Arithmetic of K3 surfaces (open problems and conjectures)

Ronald van Luijk FO80 Leiden

November 9, 2015

Surface: smooth, projective, geometrically integral scheme of finite type over a field, of dimension 2.

K3 surface : a surface X with dim $H^1(X, \mathcal{O}_X) = 0$ and trivial canonical sheaf $\omega_X \cong \mathcal{O}_X$.

Examples:

- A smooth quartic surface in \mathbb{P}^3 .
- ▶ Smooth double cover of \mathbb{P}^2 , ramified over a smooth sextic.
- Kummer surface: minimal nonsingular model of A/[-1], with A an abelian surface over a field of characteristic not equal to 2.

Geometry. K3 surfaces (like abelian surfaces) are between Fano (del Pezzo) surfaces, with ω_X^{-1} ample, and surfaces of general type, with ω_X ample.

Arithmetic.

Theorem (Segre, Manin, Kollár). Let X/k be a del Pezzo surface with ω_X^{-1} very ample. Then X is unirational if and only if $X(k) \neq \emptyset$.

Conjecture (Colliot-Thélène).

Let X be a del Pezzo surface over a global field k. If $X(k) \neq \emptyset$, then X(k) is Zariski dense in X.

Conjecture (Bombieri–Lang).

Let X be a surface of general type over a finitely generated field k. Then X(k) is not Zariski dense. If char k = 0, then $X_{\overline{k}}$ contains only finitely many curves of genus at most 1, and X contains only finitely many k-rational points outside those curves. Let X be a K3 surface over a number field k.

- 1. Is $X(k_v) \neq \emptyset$ for every completion k_v of k? Yes 2. Is $X(k) \neq \emptyset$? Yes 3. Is $\#X(k) = \infty$? 4. Is X(k) Zariski dense in X? No Possible? (Open problem 1)
- 5. Is X(k) dense in $X(k_{\infty})$?
- 6. How does the number of rational points of height bounded by *B* grow as $B \to \infty$?
- 7. Is X(k) dense in $X(\mathbb{A}_k)$, with \mathbb{A}_k the adeles of k? Yes

```
Weak Approximation holds
    Possible?
(Open problem 2)
```

Example. Let $X \subset \mathbb{P}^3$ be given by

$$x^4 + 2y^4 = z^4 + 4w^4.$$

Question (Swinnerton-Dyer, 2002). Does *X* have more than two rational points?

Answer (Elsenhans–Jahnel, 2004).

 $1484801^4 + 2 \cdot 1203120^4 = 1169407^4 + 4 \cdot 1157520^4.$

Open problem 3. Does *X* have more than ten rational points? Theorem (Noam Elkies, 1988).

```
95800^4 + 217519^4 + 414560^4 = 422481^4
```

The set of rational points on the surface

$$\mathbb{P}^3 \supset X : x^4 + y^4 + z^4 = t^4.$$

is Zariski dense.

Theorem (Logan, McKinnon, vL, 2010). Take $a, b, c, d \in \mathbb{Q}^*$ with $abcd \in (\mathbb{Q}^*)^2$. Let $X \subset \mathbb{P}^3$ be given by

$$ax^4 + by^4 + cz^4 + dw^4.$$

If $P \in X(\mathbb{Q})$ has no zero coordinates and P does not lie on one of the 48 lines (no two terms sum to 0), then $X(\mathbb{Q})$ is Zariski dense.

Open problem 4. Can the conditions on *P* be left out?

Conjecture (vL). Every $t \in \mathbb{Q}$ can be written as

$$t=\frac{x^4-y^4}{z^4-w^4}$$

Definition. Let X be any variety over any field k. Then rational points are potentially dense on X if there exists a finite field extension ℓ of k such that $X(\ell)$ is Zariski dense in X_{ℓ} .

Conjecture (Campana, 2004). Let X be a K3 surface over a number field k. Then rational points are potentially dense on X.

Let X be a K3 surface over \mathbb{C} .

Definition. A polarised K3 surface is a K3 surface X together with a primitive ample line bundle H. Its degree is $H^2 = 2d$. The Picard number of X is $\rho(X) = \operatorname{rk} \operatorname{Pic} X \in \{1, \dots, 20\}$.

Facts over \mathbb{C} . For each $d \ge 1$, there is a coarse moduli space M_d of polarised complex K3 surfaces of degree 2*d*. It is irreducible, quasi-projective, and dim $M_d = 19$.

There is a countable union of divisors in M_d , such that for every polarised K3 surface (X, H) in the complement we have $\rho(X) = 1$.

Theorem (Bogomolov, Tschinkel, 2000). There is a set S of eight lattices of rank 3 or 4, such that rational points are potentially dense on every K3 surface X over a number field satisfying (a) $\rho(\overline{X}) = 2$ and \overline{X} does not contain a (-2)-curve, or (b) $\rho(\overline{X}) \ge 3$ and Pic X not isomorphic to a lattices in S.

Proof (sketch). Such surfaces have an infinite automorphism group or an elliptic fibration. We find a rational curve and move it around using either one.

Open problem 5a. Is there a K3 surface X over a number field with $\rho(\overline{X}) = 1$ on which rational points are potentially dense?

Open problem 5b. Is there a K3 surface X over a number field k with $\rho(X) = 1$ for which X(k) is Zariski dense?

Open problem 2. Is there a K3 surface X over a number field k with X(k) neither empty nor Zariski dense?

Question.

Is there a K3 surface X over a number field with $\rho(\overline{X}) = 1$?

Ineffective answers.

Terasoma (1985): Yes, for degrees 4, 6, and 8 over \mathbb{Q} . Ellenberg (2004): Yes, for any degree 2d over some number field.

Theorem (vL,2004) The K3 surface X in $\mathbb{P}^3(x, y, z, w)$ given by

wf = 3pq - 2zg

with $f \in \mathbb{Z}[x, y, z, w]$ and $g, p, q \in \mathbb{Z}[x, y, z]$ equal to $g = xy^2 + xyz - xz^2 - yz^2 + z^3$, $f = x^3 - x^2y - x^2z + x^2w - xy^2 - xyz + p = z^2 + xy + yz$, $2xyw + xz^2 + 2xzw + y^3 + y^2z - y^2w + q = z^2 + xy$, $yz^2 + yzw - yw^2 + z^2w + zw^2 + 2w^3$,

has geometric Picard number $\rho(\overline{X}) = 1$ and infinitely many rational points.

Proof. Take $\mathfrak{p} \in \{2, 3\}$, and write $k_{\mathfrak{p}}$ for the residue field of $\mathbb{Z}_{\mathfrak{p}}$. The equation wf = 3pq - 2zg defines a scheme $\mathfrak{X}_{\mathfrak{p}}$ in \mathbb{P}^3 over $\mathbb{Z}_{\mathfrak{p}}$. The morphism $\mathfrak{X}_{\mathfrak{p}} \to \operatorname{Spec} \mathbb{Z}_{\mathfrak{p}}$ is proper and smooth. Write $X_{\mathfrak{p}} = \mathfrak{X}_{\mathfrak{p}} \times_{\mathbb{Z}_n} k_{\mathfrak{p}}$ for the reduction. By properness, we obtain

$$\operatorname{Pic} X \xleftarrow{\cong} \operatorname{Pic} \mathfrak{X}_{\mathfrak{p}} \to \operatorname{Pic} X_{\mathfrak{p}}.$$

The composition $\operatorname{Pic} X \to \operatorname{Pic} X_p$ respects intersection numbers, so it is injective (numerical and linear equivalence agree on K3's).

The direct limit of the analog over all finite extensions of \mathbb{Q} yields

 $\operatorname{Pic} \overline{X} \hookrightarrow \operatorname{Pic} \overline{X}_{\mathfrak{p}}$

with $\overline{X} = X_{\overline{\mathbb{Q}}}$ and $\overline{X}_{\mathfrak{p}} = \mathfrak{X}_{\overline{k_{\mathfrak{p}}}}$.

For a prime $\ell \neq p$ and n > 0 an integer, the Kummer sequence

$$1 o \mu_{\ell^n} o \mathbb{G}_{\mathrm{m}} \stackrel{\ell^n}{\longrightarrow} \mathbb{G}_{\mathrm{m}} o 1$$

is exact on the étale site of \overline{X}_{p} and yields

$$\operatorname{Pic} \overline{X}_{\mathfrak{p}} \stackrel{\ell^n}{\longrightarrow} \operatorname{Pic} \overline{X}_{\mathfrak{p}} \to \operatorname{H}^2_{\operatorname{\acute{e}t}}(\overline{X}_{\mathfrak{p}}, \mu_{\ell^n}),$$

so an injection

$$\operatorname{Pic} \overline{X}_{\mathfrak{p}}/\ell^{n} \operatorname{Pic} \overline{X}_{\mathfrak{p}} \hookrightarrow \operatorname{H}^{2}_{\operatorname{\acute{e}t}}(\overline{X}_{\mathfrak{p}}, \mu_{\ell^{n}}).$$

Because $\operatorname{Pic} \overline{X}_{\mathfrak{p}}$ is finitely generated and free, the inverse limit gives a Galois invariant injection

$$\operatorname{Pic} \overline{X}_{\mathfrak{p}} \hookrightarrow \lim_{\stackrel{\leftarrow}{n}} \operatorname{H}^{2}_{\operatorname{\acute{e}t}}(\overline{X}_{\mathfrak{p}}, \mu_{\ell^{n}}) =: \operatorname{H}^{2}_{\operatorname{\acute{e}t}}(\overline{X}, \mathbb{Z}_{\ell}(1)).$$

$\operatorname{Pic} \overline{X} \hookrightarrow \operatorname{Pic} \overline{X}_{\mathfrak{p}} \hookrightarrow \operatorname{H}^2_{\operatorname{\acute{e}t}}(\overline{X}, \mathbb{Z}_{\ell}(1))$

So $\rho(\overline{X})$ is bounded from above by the number of eigenvalues λ of Frobenius acting on $\mathrm{H}^{2}_{\mathrm{\acute{e}t}}(\overline{X}, \mathbb{Z}_{\ell}(1))$ for which λ is a root of unity.

The Lefschetz formula

$$\#X(\mathbb{F}_{\mathfrak{p}^n}) = \sum_{i=0}^{4} (-1)^i \operatorname{Tr} \left(\operatorname{Frob}^n \text{ on } \operatorname{H}^i_{\operatorname{\acute{e}t}}(\overline{X}_{\mathfrak{p}}, \mathbb{Q}_{\ell}) \right)$$

yields traces of powers of Frobenius on $\mathrm{H}^{i}_{\mathrm{\acute{e}t}}(\overline{X}_{\mathfrak{p}}, \mathbb{Q}_{\ell})$ (without twist).

Expressing the elementary symmetric polynomials in the eigenvalues in terms of the power sums (the traces), gives the characteristic polynomial of Frobenius acting on $\operatorname{H}^{i}_{\operatorname{\acute{e}t}}(\overline{X}_{\mathfrak{p}}, \mathbb{Q}_{\ell})$.

Scaling its roots by p gives the eigenvalues of Frobenius acting on $\operatorname{H}^{i}_{\operatorname{\acute{e}t}}(\overline{X}_{\operatorname{p}}, \mathbb{Z}_{\ell}(1)).$

The nonreal eigenvalues of Frobenius on $\operatorname{H}^{i}_{\operatorname{\acute{e}t}}(\overline{X}_{\mathfrak{p}}, \mathbb{Z}_{\ell}(1))$ come in conjugate pairs, so an even number of those is not a root of unity.

The second Betti number $b_2 = 22$ is even, so this leaves an even number of eigenvalues that **are** roots of unity.

For $\mathfrak{p} \in \{2,3\}$, we find $\rho(\overline{X}_{\mathfrak{p}}) = 2$. If $\rho(\overline{X}) = 2$, then $\operatorname{Pic} \overline{X} \subset \operatorname{Pic} \overline{X}_{\mathfrak{p}}$ has finite index, so in $\mathbb{Q}^*/(\mathbb{Q}^*)^2$ we have

disc $\operatorname{Pic} \overline{X}_2 = \operatorname{disc} \operatorname{Pic} \overline{X} = \operatorname{disc} \operatorname{Pic} \overline{X}_3$.

The reduction of wf = 3pq - 2zg modulo 2 is wf = pq, so X_2 contains the conics C_1, C_2 given by w = p = 0 and w = q = 0. The sublattice $\langle C_1, C_2 \rangle \subset \operatorname{Pic} \overline{X}_2$ has finite index and discriminant -12, so disc $\operatorname{Pic} \overline{X}_2 = -12 \in \mathbb{Q}^*/(\mathbb{Q}^*)^2$.

The reduction modulo 3 is wf = zg, so X_3 contains the line L given by w = z = 0. The sublattice $\langle L, H \rangle \subset \operatorname{Pic} \overline{X}_3$ has discriminant -9, so disc $\operatorname{Pic} \overline{X}_3 = -9 \in \mathbb{Q}^*/(\mathbb{Q}^*)^2$.

Contradiction, so $\rho(\overline{X}) = 1$.

Remarks for X a K3 surface over a number field, p a prime of good reduction, and X_p the reduction.

- This method works as soon as ρ = ρ(X) is odd and there is a pair S of two primes p with ρ(X_p) = ρ + 1, and the discriminants of Pic X_p for p ∈ S are different in Q*/(Q*)².
- 2. (Kloosterman, 2005) The Artin-Tate formula (known in odd characteristic, by Nijgaard, Ogus, Maulik, Madapusi Pera, Charles) allows us to compute the discriminants up to squares without knowing explicit generators of a finite-index subgroup of $\operatorname{Pic} \overline{X}_p$.
- 3. (Elsenhans–Jahnel) Various tricks make the method more powerful. Very useful result is that, under mild conditions, the reduction map $\operatorname{Pic} \overline{X} \hookrightarrow \operatorname{Pic} \overline{X}_{\mathfrak{p}}$ has torsion-free cokernel.

Question.

Does there always exist a prime \mathfrak{p} with $\rho(\overline{X}_{\mathfrak{p}}) \leq \rho(\overline{X}) + 1$?

Answer. No!

Let X be a K3 surface over a number field $k \subset \mathbb{C}$. Let T be the orthogonal complement of $\operatorname{Pic} X_{\mathbb{C}}$ in $\operatorname{H}^2(X(\mathbb{C}), \mathbb{Q})$. The algebra $E = \operatorname{End}_H(T)$ of endomorphisms respecting the Hodge structure is either a totally real field or a CM field (Zarhin, 1983).

Theorem (Charles, 2011).

- 1. If *E* is a CM field or dim_{*E*}(*T*) is even, then there are infinitely many primes p of good reduction with $\rho(\overline{X}_p) = \rho(\overline{X})$.
- 2. Otherwise, for any odd prime \mathfrak{p} of good reduction, we have $\rho(\overline{X}_{\mathfrak{p}}) \geq \rho(\overline{X}) + [E : \mathbb{Q}]$; equality holds for infinitely many \mathfrak{p} .

Corollary (Charles, 2011). There is an algorithm (i.e., a Turing machine) that, given a projective K3 surface X over a number field, either returns $\rho(\overline{X})$ or does not terminate. If $X \times X$ satisfies the Hodge conjecture for codimension-2 cycles, then the algorithm terminates on X.

There is also an algorithm that terminates unconditionally.

Theorem (Poonen, Testa, vL, 2012). There is an algorithm that, given a K3 surface over a finitely generated field k of characteristic not 2, computes $\operatorname{Pic} \overline{X}$.

Proof sketch.

We can compute the $\operatorname{Gal}(\overline{k}/k)$ -module $\operatorname{H}^{i}_{\text{ét}}(\overline{X}, \mathbb{Z}/\ell^{n}\mathbb{Z})$ for any $\ell \neq \operatorname{char} k$, and any $i, n \geq 0$ (Madore–Orgogozo, 2013).

Use this to approximate $\operatorname{H}^{i}_{\operatorname{\acute{e}t}}(\overline{X}, \mathbb{Q}_{\ell}(1))^{\operatorname{Gal}(\overline{k}/k)}$, which by Tate's conjecture equals $\rho(\overline{X})$. This yields an upper bound for $\rho(\overline{X})$.

To find a lower bound for $\rho(\overline{X})$, we simply search for divisors (for example, by enumeration).

In order to compute not only the rank, but also the group $\operatorname{Pic} \overline{X}$ itself, we use Hilbert schemes to compute the saturation of an already known subgroup.

Batyrev-Manin conjectures

Let X be a variety over a number field k and $h: X(k) \to \mathbb{R}$ a height function associated to an ample line bundle (not logarithmic). For any bound $B \in \mathbb{R}$ and any open $U \subset X$ we set

 $N_{U,h}(B) = \#\{P \in U(k) : h(P) \le B\}.$

Conjecture (Batyrev–Manin, 1990). Suppose X is a Fano variety over a number field k, and h the height associated to an ample line bundle \mathcal{L} with $\mathcal{L}^{\otimes a} \cong \omega_X^{-1}$ for some a > 0. Set $b = \operatorname{rk}\operatorname{Pic} X$. Then there is an open subset $U \subset X$ and a constant c with

 $N_{U,h}(B) \sim cB^a (\log B)^{b-1}.$

This conjecture is proved in many cases for surfaces. False in higher dimension, but no counterexamples to lower bound. **Question**. What about K3 surfaces? Just take a = 0? Conjecture (Batyrev–Manin, 1990).

Suppose X is a K3 surface over a number field k, and h the height associated with an ample line bundle. Then for every $\varepsilon > 0$, there is an open subset $U \subset X$ such that

 $N_{U,h}(B) \sim \mathcal{O}(B^{\varepsilon}).$

Remark. A rational curve of degree *d* gives contribution $B^{2/d}$, so we need to leave out those with $d < 2\varepsilon^{-1}$.

Question. What about lower bounds for K3 surfaces?

Suggestion by Swinnerton-Dyer

Define the height-zeta function

$$Z(U,s)=\sum_{P\in U(k)}h(P)^{-s}.$$

From

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^s \frac{ds}{s} = \begin{cases} 1 & \text{if } x > 1\\ \frac{1}{2} & \text{if } x = 1\\ 0 & \text{if } x < 1 \end{cases} \quad (c > 0)$$

we get

$$N_{U}(x) = \sum_{P \in U(K)} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} (xh(P)^{-1})^{s} \frac{ds}{s}$$
$$= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Z(U,s) x^{s} \frac{ds}{s} \qquad (c >> 0).$$

Assuming Z(U, s) is nice, including analytic on $\Re(s) > a - 2\epsilon$, except for a pole of order *b* at *a*, we can write

$$N_U(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Z(U,s) \, x^s \, \frac{ds}{s} \qquad (c >> 0)$$
$$= \operatorname{res}_{s=a} \left[Z(U,s) s^{-1} \exp(s \log x) \right] + \frac{1}{2\pi i} \int_{a-\epsilon-i\infty}^{a-\epsilon+i\infty} Z(U,s) \, x^s \, \frac{ds}{s}$$

The integral is smaller than the residue, the main term, which is

 $x^a p(\log x)$

for some polynomial *p* of degree $\begin{cases} b-1 & \text{if } a \neq 0, \\ b & \text{if } a = 0. \end{cases}$

Question. For X a K3 surface: $N(U, B) \sim c(\log B)^{\operatorname{rk Pic} X}$?

Question. For X a K3 surface: $N(U, B) \sim c(\log B)^{\operatorname{rk Pic} X}$?

Could go wrong if

1. X admits an elliptic fibration (in particular, if $\operatorname{rk}\operatorname{Pic} X \geq 5$);

2. $\#\operatorname{Aut}(X) = \infty$.

In these cases, we may get even more rational points.

Conjecture (vL, based on an idea by Swinnerton-Dyer). Suppose X is a K3 surface over a number field k with $\rho(X) = 1$. There is an open subset $U \subset X$ and a constant c such that

 $N_U(B) \sim c \log B$

as $B \to \infty$. Moreover, if $X(k) \neq \emptyset$, then $c \neq 0$.

Conjecture.

Suppose X is a K3 surface over a number field k with $\rho(X) = b$. There is an open subset $U \subset X$ and a constant c such that

 $N_U(B) \ge c(\log B)^b$.

for B >> 0. Moreover, if $X(k) \neq \emptyset$, then $c \neq 0$.

Brauer-Manin obstruction

For a variety X we define the Brauer group $\operatorname{Br} X = \operatorname{H}^{2}_{\operatorname{\acute{e}t}}(X, \mathbb{G}_{\mathrm{m}})$. Every morphism $X \to Y$ induces a homomorphism $\operatorname{Br} Y \to \operatorname{Br} X$. For every point P over a field k we have $\operatorname{Br}(P) = \operatorname{Br}(k)$.

Let X be a smooth and projective variety over a number field k. Let Ω be the set of all places of k. Then $X(\mathbb{A}_k) = \prod_{v \in \Omega} X(k_v)$.

$$\begin{array}{c} X(k) \longrightarrow X(\mathbb{A}_k) \\ \downarrow \\ \text{Hom}(\text{Br}\,X, \text{Br}(k)) \longrightarrow \text{Hom}(\text{Br}\,X, \bigoplus_{\nu} \text{Br}(k_{\nu})) \longrightarrow \text{Hom}(\text{Br}\,X, \mathbb{Q}/\mathbb{Z}) \end{array}$$

Corollary. If $X(\mathbb{A}_k)^{\mathrm{Br}} := \phi^{-1}(0)$ is empty, then $X(k) = \emptyset$. If $X(\mathbb{A}_k)^{\mathrm{Br}} \neq X(\mathbb{A}_k)$, then obstruction to weak approximation.

Conjecture (Colliot-Thélène).

This Brauer-Manin obstruction is the only obstruction to the Hasse principle and weak approximation for rationally connected varieties.

Notation. $\operatorname{Br}_0(X) = \operatorname{im}(\operatorname{Br} k \to \operatorname{Br} X)$ $\operatorname{Br}_1(X) = \operatorname{ker}(\operatorname{Br} X \to \operatorname{Br} \overline{X})$

Hochschild-Serre:

 $0 \to \operatorname{Pic} X \to (\operatorname{Pic} \overline{X})^{G_k} \to \operatorname{Br} k \to \operatorname{Br}_1(X) \to \operatorname{H}^1(k, \operatorname{Pic} \overline{X}) \to \operatorname{H}^3(k, \mathbb{G}_m)$ For a number field k, we have $\operatorname{H}^3(k, \mathbb{G}_m) = 0$, so

 $\operatorname{Br}_1(X)/\operatorname{Br}_0(X)\cong \operatorname{H}^1(k,\operatorname{Pic}\overline{X}),$

the algebraic part of the Brauer group.

Theorem (Skorobogatov–Zarhin, 2008). If X is a K3 surface over a number field k, then $\operatorname{Br} X / \operatorname{Br}_0 X$ is finite.

Theorem (Hassett–Várilly-Alvarado, 2012). There is a K3 surface X of degree 2 over \mathbb{Q} with $\rho(\overline{X}) = 1$ and a Brauer–Manin obstruction to the Hasse principle.

Open Problem 6. Is the Brauer–Manin obstruction the only obstruction to the Hasse principle and weak approximation for K3 surfaces over number fields?

Open Problem 7. Does the odd part of the Brauer–Manin group ever obstruct the Hasse principle?