Cubic points on cubic curves and the Brauer-Manin obstruction on K3 surfaces

Ronald van Luijk
PIMS, Vancouver
University of British Columbia
Simon Fraser University

July 10, 2007
Bristol
Two problems:

(1) Are there cubic curves without cubic points?

(2) Is the Brauer-Manin obstruction the only one on K3 surfaces?

Goal:

(a) Explain the problems

(b) Relate them
Hasse Principle

Let X be a variety over \mathbb{Q}.
If X has no points over \mathbb{R} then X has no points over \mathbb{Q}.
If X has no points over \mathbb{Q}_p then X has no points over \mathbb{Q}.

Conics satisfy the Hasse principle:
If a conic C has a point over \mathbb{R} and over \mathbb{Q}_p for every p, then C has a point over \mathbb{Q}.

If a variety X over a number field k has points over every completion of k, then we say that X is locally solvable everywhere (LSE).
Cubic curves in general do not satisfy the Hasse principle.

The curve C given by $3x^3 + 4y^3 + 5z^3 = 0$ in \mathbb{P}^2 is LSE, but has no points over \mathbb{Q} (Selmer).
Cubic curves in general do not satisfy the Hasse principle.

The curve C given by $3x^3 + 4y^3 + 5z^3 = 0$ in \mathbb{P}^2 is LSE, but has no points over \mathbb{Q} (Selmer).

Question 1: Over what fields does C acquire points?
Cubic curves in general do not satisfy the Hasse principle.

The curve C given by $3x^3 + 4y^3 + 5z^3 = 0$ in \mathbb{P}^2 is LSE, but has no points over \mathbb{Q} (Selmer).

Question 1: Over what fields does C acquire points?

Question 2: Over cubic fields that are galois?
Cubic curves in general do not satisfy the Hasse principle.

The curve C given by $3x^3 + 4y^3 + 5z^3 = 0$ in \mathbb{P}^2 is LSE, but has no points over \mathbb{Q} (Selmer).

Question 1: Over what fields does C acquire points?

Question 2: Over cubic fields that are galois?

Definition: A cubic point is a point over a cubic galois extension.

The line $L: 711x + 172y + 785z = 0$ intersects C in three cubic points.
Cubic curves in general do not satisfy the Hasse principle.

The curve C given by $3x^3 + 4y^3 + 5z^3 = 0$ in \mathbb{P}^2 is LSE, but has no points over \mathbb{Q} (Selmer).

Question 1: Over what fields does C acquire points?

Question 2: Over cubic fields that are galois?

Definition: A cubic point is a point over a cubic galois extension.

The line $L: 711x + 172y + 785z = 0$ intersects C in three cubic points.

Question 3: Does every cubic curve that is LSE have cubic points? (unknown)
Brauer-Manin obstruction.
Brauer-Manin obstruction.

Let K be a number field with ring of adèles

$$\mathbb{A}_K = \prod_{v \in M_K} K_v$$

(almost all coordinates are integral).
Brauer-Manin obstruction.

Let K be a number field with ring of adèles

$$\mathbb{A}_K = \prod_{v \in M_K}^\prime K_v$$

(almost all coordinates are integral).

Let X be a smooth, absolutely irreducible, projective variety over K.

Then the set of adèlic points is

$$X(\mathbb{A}_K) = \prod_{v \in M_K} X(K_v)$$

and this is nonempty if and only if X is LSE.
Brauer-Manin obstruction.

For any scheme Z we set $\text{Br } Z = H^2_{\text{ét}}(Z, \mathbb{G}_m)$.
For any ring R we set $\text{Br } R = \text{Br } \text{Spec } R$.
Brauer-Manin obstruction.

For any scheme Z we set $\text{Br } Z = H^2_{\text{et}}(Z, \mathbb{G}_m)$.
For any ring R we set $\text{Br } R = \text{Br } \text{Spec } R$.

For any K-algebra S and any S-point $x: \text{Spec } S \rightarrow X$, we get a homomorphism $x^*: \text{Br } X \rightarrow \text{Br } S$, yielding a map

$$\rho_S: X(S) \rightarrow \text{Hom}(\text{Br } X, \text{Br } S).$$
Brauer-Manin obstruction.

For any scheme Z we set $\text{Br } Z = H^2_{\text{ét}}(Z, \mathbb{G}_m)$.

For any ring R we set $\text{Br } R = \text{Br } \text{Spec } R$.

For any K-algebra S and any S-point $x: \text{Spec } S \rightarrow X$, we get a homomorphism $x^*: \text{Br } X \rightarrow \text{Br } S$, yielding a map

$$\rho_S: X(S) \rightarrow \text{Hom}(\text{Br } X, \text{Br } S).$$

We will apply this to K and to the ring of adèles \mathbb{A}_K.
From class field theory we have

\[0 \to \text{Br } K \to \text{Br } \mathbb{A}_K \to \mathbb{Q}/\mathbb{Z} \]

Applying \(\text{Hom}(\text{Br } X, _ \,) \) we find \ldots
$0 \to \text{Hom}(\text{Br } X, \text{Br } K) \to \text{Hom}(\text{Br } X, \text{Br } \mathbb{A}_K) \to \text{Hom}(\text{Br } X, \mathbb{Q}/\mathbb{Z})$
$0 \rightarrow \text{Hom}(\text{Br } X, \text{Br } K) \rightarrow \text{Hom}(\text{Br } X, \text{Br } \mathbb{A}_K) \rightarrow \text{Hom}(\text{Br } X, \mathbb{Q}/\mathbb{Z})$
\[0 \to \text{Hom}(\text{Br } X, \text{Br } K) \to \text{Hom}(\text{Br } X, \text{Br } \mathbb{A}_K) \to \text{Hom}(\text{Br } X, \mathbb{Q}/\mathbb{Z})\]
\[X(\mathbb{A}_K)^{Br} = \psi^{-1}(0) \]

\[0 \to \text{Hom}(\text{Br} X, \text{Br} K) \to \text{Hom}(\text{Br} X, \text{Br} \mathbb{A}_K) \to \text{Hom}(\text{Br} X, \mathbb{Q}/\mathbb{Z}) \]
$X(\mathbb{A}_K)^{Br} = \emptyset \implies X(K) = \emptyset$

$0 \to \text{Hom}(\text{Br } X, \text{Br } K) \to \text{Hom}(\text{Br } X, \text{Br } \mathbb{A}_K) \to \text{Hom}(\text{Br } X, \mathbb{Q}/\mathbb{Z})$
\[\begin{align*}
X(\mathbb{A}_K)^{\text{Br}_1} &= \emptyset \quad \Rightarrow \quad X(K) = \emptyset \\
X(\mathbb{A}_K)^{\text{Br}_1} &= \psi_1^{-1}(0) \\
0 &\rightarrow \text{Hom}(\text{Br}_1X, \text{Br } K) \rightarrow \text{Hom}(\text{Br}_1X, \text{Br } \mathbb{A}_K) \rightarrow \text{Hom}(\text{Br}_1X, \mathbb{Q}/\mathbb{Z})
\end{align*}\]

\[\text{Br}_1 X = \ker(\text{Br } X \rightarrow \text{Br } \overline{X})\]
\(X(\mathbb{A}_K)^{\text{Br}(1)} = \emptyset \quad \Rightarrow \quad X(K) = \emptyset.\)

There is a **Brauer-Manin obstruction** to the Hasse principle if

\[X(\mathbb{A}_K) \neq \emptyset \quad \text{and} \quad X(\mathbb{A}_K)^{\text{Br}} = \emptyset.\]
There is a **Brauer-Manin obstruction** to the Hasse principle if

\[X(\mathbb{A}_K)^{\text{Br}(1)} = \emptyset \quad \Rightarrow \quad X(K) = \emptyset. \]

For a class \(S \) of varieties over \(K \) the Brauer-Manin obstruction is the **only obstruction** to the Hasse principle if for every \(X \in S \) we have

\[X(\mathbb{A}_K)^{\text{Br}} = \emptyset \quad \Leftrightarrow \quad X(K) = \emptyset. \]
$X(\mathbb{A}_K)^{\text{Br}(1)} = \emptyset \quad \Rightarrow \quad X(K) = \emptyset.$

There is a **Brauer-Manin obstruction** to the Hasse principle if

$$X(\mathbb{A}_K) \neq \emptyset \quad \text{and} \quad X(\mathbb{A}_K)^{\text{Br}} = \emptyset.$$

For a class S of varieties over K the Brauer-Manin obstruction is the **only obstruction** to the Hasse principle if for every $X \in S$ we have

$$X(\mathbb{A}_K)^{\text{Br}} = \emptyset \iff X(K) = \emptyset.$$

Conjecture: The Brauer-Manin obstruction is the only obstruction to the Hasse principle for **rationally connected varieties**.
Definition: A **K3 surface** is a smooth, absolutely irreducible, projective surface X with trivial canonical sheaf and $H^1(X, \mathcal{O}_X) = 0$.

Examples of K3’s:
smooth surfaces of degree 4 in \mathbb{P}^3, Kummer surfaces.

Question 4: Is the Brauer-Manin obstruction the only obstruction to the Hasse principle for **K3 surfaces**? *(unknown)*
Relating the two problems
Relating the two problems

Let C be a smooth cubic curve over K in \mathbb{P}^2 and ρ the automorphism

$$\rho: C \times C \to C \times C, \quad (P, Q) \mapsto (Q, R),$$

with R the third intersection point of C with the line through P and Q.
Relating the two problems

Let C be a smooth cubic curve over K in \mathbb{P}^2 and ρ the automorphism

$$\rho: C \times C \to C \times C, \quad (P, Q) \mapsto (Q, R),$$

with R the third intersection point of C with the line through P and Q.

Let X_C be the minimal desingularization of the quotient $(C \times C)/\rho$.

Then X_C is a K3 surface.
Theorem (vL)
Let C be the cubic curve in \mathbb{P}^2_K given by $ax^3 + by^3 + cz^3 = 0$ and suppose
(i) C is LSE,
(ii) $abc \in K^*$ is not a cube,
(iii) C has no cubic points (with K as ground field).
Then
$$X_C(\mathbb{A}_K)^{Br_1} \neq \emptyset \quad \text{and} \quad X_C(K) = \emptyset$$
(algebraic Brauer-Manin obstruction is not the only one).
Theorem (vL)
Let C be the cubic curve in \mathbb{P}^2_K given by $ax^3 + by^3 + cz^3 = 0$ and suppose
(i) C is LSE,
(ii) $abc \in K^*$ is not a cube,
(iii) C has no cubic points (with K as ground field).
Then
$X_C(\mathbb{A}_K)^{Br_1} \neq \emptyset$ and $X_C(K) = \emptyset$

sketch of proof:
(iii) implies $X_C(K) = \emptyset$.
Indeed, $T \in X_C(K)$ corresponds to a galois-invariant orbit
$\{(P, Q), (Q, R), (R, P)\}$ of ρ on $C \times C$, so galois acts by even permutations
only and P, Q, R are defined over some cubic extension that is galois.
Theorem (vL)

Let C be the cubic curve in \mathbb{P}^2_K given by $ax^3 + by^3 + cz^3 = 0$ and suppose

(i) C is **LSE**,
(ii) $abc \in K^*$ is not a cube,
(iii) C has no cubic points (with K as ground field).

Then

$$X_C(\mathbb{A}_K)^{Br} \neq \emptyset \quad \text{and} \quad X_C(K) = \emptyset$$

sketch of proof:

(iii) implies $X_C(K) = \emptyset$.

(ii) implies $Br_1 X_C = Br K$.

Indeed, $Br_1 X_C / Br K \cong H^1(K, \text{Pic } X_C)$, and $\text{Pic } X_C$ is defined over $K(\zeta_3, \sqrt[3]{a/c}, \sqrt[3]{b/c})$, with galois group contained in $(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) \rtimes \mathbb{Z}/2\mathbb{Z}$. The only subgroups with nontrivial $H^1(K, \text{Pic } X_C)$ all fix $\sqrt[3]{abc}$.

31
Theorem (vL)
Let C be the cubic curve in \mathbb{P}^2_K given by $ax^3 + by^3 + cz^3 = 0$ and suppose

(i) C is LSE,
(ii) $abc \in K^*$ is not a cube,
(iii) C has no cubic points (with K as ground field).

Then

$$X_C(\mathbb{A}_K)^{Br_1} \neq \emptyset \quad \text{and} \quad X_C(K) = \emptyset$$

Sketch of proof:

(iii) implies $X_C(K) = \emptyset$.
(ii) implies $Br_1 X_C = Br K$.
(i) implies that X_C is LSE, so $X_C(\mathbb{A}_K) \neq \emptyset$.
Theorem (vL)
Let C be the cubic curve in \mathbb{P}_K^2 given by $ax^3 + by^3 + cz^3 = 0$ and suppose

(i) C is LSE,
(ii) $abc \in K^*$ is not a cube,
(iii) C has no cubic points (with K as ground field).

Then

$$X_C(\mathbb{A}_K)^{\text{Br}_1} \neq \emptyset \quad \text{and} \quad X_C(K) = \emptyset$$

sketch of proof:

(iii) implies $X_C(K) = \emptyset$.

(ii) implies $\text{Br}_1 X_C = \text{Br} K$.

(i) implies that X_C is LSE, so $X_C(\mathbb{A}_K) \neq \emptyset$.

Done!