 167, 173 }
221 384 1376 40 0 { 1, 2, 3, 5, 8, 9, 12, 14, 17, 20, 22, 26, 36, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 149, 150, 160, 169, 176, 181 }
222 1 1112 33 0 { 1, 2, 3, 4, 5, 6, 9, 17, 20, 36, 38, 42, 66, 129, 130, 131, 132, 133, 137, 143, 149, 150, 155, 156, 160, 165, 166, 169, 173 }
223 2 1120 35 0 { 1, 2, 3, 4, 5, 6, 9, 12, 17, 18, 20, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 149, 150, 155, 156, 165, 169, 173 }
224 4 1128 37 0 { 1, 2, 3, 4, 5, 6, 9, 14, 17, 22, 34, 36, 42, 50, 66, 129, 130, 131, 132, 133, 137, 145, 150, 155, 157, 160, 166, 169, 173 }
225 4 1120 35 0 { 1, 2, 3, 4, 5, 6, 9, 12, 14, 17, 20, 22, 34, 36, 42, 50, 66, 129, 130, 131, 132, 133, 137, 145, 150, 155, 160, 169, 173 }
226 24 2112 12 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 23, 26, 129, 130, 131, 132, 133, 134, 135, 138, 143, 144, 145, 147, 148 }
227 12 1136 35 0 { 1, 2, 3, 4, 5, 6, 7, 9, 12, 14, 15, 16, 36, 38, 39, 41, 129, 130, 131, 132, 133, 134, 135, 138, 142, 155, 156, 158, 159 }
228 2 1128 33 0 { 1, 2, 3, 4, 5, 6, 7, 9, 11, 14, 15, 16, 36, 37, 39, 41, 129, 130, 131, 132, 133, 134, 137, 138, 142, 155, 156, 159, 160 }
229 12 1120 31 0 { 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 15, 16, 35, 36, 39, 41, 129, 130, 131, 132, 133, 134, 137, 139, 142, 155, 157, 159, 160 }
230 8 1128 33 0 { 1, 2, 3, 4, 5, 6, 7, 9, 12, 14, 16, 34, 36, 38, 39, 41, 129, 130, 131, 132, 133, 135, 138, 142, 155, 156, 158, 159, 161 }
231 4 1592 22 0 { 1, 2, 3, 4, 5, 6, 9, 17, 34, 35, 41, 129, 130, 131, 132, 133, 134, 135, 143, 145, 148, 155, 156, 157, 158, 165, 166, 167, 173 }
232 24 1600 24 0 { 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 17, 19, 20, 22, 26, 129, 130, 131, 132, 133, 134, 137, 138, 139, 140, 143, 148, 149 }
233 2 1080 34 0 { 1, 2, 3, 4, 5, 6, 9, 13, 17, 18, 19, 35, 37, 41, 65, 66, 129, 130, 131, 132, 133, 143, 147, 148, 155, 156, 166, 167, 173 }
234 12 1104 40 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 19, 21, 35, 37, 41, 65, 66, 129, 130, 131, 132, 133, 143, 147, 148, 155, 158, 165, 166, 173 }
235 16 1080 34 0 { 1, 2, 3, 4, 5, 6, 9, 10, 13, 17, 18, 19, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 156, 166, 173 }
236 2 1416 27 0 { 1, 2, 3, 4, 5, 6, 9, 17, 25, 34, 35, 41, 65, 129, 130, 131, 132, 133, 134, 143, 145, 148, 156, 157, 158, 165, 166, 167, 173 }
237 4 1416 27 0 { 1, 2, 3, 4, 5, 6, 8, 9, 12, 15, 17, 19, 20, 22, 23, 26, 129, 130, 131, 132, 133, 134, 138, 139, 140, 143, 147, 148, 149 }
238 2 808 43 0 { 1, 2, 3, 4, 5, 7, 9, 10, 11, 14, 16, 34, 36, 37, 41, 43, 129, 130, 131, 132, 133, 138, 139, 142, 155, 158, 159, 160, 161 }
239 4 808 43 0 { 1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 16, 34, 35, 38, 41, 43, 129, 130, 131, 132, 133, 138, 139, 142, 155, 158, 159, 160, 161 }
240 4 824 47 0 { 1, 2, 3, 4, 5, 7, 9, 10, 12, 15, 16, 35, 36, 38, 41, 43, 129, 130, 131, 132, 133, 138, 139, 142, 155, 158, 159, 160, 161 }
241 8 808 43 0 { 1, 2, 3, 4, 5, 7, 9, 11, 13, 14, 16, 34, 37, 39, 41, 43, 129, 130, 131, 132, 133, 137, 138, 142, 155, 156, 159, 160, 161 }
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242 48 528 62 0 { 1, 2, 3, 5, 6, 11, 13, 18, 25, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 156, 157, 159, 167, 168, 173, 179 }
243 14 504 56 0 { 1, 2, 3, 4, 5, 10, 11, 21, 25, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 157, 158, 159, 165, 168, 173, 174 }
244 2 1272 28 0 { 1, 2, 3, 4, 5, 6, 9, 13, 17, 19, 34, 35, 41, 65, 66, 129, 130, 131, 132, 133, 143, 145, 148, 155, 156, 158, 166, 167, 173 }
245 2 1280 30 0 { 1, 2, 3, 4, 5, 6, 9, 17, 22, 34, 36, 42, 66, 129, 130, 131, 132, 133, 137, 143, 145, 150, 155, 157, 160, 165, 166, 169, 173 }
246 4 1288 32 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 20, 36, 38, 42, 65, 66, 129, 130, 131, 132, 133, 143, 149, 150, 155, 156, 160, 165, 166, 173 }
247 24 1288 32 0 { 1, 2, 3, 4, 5, 6, 8, 9, 17, 34, 42, 50, 66, 129, 130, 131, 132, 133, 137, 145, 146, 150, 155, 156, 157, 160, 165, 166, 169 }
248 48 760 55 0 { 1, 2, 3, 5, 19, 20, 21, 22, 23, 33, 39, 40, 49, 50, 51, 53, 129, 130, 131, 132, 133, 138, 139, 141, 144, 167, 168, 169, 170 }
249 8 888 42 0 { 1, 2, 3, 5, 7, 9, 10, 11, 13, 19, 21, 34, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 148, 155, 158, 159, 174, 179 }
250 12 896 44 0 { 1, 2, 3, 5, 7, 9, 11, 13, 21, 34, 35, 41, 49, 66, 129, 130, 131, 132, 133, 135, 145, 148, 155, 157, 158, 159, 167, 174, 179 }
251 2 1288 28 0 { 1, 2, 3, 4, 5, 6, 9, 12, 14, 17, 18, 20, 33, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 149, 155, 156, 169, 173 }
252 12 1304 32 0 { 1, 2, 3, 4, 5, 6, 9, 12, 14, 17, 20, 22, 33, 34, 36, 42, 50, 65, 66, 129, 130, 131, 132, 133, 145, 155, 160, 169, 173 }
253 8 1288 28 0 { 1, 2, 3, 4, 5, 6, 9, 14, 17, 22, 33, 36, 42, 50, 66, 129, 130, 131, 132, 133, 137, 145, 149, 155, 157, 160, 166, 169, 173 }
254 4 1256 32 0 { 1, 2, 3, 4, 5, 6, 9, 12, 15, 17, 19, 20, 22, 23, 25, 26, 129, 130, 131, 132, 133, 134, 137, 138, 139, 140, 143, 148, 149 }
255 10 1248 30 0 { 1, 2, 3, 4, 5, 6, 9, 12, 13, 14, 15, 17, 22, 23, 25, 26, 129, 130, 131, 132, 133, 134, 137, 138, 140, 141, 145, 148, 149 }
256 4 896 42 0 { 1, 2, 3, 4, 5, 6, 9, 11, 13, 17, 19, 21, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 158, 167, 173 }
257 8 896 42 0 { 1, 2, 3, 5, 7, 9, 11, 19, 21, 34, 35, 41, 49, 66, 129, 130, 131, 132, 133, 135, 145, 148, 155, 158, 159, 165, 167, 174, 179 }
258 12 2128 10 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 23, 26, 129, 130, 131, 132, 133, 134, 135, 137, 143, 144, 145, 146, 148 }
259 12 744 47 0 { 1, 2, 3, 5, 7, 9, 12, 14, 15, 16, 36, 38, 39, 41, 43, 45, 129, 130, 131, 132, 133, 137, 138, 139, 142, 155, 159, 160, 161 }
260 4 752 49 0 { 1, 2, 3, 5, 7, 9, 16, 34, 35, 36, 37, 38, 39, 41, 43, 45, 129, 130, 131, 132, 133, 138, 140, 142, 156, 158, 159, 160, 161 }
261 4 1344 30 0 { 1, 2, 3, 4, 5, 6, 9, 17, 25, 34, 35, 41, 49, 65, 129, 130, 131, 132, 133, 134, 145, 148, 156, 157, 158, 165, 166, 167, 173 }
262 24 1200 36 0 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 21, 34, 35, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 148, 155, 157, 158, 166, 167, 174 }
263 8 1584 22 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 18, 25, 35, 37, 65, 129, 130, 131, 132, 133, 134, 143, 144, 147, 148, 156, 157, 165, 166, 173 }
264 12 1584 22 0 { 1, 2, 3, 4, 5, 6, 9, 17, 19, 21, 25, 34, 35, 37, 129, 130, 131, 132, 133, 134, 135, 143, 144, 148, 158, 165, 166, 167, 173 }
265 4 760 47 0 { 1, 2, 3, 5, 7, 9, 11, 14, 15, 16, 36, 37, 39, 41, 43, 45, 129, 130, 131, 132, 133, 135, 138, 139, 142, 155, 158, 159, 161 }
266 8 776 51 0 { 1, 2, 3, 5, 7, 9, 10, 15, 16, 35, 36, 37, 38, 41, 43, 45, 129, 130, 131, 132, 133, 135, 138, 139, 140, 142, 158, 159, 161 }
267 240 1208 40 0 { 1, 2, 3, 5, 7, 9, 11, 17, 19, 34, 35, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 148, 155, 156, 158, 165, 167, 174, 179 }
268 1920 1608 40 0 { 1, 2, 3, 5, 9, 17, 34, 35, 37, 41, 49, 65, 129, 130, 131, 132, 133, 134, 148, 155, 156, 157, 158, 165, 166, 167, 173, 174, 179 }
269 2 896 40 0 { 1, 2, 3, 4, 5, 6, 9, 13, 17, 19, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 156, 158, 166, 167, 173 }
270 2 912 44 0 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 18, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 156, 157, 166, 167, 174 }
271 2 904 42 0 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 19, 34, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 146, 148, 155, 156, 158, 166, 167, 174 }
272 2 904 42 0 { 1, 2, 3, 4, 5, 7, 9, 13, 18, 21, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 146, 147, 148, 155, 157, 159, 166, 167, 174 }
273 12 920 46 0 { 1, 2, 3, 5, 7, 9, 10, 19, 34, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 148, 155, 156, 158, 159, 165, 166, 174, 179 }
274 4 968 38 0 { 1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 16, 34, 35, 38, 39, 41, 129, 130, 131, 132, 133, 138, 139, 142, 155, 158, 159, 160, 161 }
275 16 960 36 0 { 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 16, 35, 36, 37, 39, 41, 129, 130, 131, 132, 133, 137, 139, 142, 155, 157, 159, 160, 161 }
276 32 992 44 0 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 15, 16, 35, 36, 37, 38, 41, 129, 130, 131, 132, 133, 138, 139, 142, 155, 158, 159, 160, 161 }
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277 48 1008 48 0 { 1, 2, 3, 4, 5, 7, 8, 9, 10, 15, 16, 35, 36, 37, 38, 43, 129, 130, 131, 132, 133, 138, 139, 142, 155, 158, 159, 160, 161 }
278 4 1240 32 0 { 1, 2, 3, 4, 5, 6, 9, 13, 17, 34, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 148, 155, 156, 157, 158, 166, 167, 173 }
279 12 784 46 0 { 1, 2, 3, 5, 6, 7, 9, 10, 21, 25, 34, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 148, 157, 158, 159, 165, 166, 179 }
280 4 912 42 0 { 1, 2, 3, 4, 5, 7, 9, 11, 13, 18, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 146, 147, 148, 155, 156, 157, 159, 167, 174 }
281 2 904 40 0 { 1, 2, 3, 4, 5, 7, 9, 18, 19, 21, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 146, 147, 148, 155, 159, 165, 166, 167, 174 }
282 4 912 42 0 { 1, 2, 3, 4, 5, 7, 9, 10, 13, 18, 19, 21, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 146, 147, 148, 155, 159, 166, 174 }
283 4 912 42 0 { 1, 2, 3, 4, 5, 7, 9, 10, 13, 18, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 156, 157, 159, 166, 174 }
284 8 912 42 0 { 1, 2, 3, 4, 5, 7, 9, 11, 13, 21, 34, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 146, 148, 155, 157, 158, 159, 167, 174 }
285 48 928 46 0 { 1, 2, 3, 4, 5, 7, 9, 10, 13, 21, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 157, 158, 159, 166, 174 }
286 16 928 46 0 { 1, 2, 3, 4, 5, 7, 9, 13, 21, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 146, 147, 148, 155, 157, 158, 159, 166, 167, 174 }
287 4 1800 17 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 25, 34, 35, 65, 129, 130, 131, 132, 133, 134, 143, 144, 145, 148, 156, 157, 158, 165, 166, 173 }
288 48 1896 16 0 { 1, 2, 3, 4, 5, 6, 9, 11, 13, 17, 34, 35, 37, 41, 129, 130, 131, 132, 133, 134, 135, 143, 148, 155, 156, 157, 158, 167, 173 }
289 51840 1728 45 0 { 1, 2, 3, 4, 10, 11, 12, 18, 19, 20, 28, 34, 35, 36, 44, 52, 72, 129, 130, 131, 135, 137, 138, 145, 156, 165, 175, 177, 178 }
290 16 384 66 0 { 1, 2, 3, 5, 10, 19, 21, 25, 37, 41, 49, 65, 66, 67, 129, 130, 131, 132, 146, 147, 148, 158, 159, 165, 166, 168, 173, 174, 179 }
291 432 384 66 0 { 1, 2, 3, 5, 10, 19, 21, 25, 35, 37, 41, 49, 65, 66, 67, 69, 129, 130, 131, 147, 148, 158, 159, 165, 166, 168, 173, 174, 179 }
292 24 368 62 0 { 1, 2, 3, 4, 9, 10, 18, 21, 25, 35, 37, 41, 49, 65, 67, 69, 129, 130, 131, 134, 147, 148, 157, 159, 165, 166, 173, 174, 175 }
293 18 360 60 0 { 1, 2, 3, 9, 11, 18, 19, 37, 41, 49, 66, 69, 129, 130, 131, 133, 135, 146, 147, 148, 155, 156, 159, 165, 167, 173, 174, 175, 179 }
294 103680 3528 0 0 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 17, 18, 19, 21, 25, 129, 130, 131, 132, 133, 134, 135, 143, 144, 145, 146, 147, 148 }
295 2 1064 38 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 19, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 156, 158, 165, 166, 173 }
296 2 1056 36 0 { 1, 2, 3, 4, 5, 6, 9, 11, 13, 17, 19, 21, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 146, 147, 148, 155, 158, 167, 173 }
297 2 1056 36 0 { 1, 2, 3, 4, 5, 6, 9, 17, 21, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 147, 148, 155, 157, 158, 165, 166, 167, 173 }
298 2 1768 16 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 17, 18, 23, 26, 129, 130, 131, 132, 133, 134, 135, 138, 143, 144, 145, 147, 148 }
299 8 1776 18 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 14, 17, 18, 20, 21, 23, 26, 129, 130, 131, 132, 133, 134, 135, 138, 143, 144, 145, 147, 148 }
300 2 928 40 0 { 1, 2, 3, 4, 5, 6, 9, 10, 11, 17, 19, 21, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 158, 165, 173 }
301 4 928 40 0 { 1, 2, 3, 4, 5, 6, 9, 11, 17, 19, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 146, 147, 148, 155, 156, 158, 165, 167, 173 }
302 4 920 38 0 { 1, 2, 3, 4, 5, 6, 9, 13, 17, 19, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 146, 147, 148, 155, 156, 158, 166, 167, 173 }
303 8 936 42 0 { 1, 2, 3, 4, 5, 6, 9, 11, 13, 17, 19, 21, 34, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 148, 155, 158, 167, 173 }
304 1152 2112 13 0 { 1, 2, 3, 4, 5, 6, 9, 17, 18, 34, 41, 65, 66, 129, 130, 131, 132, 133, 143, 145, 146, 148, 155, 156, 157, 165, 166, 167, 173 }
305 4 1088 35 0 { 1, 2, 3, 4, 5, 6, 9, 12, 14, 17, 36, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 149, 150, 155, 156, 157, 160, 169, 173 }
306 12 1104 39 0 { 1, 2, 3, 4, 5, 8, 9, 12, 14, 17, 34, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 146, 150, 155, 156, 157, 160, 169, 176 }
307 24 1096 37 0 { 1, 2, 3, 4, 5, 7, 9, 10, 13, 16, 34, 35, 37, 38, 41, 43, 129, 130, 131, 132, 133, 139, 142, 155, 157, 158, 159, 160, 161 }
308 16 1096 37 0 { 1, 2, 3, 4, 5, 7, 9, 11, 13, 14, 16, 34, 37, 39, 41, 43, 129, 130, 131, 132, 133, 142, 155, 156, 157, 158, 159, 160, 161 }
309 4 1104 35 0 { 1, 2, 3, 4, 5, 6, 9, 12, 17, 20, 22, 36, 38, 42, 66, 129, 130, 131, 132, 133, 137, 143, 149, 150, 155, 160, 165, 169, 173 }
310 12 1112 37 0 { 1, 2, 3, 4, 5, 6, 9, 17, 20, 22, 36, 38, 42, 65, 66, 129, 130, 131, 132, 133, 143, 149, 150, 155, 160, 165, 166, 169, 173 }
311 2 1104 35 0 { 1, 2, 3, 4, 5, 6, 9, 12, 14, 17, 36, 42, 50, 65, 66, 129, 130, 131, 132, 133, 145, 149, 150, 155, 156, 157, 160, 169, 173 }
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312 8 1096 33 0 { 1, 2, 3, 4, 5, 6, 8, 9, 12, 17, 22, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 149, 150, 155, 157, 160, 165, 169 }
313 4 512 55 0 { 1, 2, 3, 5, 18, 19, 23, 24, 35, 36, 37, 40, 49, 50, 51, 53, 129, 130, 131, 132, 133, 139, 141, 144, 166, 167, 168, 169, 170 }
314 2 512 55 0 { 1, 2, 3, 5, 19, 22, 23, 24, 36, 37, 39, 40, 49, 50, 51, 53, 129, 130, 131, 132, 133, 135, 141, 144, 165, 166, 167, 168, 170 }
315 4 528 59 0 { 1, 2, 3, 5, 20, 22, 23, 24, 36, 38, 39, 40, 49, 50, 51, 53, 129, 130, 131, 132, 133, 135, 141, 144, 165, 166, 167, 168, 170 }
316 8 520 57 0 { 1, 2, 3, 5, 20, 22, 23, 24, 36, 38, 39, 40, 49, 50, 51, 53, 129, 130, 131, 132, 133, 135, 138, 139, 141, 144, 167, 168, 170 }
317 16 552 65 0 { 1, 2, 3, 5, 6, 19, 20, 21, 23, 24, 35, 39, 40, 49, 50, 53, 129, 130, 131, 132, 133, 141, 142, 165, 166, 167, 168, 169, 170 }
318 4 520 57 0 { 1, 2, 3, 5, 11, 15, 20, 27, 35, 36, 39, 67, 68, 129, 130, 131, 132, 138, 143, 144, 151, 156, 160, 162, 167, 171, 174, 176, 184 }
319 48 520 57 0 { 1, 2, 3, 4, 7, 12, 16, 18, 28, 34, 44, 52, 66, 68, 72, 129, 130, 131, 137, 145, 148, 150, 156, 159, 161, 170, 171, 175, 178 }
320 8 944 40 0 { 1, 2, 3, 4, 5, 6, 9, 12, 14, 17, 20, 22, 34, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 150, 155, 160, 169, 173 }
321 1 944 40 0 { 1, 2, 3, 4, 5, 6, 9, 12, 17, 20, 22, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 149, 150, 155, 160, 165, 169, 173 }
322 4 936 38 0 { 1, 2, 3, 4, 5, 6, 9, 12, 17, 22, 36, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 149, 150, 155, 157, 160, 165, 169, 173 }
323 8 960 44 0 { 1, 2, 3, 4, 5, 8, 9, 10, 17, 20, 22, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 149, 150, 155, 160, 165, 166, 176 }
324 8 960 44 0 { 1, 2, 3, 4, 5, 8, 9, 10, 14, 17, 22, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 149, 150, 155, 157, 160, 166, 176 }
325 4 952 42 0 { 1, 2, 3, 4, 5, 9, 12, 14, 17, 20, 34, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 146, 150, 155, 156, 160, 169, 173, 176 }
326 4 944 40 0 { 1, 2, 3, 4, 5, 9, 12, 14, 17, 22, 34, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 146, 150, 155, 157, 160, 169, 173, 176 }
327 4 944 40 0 { 1, 2, 3, 4, 5, 7, 9, 13, 16, 34, 35, 37, 38, 39, 41, 43, 129, 130, 131, 132, 133, 137, 139, 142, 155, 157, 159, 160, 161 }
328 4 944 40 0 { 1, 2, 3, 4, 5, 7, 9, 14, 16, 34, 36, 37, 38, 39, 41, 43, 129, 130, 131, 132, 133, 135, 139, 142, 155, 157, 158, 159, 161 }
329 4 952 42 0 { 1, 2, 3, 4, 5, 7, 9, 13, 14, 16, 34, 37, 38, 39, 41, 43, 129, 130, 131, 132, 133, 139, 142, 155, 157, 158, 159, 160, 161 }
330 6 768 46 0 { 1, 2, 3, 4, 5, 7, 9, 13, 18, 41, 49, 66, 129, 130, 131, 132, 133, 135, 145, 146, 147, 148, 155, 156, 157, 159, 166, 167, 174 }
331 2 760 44 0 { 1, 2, 3, 4, 5, 7, 9, 18, 21, 41, 49, 66, 129, 130, 131, 132, 133, 135, 145, 146, 147, 148, 155, 157, 159, 165, 166, 167, 174 }
332 4 768 46 0 { 1, 2, 3, 4, 5, 7, 9, 13, 18, 19, 21, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 147, 148, 155, 159, 166, 167, 174 }
333 1 768 46 0 { 1, 2, 3, 4, 5, 7, 9, 13, 18, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 146, 147, 148, 155, 156, 157, 159, 166, 167, 174 }
334 2 776 48 0 { 1, 2, 3, 4, 5, 7, 9, 10, 18, 21, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 157, 159, 165, 166, 174 }
335 4 776 48 0 { 1, 2, 3, 4, 5, 7, 9, 13, 18, 21, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 157, 159, 166, 167, 174 }
336 4 784 50 0 { 1, 2, 3, 5, 7, 9, 10, 19, 21, 34, 35, 49, 65, 66, 129, 130, 131, 132, 133, 144, 145, 148, 155, 158, 159, 165, 166, 174, 179 }
337 12 760 44 0 { 1, 2, 3, 5, 7, 9, 10, 19, 25, 37, 41, 66, 129, 130, 131, 132, 133, 135, 143, 146, 147, 148, 156, 158, 159, 165, 166, 174, 179 }
338 24 1960 16 0 { 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 18, 20, 22, 23, 26, 129, 130, 131, 132, 133, 134, 137, 138, 139, 143, 144, 148, 149 }
339 48 976 43 0 { 1, 2, 3, 5, 9, 12, 14, 17, 20, 22, 36, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 149, 150, 155, 160, 169, 173, 176, 181 }
340 144 632 60 0 { 1, 2, 3, 5, 11, 13, 25, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 146, 147, 148, 156, 157, 158, 159, 167, 168, 173, 174, 179 }
341 72 600 52 0 { 1, 2, 3, 4, 9, 10, 18, 21, 25, 33, 35, 41, 49, 67, 69, 129, 130, 131, 134, 135, 145, 147, 157, 159, 165, 166, 173, 174, 175 }
342 360 288 65 0 { 1, 2, 3, 5, 10, 11, 18, 21, 25, 35, 37, 41, 49, 65, 66, 67, 69, 129, 130, 131, 147, 148, 157, 159, 165, 168, 173, 174, 179 }
343 40320 448 105 0 { 1, 2, 3, 4, 13, 21, 25, 37, 41, 49, 65, 66, 67, 129, 130, 131, 132, 146, 147, 148, 157, 158, 159, 166, 167, 168, 173, 174, 175 }
344 384 320 73 0 { 1, 2, 3, 4, 9, 13, 18, 21, 25, 35, 37, 41, 49, 65, 66, 67, 69, 129, 130, 131, 147, 148, 157, 159, 166, 167, 173, 174, 175 }
345 96 288 65 0 { 1, 2, 3, 11, 13, 18, 21, 35, 41, 49, 65, 66, 69, 129, 130, 131, 133, 145, 147, 148, 155, 157, 159, 167, 168, 173, 174, 175, 179 }
346 64 864 44 0 { 1, 2, 3, 5, 7, 9, 11, 14, 15, 33, 36, 37, 39, 41, 43, 45, 129, 130, 131, 132, 133, 137, 138, 139, 140, 142, 159, 160, 161 }
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347 72 1792 18 0 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 17, 18, 25, 35, 37, 129, 130, 131, 132, 133, 134, 135, 143, 144, 147, 148, 156, 157, 165, 166 }
348 8 1256 32 0 { 1, 2, 3, 4, 5, 6, 9, 11, 17, 18, 21, 35, 41, 66, 129, 130, 131, 132, 133, 135, 143, 145, 147, 148, 155, 157, 165, 167, 173 }
349 4 1240 28 0 { 1, 2, 3, 4, 5, 6, 9, 13, 17, 18, 19, 35, 41, 66, 129, 130, 131, 132, 133, 135, 143, 145, 147, 148, 155, 156, 166, 167, 173 }
350 4 1248 30 0 { 1, 2, 3, 4, 5, 6, 9, 10, 11, 17, 18, 19, 21, 35, 37, 41, 65, 66, 129, 130, 131, 132, 133, 143, 147, 148, 155, 165, 173 }
351 72 1600 30 0 { 1, 2, 3, 4, 5, 6, 9, 17, 34, 35, 37, 41, 49, 65, 129, 130, 131, 132, 133, 134, 148, 155, 156, 157, 158, 165, 166, 167, 173 }
352 12 728 52 0 { 1, 2, 3, 5, 7, 9, 18, 19, 21, 25, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 159, 165, 166, 167, 174, 179 }
353 2 640 50 0 { 1, 2, 3, 5, 7, 9, 12, 14, 15, 16, 36, 38, 39, 41, 43, 45, 129, 130, 131, 132, 133, 135, 138, 139, 142, 155, 158, 159, 161 }
354 4 640 50 0 { 1, 2, 3, 5, 7, 9, 12, 15, 16, 35, 36, 38, 39, 41, 43, 45, 129, 130, 131, 132, 133, 135, 139, 142, 155, 157, 158, 159, 161 }
355 24 680 60 0 { 1, 2, 3, 5, 7, 9, 10, 15, 16, 35, 36, 37, 38, 41, 43, 45, 129, 130, 131, 132, 133, 138, 139, 142, 155, 158, 159, 160, 161 }
356 2 656 54 0 { 1, 2, 3, 5, 7, 9, 10, 15, 16, 35, 36, 37, 38, 41, 43, 45, 129, 130, 131, 132, 133, 137, 138, 139, 140, 142, 159, 160, 161 }
357 8 648 52 0 { 1, 2, 3, 5, 7, 18, 20, 23, 24, 35, 36, 38, 40, 49, 51, 53, 129, 130, 131, 132, 133, 135, 138, 141, 144, 165, 167, 168, 170 }
358 4 640 50 0 { 1, 2, 3, 5, 7, 20, 24, 34, 35, 36, 38, 39, 40, 49, 51, 53, 129, 130, 131, 132, 133, 141, 144, 165, 166, 167, 168, 169, 170 }
359 720 848 60 0 { 1, 2, 3, 4, 5, 6, 9, 10, 19, 21, 25, 35, 37, 41, 65, 66, 129, 130, 131, 132, 133, 143, 147, 148, 158, 159, 165, 166, 173 }
360 2 1048 36 0 { 1, 2, 3, 4, 5, 6, 9, 17, 19, 35, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 147, 148, 155, 156, 158, 165, 166, 167, 173 }
361 2 1056 38 0 { 1, 2, 3, 4, 5, 6, 9, 17, 19, 21, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 158, 165, 166, 167, 173 }
362 12 1072 42 0 { 1, 2, 3, 4, 5, 7, 9, 17, 19, 34, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 146, 148, 155, 156, 158, 165, 166, 167, 174 }
363 2 1056 38 0 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 34, 37, 41, 49, 66, 129, 130, 131, 132, 133, 135, 146, 148, 155, 156, 157, 158, 166, 167, 174 }
364 8 1056 38 0 { 1, 2, 3, 4, 5, 7, 9, 13, 34, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 146, 148, 155, 156, 157, 158, 159, 166, 167, 174 }
365 4 1232 30 0 { 1, 2, 3, 4, 5, 6, 9, 17, 25, 35, 37, 41, 129, 130, 131, 132, 133, 134, 135, 143, 147, 148, 156, 157, 158, 165, 166, 167, 173 }
366 8 1240 32 0 { 1, 2, 3, 4, 5, 6, 9, 17, 19, 21, 25, 34, 35, 37, 41, 65, 129, 130, 131, 132, 133, 134, 143, 148, 158, 165, 166, 167, 173 }
367 4 480 54 0 { 1, 2, 3, 5, 7, 10, 13, 25, 35, 49, 65, 66, 129, 130, 131, 132, 133, 144, 145, 147, 148, 156, 157, 158, 159, 166, 168, 174, 179 }
368 8 496 58 0 { 1, 2, 3, 5, 7, 10, 25, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 156, 157, 158, 159, 165, 166, 168, 174, 179 }
369 4 496 58 0 { 1, 2, 3, 5, 11, 13, 18, 19, 25, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 156, 159, 167, 168, 173, 174, 179 }
370 2 488 56 0 { 1, 2, 3, 5, 10, 11, 21, 25, 35, 49, 65, 66, 129, 130, 131, 132, 133, 144, 145, 147, 148, 157, 158, 159, 165, 168, 173, 174, 179 }
371 2 496 58 0 { 1, 2, 3, 5, 10, 19, 25, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 156, 158, 159, 165, 166, 168, 173, 174, 179 }
372 4 512 62 0 { 1, 2, 3, 4, 5, 13, 25, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 156, 157, 158, 159, 166, 167, 168, 173, 174 }
373 24 544 70 0 { 1, 2, 3, 5, 6, 11, 19, 25, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 156, 158, 159, 165, 167, 168, 173, 179 }
374 48 496 62 0 { 1, 2, 3, 5, 11, 21, 25, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 147, 148, 157, 158, 159, 165, 167, 168, 173, 174, 179 }
375 4 1008 42 0 { 1, 2, 3, 4, 5, 9, 13, 17, 21, 34, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 148, 155, 157, 158, 166, 167, 173, 174 }
376 2 1592 20 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 17, 18, 19, 23, 26, 129, 130, 131, 132, 133, 134, 137, 138, 139, 143, 144, 148, 149 }
377 12 1600 22 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 17, 18, 23, 26, 129, 130, 131, 132, 133, 134, 138, 139, 143, 144, 147, 148, 149 }
378 16 1600 22 0 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 17, 19, 25, 34, 35, 37, 65, 129, 130, 131, 132, 133, 134, 143, 144, 148, 156, 158, 165, 166 }
379 4 1104 35 0 { 1, 2, 3, 4, 5, 6, 9, 12, 17, 18, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 146, 149, 150, 155, 156, 157, 165, 169, 173 }
380 8 1104 35 0 { 1, 2, 3, 4, 5, 6, 9, 14, 17, 20, 34, 42, 50, 65, 66, 129, 130, 131, 132, 133, 145, 146, 150, 155, 156, 160, 166, 169, 173 }
381 8 1288 28 0 { 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 14, 16, 34, 36, 39, 41, 129, 130, 131, 132, 133, 134, 135, 139, 142, 155, 157, 158, 159 }
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382 192 1568 24 0 { 1, 2, 3, 4, 5, 6, 9, 17, 34, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 146, 148, 155, 156, 157, 158, 165, 166, 167, 173 }
383 4 1064 37 0 { 1, 2, 3, 4, 5, 9, 12, 14, 17, 20, 34, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 150, 155, 156, 160, 169, 173, 176 }
384 4 1072 39 0 { 1, 2, 3, 4, 5, 9, 14, 17, 22, 34, 36, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 150, 155, 157, 160, 166, 169, 173, 176 }
385 24 1160 40 0 { 1, 2, 3, 5, 8, 9, 12, 17, 20, 22, 36, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 149, 150, 155, 160, 165, 169, 176, 181 }
386 12 1784 17 0 { 1, 2, 3, 4, 5, 6, 9, 10, 11, 17, 34, 49, 65, 129, 130, 131, 132, 133, 134, 144, 145, 146, 148, 155, 156, 157, 158, 165, 173 }
387 4 768 48 0 { 1, 2, 3, 4, 5, 7, 9, 13, 18, 21, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 146, 147, 148, 155, 157, 159, 166, 167, 174 }
388 2 760 46 0 { 1, 2, 3, 4, 5, 7, 9, 18, 21, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 146, 147, 148, 155, 157, 159, 165, 166, 167, 174 }
389 144 816 60 0 { 1, 2, 3, 5, 7, 9, 10, 19, 21, 35, 37, 49, 65, 66, 129, 130, 131, 132, 133, 144, 147, 148, 155, 158, 159, 165, 166, 174, 179 }
390 12 752 44 0 { 1, 2, 3, 5, 7, 9, 11, 18, 19, 21, 34, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 148, 155, 159, 165, 167, 174, 179 }
391 60 768 50 0 { 1, 2, 3, 4, 5, 10, 13, 21, 25, 49, 65, 66, 129, 130, 131, 132, 133, 144, 145, 146, 147, 148, 157, 158, 159, 166, 168, 173, 174 }
392 4 1824 15 0 { 1, 2, 3, 4, 5, 6, 8, 9, 10, 17, 20, 34, 36, 42, 66, 129, 130, 131, 132, 133, 137, 143, 145, 150, 155, 156, 160, 165, 166 }
393 20 1008 40 0 { 1, 2, 3, 5, 7, 9, 34, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 148, 155, 156, 157, 158, 159, 165, 166, 167, 174, 179 }
394 6 1568 24 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 25, 34, 35, 37, 65, 129, 130, 131, 132, 133, 134, 143, 144, 148, 156, 157, 158, 165, 166, 173 }
395 2 1560 22 0 { 1, 2, 3, 4, 5, 6, 9, 11, 17, 21, 34, 35, 37, 41, 129, 130, 131, 132, 133, 134, 135, 143, 148, 155, 157, 158, 165, 167, 173 }
396 144 1128 45 0 { 1, 2, 3, 4, 5, 8, 9, 12, 17, 20, 34, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 146, 150, 155, 156, 160, 165, 169, 176 }
397 16 1096 37 0 { 1, 2, 3, 4, 5, 8, 9, 14, 17, 22, 34, 38, 42, 50, 66, 129, 130, 131, 132, 133, 137, 146, 150, 155, 157, 160, 166, 169, 176 }
398 8 1448 23 0 { 1, 2, 3, 4, 5, 6, 8, 9, 14, 17, 20, 34, 36, 38, 42, 65, 66, 129, 130, 131, 132, 133, 143, 150, 155, 156, 160, 166, 169 }
399 2 1456 25 0 { 1, 2, 3, 4, 5, 6, 9, 17, 20, 22, 33, 36, 38, 42, 66, 129, 130, 131, 132, 133, 137, 143, 149, 155, 160, 165, 166, 169, 173 }
400 2 1456 25 0 { 1, 2, 3, 4, 5, 6, 9, 12, 17, 22, 33, 36, 38, 42, 66, 129, 130, 131, 132, 133, 137, 143, 149, 155, 157, 160, 165, 169, 173 }
401 2 1448 23 0 { 1, 2, 3, 4, 5, 6, 9, 17, 20, 34, 36, 42, 66, 129, 130, 131, 132, 133, 137, 143, 145, 150, 155, 156, 160, 165, 166, 169, 173 }
402 128 2136 8 112 { 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 17, 18, 22, 26, 129, 130, 131, 132, 133, 134, 135, 143, 144, 145, 146, 147, 148, 157, 165 }
403 192 2344 6 0 { 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 17, 18, 20, 22, 26, 129, 130, 131, 132, 133, 134, 135, 143, 144, 145, 146, 147, 148 }
404 48 1800 17 0 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 17, 34, 35, 49, 65, 129, 130, 131, 132, 133, 134, 144, 145, 148, 155, 156, 157, 158, 165 }
405 12 832 46 0 { 1, 2, 3, 5, 7, 9, 18, 19, 21, 25, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 146, 147, 148, 159, 165, 166, 167, 174, 179 }
406 24 848 50 0 { 1, 2, 3, 5, 7, 9, 11, 19, 21, 25, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 158, 159, 165, 167, 174, 179 }
407 384 2696 4 0 { 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 17, 18, 19, 21, 26, 129, 130, 131, 132, 133, 134, 135, 143, 144, 145, 146, 147, 148 }
408 2 752 48 0 { 1, 2, 3, 5, 7, 9, 10, 21, 34, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 148, 155, 157, 158, 159, 165, 166, 174, 179 }
409 4 768 52 0 { 1, 2, 3, 5, 7, 9, 10, 19, 21, 34, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 148, 155, 158, 159, 165, 166, 174, 179 }
410 24 752 48 0 { 1, 2, 3, 5, 7, 9, 10, 18, 19, 21, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 146, 147, 148, 155, 159, 165, 166, 174, 179 }
411 2 744 46 0 { 1, 2, 3, 5, 7, 9, 11, 13, 19, 21, 34, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 148, 155, 158, 159, 167, 174, 179 }
412 2 1264 30 0 { 1, 2, 3, 4, 5, 6, 9, 12, 17, 22, 34, 36, 42, 65, 66, 129, 130, 131, 132, 133, 143, 145, 150, 155, 157, 160, 165, 169, 173 }
413 2 1264 30 0 { 1, 2, 3, 4, 5, 6, 9, 17, 20, 22, 34, 36, 42, 65, 66, 129, 130, 131, 132, 133, 143, 145, 150, 155, 160, 165, 166, 169, 173 }
414 4 1264 30 0 { 1, 2, 3, 4, 5, 6, 8, 9, 12, 17, 18, 20, 22, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 149, 150, 155, 165, 169 }
415 8 1272 32 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 18, 20, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 149, 150, 155, 156, 165, 166, 173 }
416 4 1752 18 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 17, 18, 20, 23, 26, 129, 130, 131, 132, 133, 134, 137, 138, 139, 143, 144, 148, 149 }
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417 8 800 45 0 { 1, 2, 3, 4, 5, 9, 10, 14, 17, 20, 22, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 149, 150, 155, 160, 166, 173, 176 }
418 16 800 45 0 { 1, 2, 3, 4, 5, 9, 12, 14, 17, 20, 22, 34, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 146, 150, 155, 160, 169, 173, 176 }
419 32 800 45 0 { 1, 2, 3, 5, 7, 18, 19, 20, 22, 24, 34, 36, 40, 49, 51, 53, 129, 130, 131, 132, 133, 138, 141, 144, 165, 167, 168, 169, 170 }
420 192 832 53 0 { 1, 2, 3, 5, 6, 18, 19, 20, 23, 24, 35, 36, 40, 49, 50, 53, 129, 130, 131, 132, 133, 138, 141, 144, 165, 167, 168, 169, 170 }
421 12 632 52 0 { 1, 2, 3, 5, 19, 20, 21, 23, 33, 35, 39, 40, 49, 50, 51, 53, 129, 130, 131, 132, 133, 137, 138, 139, 141, 144, 168, 169, 170 }
422 72 664 60 0 { 1, 2, 3, 4, 5, 19, 20, 21, 22, 23, 33, 39, 40, 49, 50, 51, 129, 130, 131, 132, 133, 138, 139, 141, 142, 167, 168, 169, 170 }
423 4 1392 26 0 { 1, 2, 3, 4, 5, 6, 9, 11, 13, 17, 18, 19, 21, 35, 41, 66, 129, 130, 131, 132, 133, 135, 143, 145, 147, 148, 155, 167, 173 }
424 8 1400 28 0 { 1, 2, 3, 4, 5, 6, 9, 10, 17, 18, 19, 35, 37, 41, 65, 66, 129, 130, 131, 132, 133, 143, 147, 148, 155, 156, 165, 166, 173 }
425 2 1216 32 0 { 1, 2, 3, 4, 5, 6, 9, 10, 11, 17, 35, 37, 41, 49, 65, 66, 129, 130, 131, 132, 133, 147, 148, 155, 156, 157, 158, 165, 173 }
426 16 1216 32 0 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 17, 19, 21, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 146, 147, 148, 155, 158, 165, 166 }
427 4 1216 32 0 { 1, 2, 3, 4, 5, 6, 7, 9, 17, 19, 21, 35, 41, 49, 65, 66, 129, 130, 131, 132, 133, 145, 147, 148, 155, 158, 165, 166, 167 }
428 12 1760 16 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 17, 18, 23, 26, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 143, 144, 148 }
430 16 1520 28 0 { 1, 2, 3, 4, 5, 6, 9, 17, 34, 35, 41, 49, 65, 129, 130, 131, 132, 133, 134, 145, 148, 155, 156, 157, 158, 165, 166, 167, 173 }
431 2 904 42 0 { 1, 2, 3, 4, 5, 9, 12, 14, 17, 22, 34, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 150, 155, 157, 160, 169, 173, 176 }
432 6 920 46 0 { 1, 2, 3, 4, 5, 9, 14, 17, 22, 36, 38, 42, 50, 65, 66, 129, 130, 131, 132, 133, 149, 150, 155, 157, 160, 166, 169, 173, 176 }
433 120 1888 20 0 { 1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 19, 21, 23, 26, 129, 130, 131, 132, 133, 134, 135, 138, 139, 143, 144, 147, 148 }


	1. Introduction
	2. Background: the Weyl group and the E8 root polytope
	3. Facets of the E8 root polytope and cliques of size at most three
	4. Monochromatic cliques
	5. Maximal cliques
	5.1. Maximal cliques in G(-2),G(-1),G(0),G(1),G(-2,-1),G(-2,1), and G(-2,-1,0,1)
	5.2. Cliques in G(0) and G(-2,0)
	5.3. Cliques in G(-1,0)
	5.4. Maximal cliques of other colors

	6. Proof of main theorems
	References
	Appendices
	Appendices
	A. Table results Section 5
	B. Table cliques of size 29 in G(0,1)



