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Surface: smooth, projective, geometrically integral scheme
of finite type over a field, of dimension 2.

K3 surface : a surface X with dimH1(X ,OX ) = 0
and trivial canonical sheaf ωX

∼= OX .

Examples:

I A smooth quartic surface in P3.

I Smooth double cover of P2, ramified over a smooth sextic.

I Kummer surface: minimal nonsingular model of A/[−1],
with A an abelian surface over a field
of characteristic not equal to 2.



Geometry. K3 surfaces (like abelian surfaces) are between
Fano (del Pezzo) surfaces, with ω−1

X ample, and
surfaces of general type, with ωX ample.

Arithmetic.
Theorem (Segre, Manin, Kollár).
Let X/k be a del Pezzo surface with ω−1

X very ample.
Then X is unirational if and only if X (k) 6= ∅.

Conjecture (Colliot-Thélène).
Let X be a del Pezzo surface over a global field k .
If X (k) 6= ∅, then X (k) is Zariski dense in X .

Conjecture (Bombieri–Lang).
Let X be a surface of general type over a finitely generated field k .
Then X (k) is not Zariski dense. If char k = 0, then Xk contains
only finitely many curves of genus at most 1, and X contains only
finitely many k-rational points outside those curves.



Let X be a K3 surface over a number field k.

1. Is X (kv ) 6= ∅ for every completion kv of k?

2. Is X (k) 6= ∅? No

Yes}Failure of the
Hasse principle

3. Is #X (k) =∞ ?

Yes

No
}Possible?

(Open problem 1)4. Is X (k) Zariski dense in X?

5. Is X (k) dense in X (k∞)?

6. How does the number of rational points of height
bounded by B grow as B →∞?

7. Is X (k) dense in X (Ak), with Ak the adeles of k? Yes

Weak Approximation holds
Possible?

(Open problem 2)



Example. Let X ⊂ P3 be given by

x4 + 2y4 = z4 + 4w4.

Question (Swinnerton-Dyer, 2002).
Does X have more than two rational points?

Answer (Elsenhans–Jahnel, 2004).

14848014 + 2 · 12031204 = 11694074 + 4 · 11575204.

Open problem 3.
Does X have more than ten rational points?



Theorem (Noam Elkies, 1988).

958004 + 2175194 + 4145604 = 4224814

The set of rational points on the surface

P3 ⊃ X : x4 + y4 + z4 = t4.

is Zariski dense.



Theorem (Logan, McKinnon, vL, 2010).
Take a, b, c , d ∈ Q∗ with abcd ∈ (Q∗)2. Let X ⊂ P3 be given by

ax4 + by4 + cz4 + dw4.

If P ∈ X (Q) has no zero coordinates and P does not lie on one of
the 48 lines (no two terms sum to 0), then X (Q) is Zariski dense.

Open problem 4. Can the conditions on P be left out?

Conjecture (vL). Every t ∈ Q can be written as

t =
x4 − y4

z4 − w4
.



Definition. Let X be any variety over any field k . Then rational
points are potentially dense on X if there exists a finite field
extension ` of k such that X (`) is Zariski dense in X`.

Conjecture (Campana, 2004). Let X be a K3 surface over a
number field k . Then rational points are potentially dense on X .



Let X be a K3 surface over C.

Facts.
Hodge diagram: 1 20 1

0 0
1

0 0
1

The exponential sequence

0→ Z→ OX (C) → O∗X (C) → 1

of sheaves on X (C) (together with Serre’s GAGA) yields

U3 ⊕ E8(−1)2 =: Λ

even, unimodular

H
1(X ,OX )→ H

1(X ,O∗X )→ H
2(X (C),Z)→ H

2(X ,OX )

0 PicX

∼ = ∼ =

H2(X (C),C)

H1,1(X (C)) ∩H2(X (C),Z)



Definition. A polarised K3 surface is a K3 surface X together
with a primitive ample line bundle H. Its degree is H2 = 2d .
The Picard number of X is ρ(X ) = rkPicX ∈ {1, . . . , 20}.

Facts over C. For each d ≥ 1, there is a coarse moduli space Md

of polarised complex K3 surfaces of degree 2d . It is irreducible,
quasi-projective, and dimMd = 19.

There is a countable union of divisors in Md , such that for every
polarised K3 surface (X ,H) in the complement we have ρ(X ) = 1.



Theorem (Bogomolov, Tschinkel, 2000). There is a set S of eight
lattices of rank 3 or 4, such that rational points are potentially
dense on every K3 surface X over a number field satisfying

(a) ρ(X ) = 2 and X does not contain a (−2)-curve, or

(b) ρ(X ) ≥ 3 and PicX not isomorphic to a lattices in S.

Proof (sketch). Such surfaces have an infinite automorphism
group or an elliptic fibration. We find a rational curve and move it
around using either one. �

Open problem 5a. Is there a K3 surface X over a number field
with ρ(X ) = 1 on which rational points are potentially dense?

Open problem 5b. Is there a K3 surface X over a number field k
with ρ(X ) = 1 for which X (k) is Zariski dense?

Open problem 2. Is there a K3 surface X over a number field k
with X (k) neither empty nor Zariski dense?



Question.
Is there a K3 surface X over a number field with ρ(X ) = 1?

Ineffective answers.
Terasoma (1985): Yes, for degrees 4, 6, and 8 over Q.
Ellenberg (2004): Yes, for any degree 2d over some number field.

Theorem (vL,2004) The K3 surface X in P3(x , y , z ,w) given by

wf = 3pq − 2zg

with f ∈ Z[x , y , z ,w ] and g , p, q ∈ Z[x , y , z ] equal to

g = xy 2 + xyz − xz2 − yz2 + z3, f = x3 − x2y − x2z + x2w − xy 2 − xyz+

p = z2 + xy + yz , 2xyw + xz2 + 2xzw + y 3 + y 2z − y 2w+

q = z2 + xy , yz2 + yzw − yw 2 + z2w + zw 2 + 2w 3,

has geometric Picard number ρ(X ) = 1 and infinitely many
rational points.



Proof. Take p ∈ {2, 3}, and write kp for the residue field of Zp.
The equation wf = 3pq − 2zg defines a scheme Xp in P3 over Zp.
The morphism Xp → SpecZp is proper and smooth.
Write Xp = Xp ×Zp kp for the reduction. By properness, we obtain

PicX
∼=←− PicXp → PicXp.

The composition PicX → PicXp respects intersection numbers, so
it is injective (numerical and linear equivalence agree on K3’s).

The direct limit of the analog over all finite extensions of Q yields

PicX ↪→ PicX p

with X = XQ and X p = Xkp
.



For a prime ` 6= p and n > 0 an integer, the Kummer sequence

1→ µ`n → Gm
`n−→ Gm → 1

is exact on the étale site of X p and yields

PicX p
`n−→ PicX p → H

2
ét(X p, µ`n),

so an injection

PicX p/`
n PicX p ↪→ H

2
ét(X p, µ`n).

Because PicX p is finitely generated and free,
the inverse limit gives a Galois invariant injection

PicX p ↪→ lim
←−
n

H
2
ét(X p, µ`n) =: H

2
ét(X ,Z`(1)).



PicX ↪→ PicX p ↪→ H
2
ét(X ,Z`(1))

So ρ(X ) is bounded from above by the number of eigenvalues λ of
Frobenius acting on H2

ét(X ,Z`(1)) for which λ is a root of unity.

The Lefschetz formula

#X (Fpn) =
4∑

i=0

(−1)i Tr
(
Frobn on H

i
ét(X p,Q`)

)
yields traces of powers of Frobenius on Hi

ét(X p,Q`) (without twist).

Expressing the elementary symmetric polynomials in the
eigenvalues in terms of the power sums (the traces), gives the
characteristic polynomial of Frobenius acting on Hi

ét(X p,Q`).

Scaling its roots by p gives the eigenvalues of Frobenius acting on

Hi
ét(X p,Z`(1)).



The nonreal eigenvalues of Frobenius on Hi
ét(X p,Z`(1)) come in

conjugate pairs, so an even number of those is not a root of unity.

The second Betti number b2 = 22 is even, so this leaves an even
number of eigenvalues that are roots of unity.

For p ∈ {2, 3}, we find ρ(X p) = 2 . If ρ(X ) = 2, then
PicX ⊂ PicX p has finite index, so in Q∗/(Q∗)2 we have

disc PicX 2 = disc PicX = disc PicX 3.

The reduction of wf = 3pq − 2zg modulo 2 is wf = pq, so X2

contains the conics C1,C2 given by w = p = 0 and w = q = 0.
The sublattice 〈C1,C2〉 ⊂ PicX 2 has finite index and discriminant
−12, so disc PicX 2 = −12 ∈ Q∗/(Q∗)2.

The reduction modulo 3 is wf = zg , so X3 contains the line L
given by w = z = 0. The sublattice 〈L,H〉 ⊂ PicX 3 has
discriminant −9, so disc PicX 3 = −9 ∈ Q∗/(Q∗)2.

Contradiction, so ρ(X ) = 1. �



Remarks for X a K3 surface over a number field, p a prime of
good reduction, and Xp the reduction.

1. This method works as soon as ρ = ρ(X ) is odd and there is a
pair S of two primes p with ρ(X p) = ρ+ 1, and the
discriminants of PicX p for p ∈ S are different in Q∗/(Q∗)2.

2. (Kloosterman, 2005) The Artin-Tate formula (known in odd
characteristic, by Nijgaard, Ogus, Maulik, Madapusi Pera,
Charles) allows us to compute the discriminants up to squares
without knowing explicit generators of a finite-index subgroup
of PicX p.

3. (Elsenhans–Jahnel) Various tricks make the method more
powerful. Very useful result is that, under mild conditions, the
reduction map PicX ↪→ PicX p has torsion-free cokernel.

Question.
Does there always exist a prime p with ρ(X p) ≤ ρ(X ) + 1?



Answer. No!

Let X be a K3 surface over a number field k ⊂ C. Let T be the
orthogonal complement of PicXC in H2(X (C),Q). The algebra
E = EndH(T ) of endomorphisms respecting the Hodge structure
is either a totally real field or a CM field (Zarhin, 1983).

Theorem (Charles, 2011).

1. If E is a CM field or dimE (T ) is even, then there are infinitely
many primes p of good reduction with ρ(X p) = ρ(X ).

2. Otherwise, for any odd prime p of good reduction, we have
ρ(X p) ≥ ρ(X ) + [E : Q]; equality holds for infinitely many p.

Corollary (Charles, 2011). There is an algorithm (i.e., a Turing
machine) that, given a projective K3 surface X over a number
field, either returns ρ(X ) or does not terminate. If X × X satisfies
the Hodge conjecture for codimension-2 cycles, then the algorithm
terminates on X .



There is also an algorithm that terminates unconditionally.

Theorem (Poonen, Testa, vL, 2012).
There is an algorithm that, given a K3 surface over a finitely
generated field k of characteristic not 2, computes PicX .

Proof sketch.
We can compute the Gal(k/k)-module Hi

ét(X ,Z/`nZ) for any
` 6= char k, and any i , n ≥ 0 (Madore–Orgogozo, 2013).

Use this to approximate Hi
ét(X ,Q`(1))Gal(k/k), which by Tate’s

conjecture equals ρ(X ). This yields an upper bound for ρ(X ).

To find a lower bound for ρ(X ), we simply search for divisors (for
example, by enumeration).

In order to compute not only the rank, but also the group PicX
itself, we use Hilbert schemes to compute the saturation of an
already known subgroup.



Batyrev–Manin conjectures

Let X be a variety over a number field k and h : X (k)→ R a
height function associated to an ample line bundle (not
logarithmic). For any bound B ∈ R and any open U ⊂ X we set

NU,h(B) = #{P ∈ U(k) : h(P) ≤ B}.

Conjecture (Batyrev–Manin, 1990).
Suppose X is a Fano variety over a number field k , and h the
height associated to an ample line bundle L with L⊗a ∼= ω−1

X for
some a > 0. Set b = rkPicX . Then there is an open subset
U ⊂ X and a constant c with

NU,h(B) ∼ cBa(logB)b−1.

This conjecture is proved in many cases for surfaces.
False in higher dimension, but no counterexamples to lower bound.

Question. What about K3 surfaces? Just take a = 0 ?



Conjecture (Batyrev–Manin, 1990).
Suppose X is a K3 surface over a number field k , and h the height
associated with an ample line bundle. Then for every ε > 0, there
is an open subset U ⊂ X such that

NU,h(B) ∼ O(Bε).

Remark. A rational curve of degree d gives contribution B2/d , so
we need to leave out those with d < 2ε−1.

Question. What about lower bounds for K3 surfaces?



S : x3 − 3x2y2 + 4x2yz − x2z2

+ x2z − xy2z − xyz2 + x

+ y3 + y2z2 + z3 = 0

ρ(S) = 1

logB

NU(B)

0 1 2 3 4 5
0

8

16

24

32

40

48

56

N ∼ 13.5 · logB



Suggestion by Swinnerton-Dyer
Define the height-zeta function

Z (U, s) =
∑

P∈U(k)

h(P)−s .

From

1

2πi

∫ c+i∞

c−i∞
x s

ds

s
=


1 if x > 1
1
2 if x = 1
0 if x < 1

(c > 0)

we get

NU(x) =
∑

P∈U(K)

1

2πi

∫ c+i∞

c−i∞

(
xh(P)−1

)s ds
s

=
1

2πi

∫ c+i∞

c−i∞
Z (U, s) x s

ds

s
(c >> 0).



Assuming Z (U, s) is nice, including analytic on <(s) > a− 2ε,
except for a pole of order b at a, we can write

NU(x) =
1

2πi

∫ c+i∞

c−i∞
Z (U, s) x s

ds

s
(c >> 0)

= ress=a

[
Z (U, s)s−1 exp(s log x)

]
+

1

2πi

∫ a−ε+i∞

a−ε−i∞
Z (U, s) x s

ds

s
.

The integral is smaller than the residue, the main term, which is

xap(log x)

for some polynomial p of degree

{
b − 1 if a 6= 0,
b if a = 0.

Question. For X a K3 surface: N(U,B) ∼ c(logB)rkPicX ?



Question. For X a K3 surface: N(U,B) ∼ c(logB)rkPicX ?

Could go wrong if

1. X admits an elliptic fibration (in particular, if rkPicX ≥ 5);

2. #Aut(X ) =∞.

In these cases, we may get even more rational points.



Conjecture (vL, based on an idea by Swinnerton-Dyer).
Suppose X is a K3 surface over a number field k with ρ(X ) = 1.
There is an open subset U ⊂ X and a constant c such that

NU(B) ∼ c logB

as B →∞. Moreover, if X (k) 6= ∅, then c 6= 0.

Conjecture.
Suppose X is a K3 surface over a number field k with ρ(X ) = b.
There is an open subset U ⊂ X and a constant c such that

NU(B) ≥ c(logB)b.

for B >> 0. Moreover, if X (k) 6= ∅, then c 6= 0.



Brauer-Manin obstruction

For a variety X we define the Brauer group BrX = H2
ét(X ,Gm).

Every morphism X → Y induces a homomorphism BrY → BrX .
For every point P over a field k we have Br(P) = Br(k).

Let X be a smooth and projective variety over a number field k .
Let Ω be the set of all places of k . Then X (Ak) =

∏
v∈Ω X (kv ).

X (k) //

��

X (Ak)

��

φ

**
Hom(BrX ,Br(k)) // Hom(BrX ,

⊕
v Br(kv )) // Hom(BrX ,Q/Z)

Corollary. If X (Ak)Br := φ−1(0) is empty, then X (k) = ∅.
If X (Ak)Br 6= X (Ak), then obstruction to weak approximation.

Conjecture (Colliot-Thélène).
This Brauer-Manin obstruction is the only obstruction to the Hasse
principle and weak approximation for rationally connected varieties.



Notation.
Br0(X ) = im(Br k → BrX )
Br1(X ) = ker(BrX → BrX )

Hochschild–Serre:

0→ PicX → (PicX )Gk → Br k → Br1(X )→ H
1(k ,PicX )→ H

3(k,Gm)

For a number field k , we have H3(k,Gm) = 0, so

Br1(X )/Br0(X ) ∼= H
1(k ,PicX ),

the algebraic part of the Brauer group.



Theorem (Skorobogatov–Zarhin, 2008). If X is a K3 surface over
a number field k , then BrX/Br0 X is finite.

Theorem (Hassett–Várilly-Alvarado, 2012). There is a K3 surface
X of degree 2 over Q with ρ(X ) = 1 and a Brauer–Manin
obstruction to the Hasse principle.

Open Problem 6. Is the Brauer–Manin obstruction the only
obstruction to the Hasse principle and weak approximation for K3
surfaces over number fields?

Open Problem 7. Does the odd part of the Brauer–Manin group
ever obstruct the Hasse principle?


