Computing Néron-Severi groups

Ronald van Luijk

February 27, 2013
American Institute of Mathematics
Setting

- k a finitely generated field.
- X a nice k-variety (smooth, projective, geometrically integral).
- k^s a separable closure of k with Galois group $\Gamma = \text{Gal}(k^s/k)$.
- $X^s = X \times_k k^s$.
- Picard group $\text{Pic} X \subset (\text{Pic} X^s)^\Gamma$.
- $\text{Pic}^0(X)$ subgroup of classes algebraically equivalent to 0.
- Néron-Severi group $\text{NS}(X) = \text{Pic} X / \text{Pic}^0(X) \subset \text{NS}(X^s)^\Gamma$.

Goal: Compute $\text{NS}(X^s)$ (or its rank).
Special cases

- Elliptic fibrations: map NS to the Mordell-Weil group.
- Fibrations into abelian varieties.
- If a finite group G acts on Y and $X = Y/G$, then

$$\text{NS}(X^s) \otimes \mathbb{Q} \to (\text{NS}(Y^s) \otimes \mathbb{Q})^G$$

is an isomorphism.

Application (Shioda): Delsarte surfaces (given by tetranomials in \mathbb{P}^3) are quotients of Fermat surfaces.
Special cases

- Elliptic fibrations: map NS to the Mordell-Weil group.
- Fibrations into abelian varieties.
- If a finite group G acts on Y and $X = Y/G$, then

\[\text{NS}(X^s) \otimes \mathbb{Q} \to (\text{NS}(Y^s) \otimes \mathbb{Q})^G \]

is an isomorphism.

Application (Shioda):

Delsarte surfaces (given by tetranomials in \mathbb{P}^3) are quotients of Fermat surfaces.
K3 surfaces of degree 2

Theorem (Hassett, Kresch, Tschinkel)

There is an algorithm that takes as input a K3 surface X of degree 2 over a number field, and returns $\text{Pic } X^s = \text{NS } X^s$.

Method: Kuga-Satake correspondence.
Ingredients include: abelian variety of dimension 2^{19}.
Tate conjecture(s)

- Fix $0 \leq p \leq \dim X$ and prime $\ell \neq \text{char } k$.
- $\mathcal{Z}^p(X)$ is group of codimension-p cycles on X.
- $V^{2p} = H^{2p}_{et}(X^s, \mathbb{Q}_\ell(p))$.
- $V^{\text{tate}} \subset V^{2p}$ is set of Tate classes (each fixed by some finite-index open subgroup $G \subset \Gamma$).

Conjecture ($T^p(X, \ell)$)

The cycle class map $\mathcal{Z}^p(X^s) \otimes \mathbb{Q}_\ell \to V^{\text{tate}}$ is surjective.
Tate conjecture(s)

- Fix $0 \leq p \leq \dim X$ and prime $\ell \neq \text{char } k$.
- $\mathcal{Z}^p(X)$ is group of codimension-p cycles on X.
- $V^{2p} = H^{2p}_{\text{et}}(X^s, \mathbb{Q}_\ell(p))$.
- $V^{\text{tate}} \subset V^{2p}$ is set of Tate classes (each fixed by some finite-index open subgroup $G \subset \Gamma$).

Conjecture ($T^p(X, \ell)$)

The cycle class map $\mathcal{Z}^p(X^s) \otimes \mathbb{Q}_\ell \to V^{\text{tate}}$ is surjective.

Theorem (Nijgaard, Ogus, Maulik, Charles, Madapusi Pera)

Suppose $\text{char } k \neq 2$. If X is a K3 surface, then $T^1(X, \ell)$ holds.
Tate conjecture(s)

- Fix $0 \leq p \leq \dim X$ and prime $\ell \neq \text{char } k$.
- $\mathcal{Z}^p(X)$ is group of codimension-p cycles on X.
- $V^{2p} = H_{et}^{2p}(X^s, \mathbb{Q}_\ell(p))$.
- $V^{\text{tate}} \subset V^{2p}$ is set of Tate classes (each fixed by some finite-index open subgroup $G \subset \Gamma$).

Conjecture ($T^p(X, \ell)$)

The cycle class map $\mathcal{Z}^p(X^s) \otimes \mathbb{Q}_\ell \to V^{\text{tate}}$ is surjective.

Theorem (Nijgaard, Ogus, Maulik, Charles, Madapusi Pera)

Suppose $\text{char } k \neq 2$. If X is a K3 surface, then $T^1(X, \ell)$ holds.

Conjecture ($E^p(X, \ell)$)

An element in $\mathcal{Z}^p(X^s, \ell)$ is numerically equivalent to 0 if and only if it maps to 0 in V^{2p}.

Remark. $E^p(X, \ell)$ holds for $p = 1$.
Algorithms for general p

- $\text{Num}^p(X)$ is group of codimension-p cycle classes up to numerical equivalence.

- Assuming $E^p(X, \ell)$, the map $\text{Num}^p(X, \ell) \otimes \mathbb{Q}_\ell \hookrightarrow V^{\text{tate}}$ is an injection that is an isomorphism if and only if $T^p(X, \ell)$ holds.

- For $p = 1$ we have $\text{Num}^1(X) \cong \text{NS}(X) / \text{NS}(X)_{\text{tors}}$ and an injection $\text{NS}(X) \otimes \mathbb{Q}_\ell \rightarrow V^{\text{tate}}$.

Strategy for bounding $\text{rk Num}^p(X)$.
1. List cycles to find lower bound (also cycles to intersect with).
2. Bound $\text{dim } \mathbb{Q}_\ell V^{\text{tate}}$ from above for upper bound.

Trivial upper bound: Betti number b_2^p.

Problem with computing $V^{\text{tate}} \subset V_2^p = H_2^p_{\text{et}}(X_s, \mathbb{Q}_\ell(1))$ is that \mathbb{Q}_ℓ requires infinite precision and k_s may not be finitely generated.
Algorithms for general p

- $\text{Num}^p(X)$ is group of codimension-p cycle classes up to numerical equivalence.

- Assuming $E^p(X, \ell)$, the map $\text{Num}^p(X, \ell) \otimes \mathbb{Q}_{\ell} \hookrightarrow V^{\text{tate}}$ is an injection that is an isomorphism if and only if $T^p(X, \ell)$ holds.

- For $p = 1$ we have $\text{Num}^1(X) \cong \text{NS}(X)/\text{NS}(X)_{\text{tors}}$ and an injection $\text{NS}(X) \otimes \mathbb{Q}_{\ell} \rightarrow V^{\text{tate}}$.

Strategy for bounding $\text{rk Num}^p(X^s)$.

1. List cycles to find lower bound (also cycles to intersect with).

2. Bound $\dim_{\mathbb{Q}_{\ell}} V^{\text{tate}}$ from above for upper bound.

 Trivial upper bound: Betti number b_{2p}.
Algorithms for general p

- $\text{Num}^p(X)$ is group of codimension-p cycle classes up to numerical equivalence.

- Assuming $E^p(X, \ell)$, the map $\text{Num}^p(X, \ell) \otimes \mathbb{Q}_\ell \hookrightarrow V^{\text{tate}}$ is an injection that is an isomorphism if and only if $T^p(X, \ell)$ holds.

- For $p = 1$ we have $\text{Num}^1(X) \cong \text{NS}(X)/\text{NS}(X)_{\text{tors}}$ and an injection $\text{NS}(X) \otimes \mathbb{Q}_\ell \rightarrow V^{\text{tate}}$.

Strategy for bounding $\text{rk } \text{Num}^p(X^s)$.

1. List cycles to find lower bound (also cycles to intersect with).
2. Bound $\dim_{\mathbb{Q}_\ell} V^{\text{tate}}$ from above for upper bound. Trivial upper bound: Betti number b_{2p}.

Problem with computing $V^{\text{tate}} \subset V^{2p} = H_{\text{et}}^{2p}(X^s, \mathbb{Q}_\ell(p))$ is that \mathbb{Q}_ℓ requires infinite precision and k^s may not be finitely generated.
Hypothesis. Can compute $T_{\ell^n}^i = H_{et}^i(X^s, \mathbb{Z}/\ell^n\mathbb{Z})$ as Γ-module.
Remark. This holds in characteristic 0 and for liftable X.
Hypothesis. Can compute $T_{\ell^n}^i = H^i_{et}(X^s, \mathbb{Z}/\ell^n\mathbb{Z})$ as Γ-module.

Remark. This holds in characteristic 0 and for liftable X.

Theorem (Poonen, Testa, vL)

Assume the hypothesis. Then there is an algorithm that takes as input (k, p, X, ℓ) as before, such that, assuming $E^p(X, \ell)$, the algorithm terminates if and only if $T^p(X, \ell)$ holds, and if the algorithm terminates, it returns $\text{rk Num}^p(X^s)$.

Sketch of proof of upper bound for $r = \dim V_{\text{tate}}$.

1. Extend k so that Γ acts trivially on $T_{\ell^{\prime}}(p)$ with $\ell^{\prime} = \ell$ for $\ell > 2$ and $\ell^{\prime} = 4$ for $\ell = 2$.

2. Γ acts trivially on $M/\mathcal{M}_{\text{tors}}$ with $M = H^2_{et}(X^s, \mathbb{Z}/\ell\mathbb{Z}(p))_{\text{tate}}$ (Minkovski’s Lemma on finite-order elements in $\text{GL}_n(\mathbb{Z}/\ell\mathbb{Z})$).

3. Compute t such that ℓ^t kills $H^2_{et}(X^s, \mathbb{Z}/\ell\mathbb{Z}(p))_{\text{tors}}$ (Wittenberg).

4. $\ell^{r(n-t)} \leq \#(\mathcal{M}/\ell\mathcal{M}) \leq \#(\mathcal{M}/\ell^n\mathcal{M})_{\Gamma} = O(\ell^{rn})$.

5. Sequence $\lfloor \log \#T_{\ell^n}(p)_{\Gamma} \log \ell^n - t \rfloor$ (with $n \geq 1$) has minimum r.
Hypothesis. Can compute $T_{\ell^n_i} = \mathbb{H}_{et}^i(X^s, \mathbb{Z}/\ell^n\mathbb{Z})$ as Γ-module.

Remark. This holds in characteristic 0 and for liftable X.

Theorem (Poonen, Testa, vL)

Assume the hypothesis. Then there is an algorithm that takes as input (k, p, X, ℓ) as before, such that, assuming $E^p(X, \ell)$, the algorithm terminates if and only if $T^p(X, \ell)$ holds, and if the algorithm terminates, it returns $\text{rk Num}^p(X^s)$.

Sketch of proof of upper bound for $r = \dim V^{\text{tate}}$.

1. Extend k so that Γ acts trivially on $T^{2p}_{\ell'}(p)$ with $\ell' = \ell$ for $\ell > 2$ and $\ell' = 4$ for $\ell = 2$.
2. Γ acts trivially on M/M_{tors} with $M = \mathbb{H}_{et}^{2p}(X^s, \mathbb{Z}_\ell(p))^{\text{tate}}$ (Minkovski’s Lemma on finite-order elements in $\text{GL}_n(\mathbb{Z}_\ell)$).
3. Compute t such that ℓ^t kills $\mathbb{H}_{et}^{2p}(X^s, \mathbb{Z}_\ell(p))_{\text{tors}}$ (Wittenberg).
4. $\ell^{r(n-t)} \leq \#\ell^t M/\ell^n M \leq \#(M/\ell^n M)^\Gamma \leq \# T^{2p}_{\ell^n}(p)^\Gamma = \mathcal{O}(\ell^{rn})$.
5. Sequence $\left\lfloor \frac{\log \# T^{2p}_{\ell^n}(p)^\Gamma}{\log \ell^{n-t}} \right\rfloor$ (with $n \geq 1$) has minimum r.
Finite fields

Suppose k is finite. Let $V_\mu \subset V^{2p} = H^{2p}_{et}(X^s, \mathbb{Q}_\ell(p))$ be the largest subspace on which all eigenvalues of Frobenius are roots of unity.

$$\text{Num}^p(X^s) \otimes \mathbb{Q}_\ell \to V^{\text{tate}} \subset V_\mu$$
Finite fields

Suppose k is finite. Let $V_{\mu} \subset V^{2p} = H^{2p}_{et}(X^s, \mathbb{Q}_\ell(p))$ be the largest subspace on which all eigenvalues of Frobenius are roots of unity.

$$\text{Num}^p(X^s) \otimes \mathbb{Q}_\ell \to V^{\text{tate}} \subset V_{\mu}$$

Theorem

Assuming $E^p(X, \ell)$, the following are equivalent.

1. $\text{rk} \text{Num}^p(X^s) = \dim V^{\text{tate}}$.
2. Conjecture $T^p(X, \ell)$ holds.
3. $\text{rk} \text{Num}^p(X^s) = \dim V^{\text{tate}} = \dim V_{\mu}$.

Proof. 1 \iff 2. Under $E^p(X, \ell)$, the first map is injective, so it is surjective if and only if 1 holds. 2 \Rightarrow 3. $V^{\text{tate}} = V_{\mu}$ follows as $E^p(X, \ell)$ and $T^p(X, \ell)$ together imply that Frobenius acts semi-simple on V_{μ}. 3 \Rightarrow 1. Obvious.
Finite fields

Suppose k is finite. Let $V_\mu \subset V^{2p} = H^{2p}_{et}(X^s, \mathbb{Q}_\ell(p))$ be the largest subspace on which all eigenvalues of Frobenius are roots of unity.

$$\text{Num}^p(X^s) \otimes \mathbb{Q}_\ell \to V^{\text{tate}} \subset V_\mu$$

Theorem

Assuming $E^p(X, \ell)$, the following are equivalent.

1. $\text{rk Num}^p(X^s) = \dim V^{\text{tate}}$.
2. Conjecture $T^p(X, \ell)$ holds.
3. $\text{rk Num}^p(X^s) = \dim V^{\text{tate}} = \dim V_\mu$.

Proof. $1 \Leftrightarrow 2$. Under $E^p(X, \ell)$, the first map is injective, so it is surjective if and only if 1 holds.

$2 \Rightarrow 3$. $V^{\text{tate}} = V_\mu$ follows as $E^p(X, \ell)$ and $T^p(X, \ell)$ together imply that Frobenius acts semi-simple on V_μ. $3 \Rightarrow 1$. Obvious.
Finite fields

Theorem

There is an algorithm that takes as input \((k, p, X, \ell)\), with \(k\) a finite field, and that, assuming \(E^p(X, \ell)\), terminates if and only if \(T^p(X, \ell)\) holds, and if it terminates, it returns \(\text{rk Num}^p X^s\).
Finite fields

Theorem
There is an algorithm that takes as input \((k, p, X, \ell)\), with \(k\) a finite field, and that, assuming \(E^p(X, \ell)\), terminates if and only if \(T^p(X, \ell)\) holds, and if it terminates, it returns \(\text{rk Num}^p X^s\).

Proof. By searching for cycles, we get a lower bound for \(\text{rk Num}^p X^s\) that eventually is sharp. To verify that it is, it suffices to compute \(\dim V_\mu\). Say \(k = \mathbb{F}_q\). The degree of the zeta-function

\[
Z_X(T) = \prod_{i=0}^{2\dim X} \left(\det (1 - T \cdot \text{Frob}^*| H^i_{\text{et}}(X^s, \mathbb{Q}_\ell)) \right)^{(-1)^{i+1}}
\]

is bounded by the sum of Betti numbers: computable bound \(B\).
Finite fields

Theorem
There is an algorithm that takes as input \((k, p, X, \ell)\), with \(k\) a finite field, and that, assuming \(E^p(X, \ell)\), terminates if and only if \(T^p(X, \ell)\) holds, and if it terminates, it returns \(\text{rk Num}^p X^s\).

Proof. By searching for cycles, we get a lower bound for \(\text{rk Num}^p X^s\) that eventually is sharp. To verify that it is, it suffices to compute \(\dim V_\mu\). Say \(k = \mathbb{F}_q\). The degree of the zeta-function

\[
Z_X(T) = \prod_{i=0}^{2\dim X} \left(\det (1 - T \cdot \text{Frob}^*| H_{et}^i(X^s, \mathbb{Q}_\ell)) \right)^{(-1)^{i+1}}
\]

is bounded by the sum of Betti numbers: computable bound \(B\). Computing \(#X(\mathbb{F}_{q^n})\) for \(n = 1, \ldots, 2B\) gives enough information to determine \(Z_X(T)\). Then \(\dim V_\mu\) equals the number of poles of \(Z_X(T)\) that are roots of unity times \(q^{-p}\).
Finite fields

Example. Let $X \subset \mathbb{P}^3$ over \mathbb{F}_2 be given by $\det M = 0$ with $M =$

$$
\begin{pmatrix}
 x_0 & x_1 & x_2 + x_3 & x_1 + x_2 & x_2 + x_3 \\
 x_1 & x_2 + x_3 & x_0 + x_1 + x_2 + x_3 & x_0 + x_1 & x_2 \\
 x_0 + x_2 & x_0 + x_1 + x_2 + x_3 & x_0 + x_1 & x_2 \\
 x_0 + x_1 + x_3 & x_0 + x_2 & x_3 & x_2 \\
\end{pmatrix}.
$$

$\Phi = \text{Frob}^*|H^2(X^s, \mathbb{Q}_\ell(1))$ $
\quad t_n = \text{Tr} \Phi^n$
Finite fields

Example. Let $X \subset \mathbb{P}^3$ over \mathbb{F}_2 be given by $\det M = 0$ with $M =$

$$
\begin{pmatrix}
 x_0 & x_2 & x_1 + x_2 & x_2 + x_3 \\
 x_1 & x_2 + x_3 & x_0 + x_1 + x_2 + x_3 & x_0 + x_3 \\
 x_0 + x_2 & x_0 + x_1 + x_2 + x_3 & x_0 + x_1 & x_2 \\
 x_0 + x_1 + x_3 & x_0 + x_2 & x_3 & x_2
\end{pmatrix}.
$$

$\Phi = \text{Frob}^*|_{H^2(X^s, \mathbb{Q}_\ell(1))}$

$t_n = \text{Tr} \Phi^n$

$\#X(\mathbb{F}_{2^n}) = 1 + 2^n t_n + 2^{2n}$

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$#X(\mathbb{F}_{2^n})$</td>
<td>6</td>
<td>26</td>
<td>90</td>
<td>258</td>
<td>1140</td>
<td>4178</td>
<td>17002</td>
<td>64962</td>
<td>260442</td>
<td>1044786</td>
</tr>
<tr>
<td>t_n</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{25}{8}$</td>
<td>$\frac{1}{16}$</td>
<td>$\frac{121}{32}$</td>
<td>$\frac{81}{64}$</td>
<td>$\frac{617}{128}$</td>
<td>$-\frac{575}{256}$</td>
<td>$-\frac{1703}{512}$</td>
<td>$-\frac{3791}{1024}$</td>
</tr>
</tbody>
</table>
Finite fields

Example. Let \(X \subset \mathbb{P}^3 \) over \(\mathbb{F}_2 \) be given by \(\det M = 0 \) with

\[
M = \begin{pmatrix}
x_0 & x_2 & x_1 + x_2 & x_2 + x_3 \\
x_1 & x_2 + x_3 & x_0 + x_1 + x_2 + x_3 & x_0 + x_3 \\
x_0 + x_2 & x_0 + x_1 + x_2 + x_3 & x_0 + x_1 & x_2 \\
x_0 + x_1 + x_3 & x_0 + x_2 & x_3 & x_2
\end{pmatrix}.
\]

\[
\Phi = \text{Frob}^*|H^2(X^s, \mathbb{Q}_\ell(1))
\]

\[
t_n = \text{Tr} \Phi^n
\]

\[
\#X(\mathbb{F}_{2^n}) = 1 + 2^n t_n + 2^{2n}
\]

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>#X(\mathbb{F}_{2^n})</td>
<td>6</td>
<td>26</td>
<td>90</td>
<td>258</td>
<td>1146</td>
<td>4178</td>
<td>17002</td>
<td>64962</td>
<td>260442</td>
<td>1044786</td>
</tr>
<tr>
<td>(t_n)</td>
<td>(\frac{1}{2})</td>
<td>(\frac{9}{4})</td>
<td>(\frac{25}{8})</td>
<td>(\frac{1}{10})</td>
<td>(\frac{121}{32})</td>
<td>(\frac{81}{64})</td>
<td>(\frac{617}{128})</td>
<td>(-\frac{575}{256})</td>
<td>(-\frac{1703}{512})</td>
<td>(-\frac{3791}{1024})</td>
</tr>
</tbody>
</table>

\(f_\Phi = \) palindromic or antipalindromic

\[
f_\Phi = t^{22} - \frac{1}{2} t^{21} - t^{20} - \frac{1}{2} t^{19} + t^{18} - \frac{1}{2} t^{15} + t^{14} + \frac{1}{2} t^{13} - 2 t^{11} + \ldots
\]

\[
= (t - 1)^2(t^{20} + \frac{3}{2} t^{19} + t^{18} - \frac{1}{2} t^{13} + t^{11} + 2 t^{10} + \ldots).
\]

Conclusion. We have \(\text{rk} \text{NS}(X^s) = 2 \).
Surfaces over global fields

- Global field K, discrete valuation ring $R \subset K$, residue field k.
- X a nice surface over K, integral model \mathcal{X} over R with good reduction.

\[
\text{NS}(X^s) \otimes \mathbb{Q}_\ell \hookrightarrow \text{NS}(\mathcal{X}_{ks}) \otimes \mathbb{Q}_\ell
\]

\[
\text{rk } \text{NS}(X^s) \leq \text{rk } \text{NS}(\mathcal{X}_{ks})
\]
Surfaces over global fields

- Global field K, discrete valuation ring $R \subset K$, residue field k.
- X a nice surface over K, integral model \mathcal{X} over R with good reduction.

$$\text{NS}(X^s) \otimes \mathbb{Q}_\ell \hookrightarrow \text{NS}(\mathcal{X}_{ks}) \otimes \mathbb{Q}_\ell$$

$$\text{rk NS}(X^s) \leq \text{rk NS}(\mathcal{X}_{ks})$$

Problem.
If $T^1(\mathcal{X}_{ks}, \ell)$ holds, then $\text{rk NS}(\mathcal{X}_{ks}) \equiv b_2(X) \pmod{2}$.

Proof.
The roots of f_Φ that are not roots of unity come in conjugate pairs.

Question.
How to ever prove $\text{rk NS}(X^s) = 1$ for a K3 surface over $K = \mathbb{Q}$?
The injection
\[\text{Num}^1(X^s) \hookrightarrow \text{Num}^1(X_{ks}) \]
respects the intersection pairing.

Lemma. If \(\Lambda' \) is a sublattice of finite index of \(\Lambda \), then we have
\[\text{disc } \Lambda' = [\Lambda : \Lambda']^2 \text{disc } \Lambda. \]
Hence, \(\text{disc } \Lambda = \text{disc } \Lambda' \) in \(\mathbb{Q}^*/(\mathbb{Q}^*)^2 \).
The injection
\[
\text{Num}^1(X^s) \hookrightarrow \text{Num}^1(X_{ks}^s)
\]
respects the intersection pairing.

Lemma. If \(\Lambda'\) is a sublattice of finite index of \(\Lambda\), then we have
\[
disc \Lambda' = [\Lambda : \Lambda']^2 \text{disc} \Lambda.
\]
Hence, \(\text{disc} \Lambda = \text{disc} \Lambda'\) in \(\mathbb{Q}^*/(\mathbb{Q}^*)^2\).

Corollary (vL). If \(v, w\) are two places of good reduction with
1) \(\text{rk} \text{Num}^1(X_{k(v)s}) = r = \text{rk} \text{Num}^1(X_{k(w)s})\), and
2) \(\text{disc} \text{Num}^1(X_{k(v)s}) \neq \text{disc} \text{Num}^1(X_{k(w)s})\) in \(\mathbb{Q}^*/(\mathbb{Q}^*)^2\),
then \(\text{rk} \text{Num}^1(X^s) < r\).

If \(\text{rk} \text{Num}^1(X^s) = r - 1\), then this equality is verifiable.
Example. Let $X \subset \mathbb{P}_\mathbb{Q}^3$ be given by

$$wf = 3pq - 2zg$$

with $f \in \mathbb{Z}[x, y, z, w]$ and $g, p, q \in \mathbb{Z}[x, y, z]$ equal to

$$f = x^3 - x^2y - x^2z + x^2w - xy^2 - xyz + 2xyw + xz^2 + 2xzw + y^3 + y^2z - y^2w + yz^2 + yzw - yw^2 + z^2w + zw^2 + 2w^3,$$

$$g = xy^2 + xyz - xz^2 - yz^2 + z^3,$$

$$p = z^2 + xy + yz,$$

$$q = z^2 + xy.$$

Then $\text{rk NS}(X^s) = 1$.
Example. Let $X \subset \mathbb{P}^3_Q$ be given by

$$wf = 3pq - 2zg$$

with ... Then $\text{rk NS}(X^s) = 1$.

Proof. Two primes of good reduction: 2 and 3. For both we obtain $\dim V_\mu = 2$ as before. Reduction $X_{\mathbb{F}_2}$ contains conic C given by $w = p = 0$. Reduction $X_{\mathbb{F}_3}$ contains line L given by $w = z = 0$.
Example. Let $X \subset \mathbb{P}^3_Q$ be given by

$$wf = 3pq - 2zg$$

with ... Then $\text{rk NS}(X^s) = 1$.

Proof. Two primes of good reduction: 2 and 3. For both we obtain $\dim V_\mu = 2$ as before. Reduction X_{F_2} contains conic C given by $w = p = 0$. Reduction X_{F_3} contains line L given by $w = z = 0$. Then $\text{Num}^1(X_{F_2})$ and $\text{Num}^1(X_{F_3})$ contain finite-index sublattices

$$\begin{pmatrix} 4 & 2 \\ 2 & -2 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 4 & 1 \\ 1 & -2 \end{pmatrix}$$

with discriminants -12 and -9 in $\mathbb{Q}^*/(\mathbb{Q}^*)^2$. Not the same, so $\text{rk NS}(X^s) = 1$.
Extension by Kloosterman

- $k = \mathbb{F}_q$.
- X/k a nice surface.
- $\Phi = \text{Frob}^*| H^2(X^s, \mathbb{Q}_\ell)$.
- $f_\Phi(T) = \det(1 - T \cdot \Phi)$.
- $\rho = \text{rk Num}^1(X)$ and $\Delta = \text{disc Num}^1(X)$.
- $b_2 = b_2(X)$ and $\alpha = \chi(X, \mathcal{O}_X) - 1 - \dim \text{Pic}^0(X)$.

Conjecture (Artin–Tate).

$$\lim_{T \to q^{-1}} \frac{f_\Phi(T)}{(1 - qT)^\rho} = \frac{(-1)^{\rho-1} \cdot \# \text{Br}_X \cdot \Delta}{q^{\alpha} \left(\# \text{NS}(X)_{\text{tors}}\right)^2}.$$
Extension by Kloosterman

- $k = \mathbb{F}_q$.
- X/k a nice surface.
- $\Phi = \text{Frob}^*|H^2(X^s, \mathbb{Q}_\ell)$.
- $f_\Phi(T) = \det(1 - T \cdot \Phi)$.
- $\rho = \text{rk Num}^1(X)$ and $\Delta = \text{disc Num}^1(X)$.
- $b_2 = b_2(X)$ and $\alpha = \chi(X, \mathcal{O}_X) - 1 - \text{dim Pic}^0(X)$.

Conjecture (Artin–Tate).

$$\lim_{T \to q^{-1}} \frac{f_\Phi(T)}{(1 - qT)^\rho} = \frac{(-1)^{\rho - 1} \cdot \# \text{Br} X \cdot \Delta}{q^\alpha(\# \text{NS}(X)_{\text{tors}})^2}.$$

Facts.

$T^1(X, \ell) \Rightarrow$ Artin–Tate.

$T^1(X, \ell) \Rightarrow \# \text{Br} X \in (\mathbb{Q}^*)^2$ (Liu–Lorenzini–Raynaud).

Conclusion. We may compute $\Delta \in \mathbb{Q}^*/\mathbb{Q}^{*2}$, assuming $T^1(X, \ell)$.
Application

Theorem (Kloosterman)

The elliptic K3 surface $\pi : X \to \mathbb{P}^1$ over $\overline{\mathbb{Q}}$ given by

$$y^2 = x^3 + 2(t^8 + 14t^4 + 1)x + 4t^2(t^8 + 6t^4 + 1)$$

has $\text{rk NS}(X) = 17$ and Mordell-Weil rank 15.
Extension by Elsenhans-Jahnel, I

Main idea. If you consider Galois action, you may not need
\[r = \text{rk } \text{Num}^1 (X^s) + 1. \]
Extension by Elsenhans-Jahnel, I

Main idea. If you consider Galois action, you may not need
\[r = \text{rk} \text{Num}^1(X^s) + 1. \]

Example. (Elsenhans, Jahnel)
Let \(X : w^2 = f(x, y, z) \) be a K3 surface of degree 2 over \(\mathbb{Q} \) with
\[
f \equiv y^6 + x^4y^2 - 2x^2y^4 + 2x^5z + 3xz^5 + z^6 \quad (\text{mod } 5)
\]
and
\[
f \equiv 2x^6 + x^4y^2 + 2x^3y^2z + x^2y^2z^2 + x^2yz^3 + 2x^2z^4 + xy^4z
\plus xy^3z^2 + xy^2z^3 + 2xz^5 + 2y^6 + y^4z^2 + y^3z^3 \quad (\text{mod } 3).
\]
Then \(\text{rk} \text{NS}(X^s) = 1. \).
Extension by Elsenhans-Jahnel, I

Let L denote the pull-back of a line in $\mathbb{P}^2(x, y, z)$.

The characteristic polynomial of Frobenius acting on the space

$$(\text{NS} \times_{\mathbb{F}_3} \otimes \mathbb{Q})/\langle L \rangle$$

equals $(t - 1)(t^2 + t + 1)$, so only finitely many Galois-invariant subspaces of $\text{NS} \times_{\mathbb{F}_3} \otimes \mathbb{Q}$ containing L; dimensions are $1, 2, 3, 4$.
Extension by Elsenhans-Jahnel, I

Let L denote the pull-back of a line in $\mathbb{P}^2(x, y, z)$.

The characteristic polynomial of Frobenius acting on the space $(\text{NS } X_{\overline{F}_3} \otimes \mathbb{Q})/\langle L \rangle$
equals (t - 1)(t^2 + t + 1), so only finitely many Galois-invariant subspaces of $\text{NS } X_{\overline{F}_3} \otimes \mathbb{Q}$ containing L; dimensions are $1, 2, 3, 4$.

The characteristic polynomial of Frobenius acting on the space $(\text{NS } X_{\overline{F}_5} \otimes \mathbb{Q})/\langle L \rangle$
equals (t - 1)\Phi_5(t)\Phi_{15}(t), where Φ_n denotes the n-th cyclotomic polynomial. So only finitely many Galois-invariant subspaces of $\text{NS } X_{\overline{F}_5} \otimes \mathbb{Q}$ containing L; dimensions are $1, 2, 5, 6, 9, 10, 13, 14$.

Extension by Elsenhans-Jahnel, I

Let L denote the pull-back of a line in $\mathbb{P}^2(x, y, z)$.

The characteristic polynomial of Frobenius acting on the space \[
\left(\text{NS } X_{\overline{F}_3} \otimes \mathbb{Q} \right)/\langle L \rangle
\]
equals $(t - 1)(t^2 + t + 1)$, so only finitely many Galois-invariant subspaces of $\text{NS } X_{\overline{F}_3} \otimes \mathbb{Q}$ containing L; dimensions are $1, 2, 3, 4$.

The characteristic polynomial of Frobenius acting on the space \[
\left(\text{NS } X_{\overline{F}_5} \otimes \mathbb{Q} \right)/\langle L \rangle
\]
equals $(t - 1)\Phi_5(t)\Phi_{15}(t)$, where Φ_n denotes the n-th cyclotomic polynomial. So only finitely many Galois-invariant subspaces of $\text{NS } X_{\overline{F}_5} \otimes \mathbb{Q}$ containing L; dimensions are $1, 2, 5, 6, 9, 10, 13, 14$.

Only common dimensions are 1 and 2. Comparing discriminants up to squares of the subspaces of dimension 2 yields $\text{rk } \text{NS}(X^s) = 1$.
Extension by Elsenhans-Jahnel, II

- \(p \neq 2 \) prime.
- \(X \) a scheme that is proper and flat over \(\mathbb{Z} \).

Theorem (Elsenhans-Jahnel). If the special fiber \(X_p \) is nonsingular, then the cokernel of the specialization homomorphism

\[
\text{sp}_Q : \text{Pic}(X_\mathbb{Q}) \to \text{Pic}(X_{\overline{p}})
\]

is torsion-free.
Extension by Elsenhans-Jahnel, II

- $p \neq 2$ prime.
- X a scheme that is proper and flat over \mathbb{Z}.

Theorem (Elsenhans-Jahnel). If the special fiber X_p is nonsingular, then the cokernel of the specialization homomorphism

$$\text{sp}_Q : \text{Pic}(X_Q) \to \text{Pic}(X_p)$$

is torsion-free.

Let X be a double cover of \mathbb{P}^2, ramified over a smooth plane sextic C. Let p, p' denote two odd primes of good reduction. Assume that there is a tritangent line ℓ to the curve C_p. Suppose $\text{Pic}(X^s_p)$ has rank 2 and is generated by the components in the pull-back of ℓ. If there are no tritangent lines to $C_{p'}$, then $\text{rk} \text{Pic}(X^s) = 1$.
“It works” by Charles

Question.
1) Given a nice surface X over a number field k, is there always a prime p of good reduction with $\text{rk Num}^1(X_p) \leq \text{rk Num}^1(X^s) + 1$?
2) Are there two so that the discriminant trick works?
“It works” by Charles

Question.
1) Given a nice surface X over a number field k, is there always a prime p of good reduction with $\text{rk Num}^1(X^s_p) \leq \text{rk Num}^1(X^s) + 1$?
2) Are there two so that the discriminant trick works?

Answer (Charles).
Not always, but if not, then the minimal jumps are still controllable!
“It works” by Charles

Question.
1) Given a nice surface X over a number field k, is there always a prime p of good reduction with $\text{rk Num}^1(X^s_p) \leq \text{rk Num}^1(X^s) + 1$?
2) Are there two so that the discriminant trick works?

Answer (Charles).
Not always, but if not, then the minimal jumps are still controllable!

Consequence (Charles).
There is an algorithm with input a K3 surface X over a number field that either returns $\text{rk NS}(X^s)$ or does not terminate.
If $X \times X$ satisfies the Hodge conjecture for codimension 2 cycles, then the algorithm applied to X terminates.
Saturation

Theorem (Poonen, Testa, vL)

There is an algorithm that takes k, X, and a finite set \mathcal{D} of divisors as input, and computes the saturation inside $\text{NS}(X^s)$ of the Γ-submodule generated by the classes of divisors in \mathcal{D}.

Method. Hilbert scheme computations.
Saturation

Goal. Given a surface X over a global field K and a sublattice $G \subset \text{Num}^1(X^s)$, show that G is primitive.
Saturation

Goal. Given a surface \(X \) over a global field \(K \) and a sublattice \(G \subset \text{Num}^1(X^s) \), show that \(G \) is primitive.

If not primitive, then \(G \) has nontrivial index in its saturation \(\tilde{G} \), so there is a prime \(r \mid [\tilde{G} : G] \) with \(r^2 \mid [\tilde{G} : G]^2 \cdot \text{disc} \tilde{G} = \text{disc} G \). Then \(G \otimes \mathbb{F}_r \to \text{Num}^1(X^s) \otimes \mathbb{F}_r \) is not injective.
Saturation

Goal. Given a surface X over a global field K and a sublattice $G \subset \text{Num}^1(X^s)$, show that G is primitive.

If not primitive, then G has nontrivial index in its saturation \tilde{G}, so there is a prime $r | [\tilde{G} : G]$ with $r^2 | [\tilde{G} : G]^2 \cdot \text{disc} \tilde{G} = \text{disc} G$. Then $G \otimes \mathbb{F}_r \to \text{Num}^1(X^s) \otimes \mathbb{F}_r$ is not injective.

For all primes p of good reduction and $H \subset \text{Num}^1(X_p^s)$ the map

$$\text{Num}^1(X^s) \to \text{Hom}(H, \mathbb{Z})$$

induces a non-injective composition

$$G \otimes \mathbb{F}_r \to \text{Num}^1(X^s) \otimes \mathbb{F}_r \to \text{Hom}(H \otimes \mathbb{F}_r, \mathbb{F}_r).$$
Saturation

Goal. Given a surface X over a global field K and a sublattice $G \subset \text{Num}^1(X^s)$, show that G is primitive.

If not primitive, then G has nontrivial index in its saturation \tilde{G}, so there is a prime $r | [\tilde{G} : G]$ with $r^2 | [\tilde{G} : G]^2 \cdot \text{disc} \tilde{G} = \text{disc} G$. Then $G \otimes \mathbb{F}_r \rightarrow \text{Num}^1(X^s) \otimes \mathbb{F}_r$ is not injective.

For all primes p of good reduction and $H \subset \text{Num}^1(X^s_p)$ the map

$$\text{Num}^1(X^s) \rightarrow \text{Hom}(H, \mathbb{Z})$$

induces a non-injective composition

$$G \otimes \mathbb{F}_r \rightarrow \text{Num}^1(X^s) \otimes \mathbb{F}_r \rightarrow \text{Hom}(H \otimes \mathbb{F}_r, \mathbb{F}_r).$$

Sufficient for primitivity. Find for each r with $r^2 | \text{disc} G$ a prime p and a subgroup $H \subset \text{Num}^1(X^s_p)$ for which the composition is injective (linear algebra over \mathbb{F}_r).
Application

Theorem (Mizukami \((m = 4)\), Schütt–Shioda–vL \((m \leq 100)\))

For any integer \(1 \leq m \leq 100\) the Néron-Severi group of the Fermat surface \(S_m \subset \mathbb{P}^3\) over \(\mathbb{C}\) given by

\[x^m + y^m + z^m + w^m = 0\]

is generated by the lines on \(S_m\) if and only if \(m \leq 4\) or \((m, 6) = 1\).