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1 Introduction

In this paper we will discuss a problem that was already known to Euler and has not been solved
ever since. If of a rectangular parallelepiped not only all the sides are integral, but also all the
face diagonals, we will call this box a rational cuboid. Euler already knew the smallest rational
cuboid which has sides 44, 117 and 240. He also knew that if x, y and z are the sides of a rational
cuboid, then so are yz, xz and xy. Applying this trick twice, we get a multiple of the first cuboid.
Such cuboids are said to be derived from each other.

A rational cuboid of which also the body diagonal is an integer will be called a perfect cuboid.
Although it is hard to believe that Euler never asked himself the question whether perfect cuboids
exist, he doesn’t seem to have written anything about it. To answer this question has appeared
to be a difficult problem. No perfect cuboid has been found so far and a proof of nonexistence
doesn’t seem to be in sight yet.

This paper will serve two goals. The first is to summarize the literature written about this
problem, which is done in section 2. Many papers have been written about (almost) perfect
cuboids, only two of which, by F. Beukers and B. van Geemen [1] and by A. Bremner [2], have a
more geometrical approach. Therefore the second goal is to analyse the geometrical structure of
this problem.

In section 3 we will define a surface Υ of which the rational points correspond with perfect
cuboids. We will prove that Υ is a so-called surface of general type, which conjecturally implies
that its rational points do not lie Zariski dense. The surface Υ admits many automorphisms, one
of which is changing the sign of one of the face diagonals. In section 4 we will divide out by this
automorphism to get a K3 surface V . We will compute the Néron-Severi group of a nonsingular
model of V . This may help us in finding rational curves on V , thus providing many rational points
on V of which we can check whether they lift to rational points on Υ.
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2 Literature

As was mentioned in the introduction the problem of finding rational cuboids dates from before
Euler. Around 1740 Saunderson [27] already knew that if a, b and c are integers satisfying
a2 + b2 = c2, then

x = 4abc, y = a(4b2 − c2) and z = b(4a2 − c2) (1)

are the sides of a rational cuboid. Unfortunately for Saunderson cuboids of this form are nowadays
usually known as Euler cuboids. Since pythagorean triples are parametrizable by a = m2 − n2,
b = 2mn and c = m2 + n2, formula (1) gives rise to a 2-dimensional degree 6 parametrization of
rational cuboids. One could hope that some of these cuboids are perfect, but Spohn [31] proved
that no Euler cuboid can be a perfect cuboid. Spohn [32] was unable to prove completely that
a derived cuboid (see introduction) of an Euler cuboid could not be perfect either, but Chein
[4] and Lagrange [16] both showed that this could indeed never happen. Although proofs were
now already given, Leech [21] gave a short one page proof that no Euler cuboid nor its derived
cuboid can be perfect. Spohn [31] proves a theorem that essentially states the easy fact that the
(projective) surface given by x2 + z2 = u2 and y2 + z2 = v2 is parametrized by (1) without the
assumption that a2 + b2 = c2.

Many people have found almost perfect cuboids, i.e., cuboids of which all but one of the 7
lengths (3 edges, 3 face diagonals and 1 body diagonal) are integral.

Definition 2.0.1 We will call a cuboid of which all of the seven lengths are integral except possibly
for one edge or face diagonal an edge cuboid or face cuboid respectively. In this context we will
also call a rational cuboid a body cuboid.

In section 4 we will take a closer look at face cuboids. Starting with one parametrization,
using elliptic curves Colman [5] finds infinitely many two-parameter parametrizations of rational
cuboids with rapidly increasing degree. He shows how the same can be done for edge cuboids.
He also gives a system of two elliptic curves fibered over a conic of which a rational point would
correspond with a perfect cuboid, see section 5.

By elementary examination of the equations for a rational cuboid modulo some small primes,
Kraitchik [12] shows that at least one of the sides of a rational cuboid is divisible by 4 and another
by 16. Furthermore, the sides are divisible by different powers of 3 and both the primes 5 and 11
divide at least one of the sides. This is equally elementary extended by Horst Bergmann and later
by Leech who shows that the product of all the sides and diagonals (edge and face) of a perfect
cuboid is divisible by 28×34×53×7×11×13×17×19×29×37, see Guy’s unsolved problems in
number theory [8, Problem D18]. Kraitchik [12] also rediscovers the Euler cuboids of (1) and gives
a list of 50 rational cuboids that are not Euler cuboids, which he found by some ad hoc methods.
He extends his classical list to 241 cuboids with odd side less than 106 in [13] and gives 18 more
in [14], of which 16 are new.

This was the beginning of an intensive search for rational and in particular for perfect cuboids.
Lal and Blundon [17] noted that for rational integers m, n, p and q, the cuboid with sides x =
|2mnpq|, y = |mn(p2 − q2)| and z = |pq(m2 − n2)| has at least two integral face diagonals and is
rational if and only if y2 +z2 = !. Making use of symmetries they had a computer search through
all the quadruples (m, n, p, q) with 1 ≤ m, n, p, q ≤ 70 to check if y2 + z2 = !. They hereby found
130 rational cuboids, none of which perfect. Later Shanks [28] publishes some corrigenda from
their paper.

In [9] I. Korec proves that there are no perfect cuboids with the least side smaller than 10000
in the following way. If x, y and z are the sides of a perfect cuboid, then there are positive integers
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a, b and c all dividing x such that with t =
√

y2 + z2 we have

y =
1
2

(
x2

a
− a

)
, z =

1
2

(
x2

b
− b

)
, t =

1
2

(
x2

c
− c

)
. (2)

Then c < a, b and we can assume c < b < a < x. Substituting (2) in y2 + z2 = t2, we obtain the
equation

(a2c2 + b2c2 − a2b2)x4 − 2a2b2c2x2 + a2b2c2(a2 + b2 − c2) = 0. (3)

From this equation, Korec proves that there are positive integers d and v such that

d2 = (a2 + b2)(a2 − c2)(b2 − c2),

v2 = abc(abc− d)(a2 + b2 − c2).
(4)

Using (4) Korec shows that there are no perfect cuboids for which c ≤ 3200. If we assign weight
1 to a, b and c and weight 3 and 4 to d and v, respectively, then (4) is weighted homogeneous, so
in order to prove that (4) implies c > 3200, we may assume that gcd(a, b, c) = 1. Then he proves
the inequalities

a <
bc√

b2 − c2
, b < c

√
2 and x > (

√
2 +

√
3)c.

He also proves that if p ≡ 3(mod 4) is a prime such that ordp(c) is odd, then p2 < c. Based on
this fact he can exclude many possible values for c. For the remaining values c ≤ 3200 he has a
computer run through all values c < b < c

√
2. For each b he checks other conditions that the pair

(c, b) has to satisfy, again involving ordp. For all b for which the pair (c, b) can not be excluded,
he has a computer check some necessary p-adic conditions for each a with b < a < bc/

√
b2 − c2. It

turns out that no 3-tuple (c, b, a) with c ≤ 3200 satisfies all conditions, so for every perfect cuboid
we have c > 3200, whence x > (

√
2 +

√
3)c > (

√
2 +

√
3)× 3200 > 10000.

In a later paper Korec [10] proves that there is no perfect cuboid with the least edge smaller
than 106, using the same ideas as before [9] and the fact that c > 3200. For every x ≤ 106 he
has a computer generate all possible c and b. For each pair (c, b) of the generated possibilities he
computes a from (3). If for all the pairs (c, b) the computed a is not an integer dividing x, then x
is not an edge of a perfect cuboid. This appeared to be the case for all x ≤ 106. To speed up the
algorithm he also proves that integers x ≡ 2(mod 4) don’t need to be considered as they cannot
be an edge of a perfect cuboid. Similarly for x that are prime powers and x of the form pmqn

with p &= q prime and either p ≡ q ≡ 3(mod 4) or m = 1 or n = 1 or m + n ≤ 4. Neither do we
need to consider x of the form 2mqn with q prime and either q ≡ 3(mod 4) or m ≤ 3 or n = 1.
In order to eliminate as many values for b and c as possible, he proves some theorems that relate
ordp(b) and ordp(c) to ordp(x) for primes p and the inequalities a < x(

√
2−1) and c < x(

√
3−

√
2)

assuming that x is the smallest edge of a perfect cuboid. Unfortunately, Korec makes a mistake
in the formula that expresses a in x, c and b and of course it is impossible to check if he made the
same mistake in the program that he ran on a computer.

In a third paper Korec [11] computes more lower bounds, this time not based on the smallest
edge of a perfect cuboid, but on the full diagonal and therefore also on the largest edge. First he
writes the full diagonal z as z = nq where q is a prime. He proves that if z is the full diagonal
of a perfect cuboid, then z can only contain primes 1(mod 4) and n must be composite. He
also proves that for i = 1, 2, 3 there exist positive integers ai, bi such that n2 = a2

i + (4bi)2 and
that the sides of the perfect cuboid can each be expressed in the ai and the bi in one of three
different ways. Korec proves that n ≥ 11 · 106 by having a computer run through all the integers
5 ≤ n ≤ 11 ·106 with only prime divisors 1(mod 4) and checking all the possibilities for the (ai, bi).
Several conditions for the ai and the bi are proven. Some of these are conditions that must hold
modulo every positive integer m, some of them are there to avoid double checking, some to rule
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out some exceptional cases. By a computer search these conditions appeared to be sufficient to
conclude that n > 11 · 106.

This implies that for the interval I = [z0, z1] an integer z ∈ I is not the full diagonal of a
perfect cuboid if z contains a prime q with q > z1 · (11 ·106)−1 or q ≡ 3(mod 4). For the remaining
z ∈ I all bi are contructed such that z2 − 16b2

i = !. The bi are candidates for the quarters of the
even edges and even face diagonals, whence if z is the full diagonal of a perfect cuboid, then there
are bi, bj and bk among the candidates such that b2

i + b2
j = b2

k. This can be checked faster than
the straightforward way by partitioning the bi by the residue class of their squares. Korec let a
computer run through several intervals, the union of which covers all positive integers ≤ 8 · 109.
No perfect cuboid was found and hence the full diagonal of a perfect cuboid is at least 8 · 109. If x
is the maximal edge of a perfect cuboid and z is the full diagonal, then we have z ≤ x

√
3, whence

x > 1
2z > 4 · 109.

Similar to what Korec [9, 10] does, Rathbun [25, 26] notes that if x, y and z are the sides
of a rational cuboid, then x2 + y2 = p2 and x2 + z2 = q2 for some integers p and q. then
x2 = (p + y)(p − y) = (q + z)(q − z), whence knowing the factorization of x it is possible to
recover all possibilities for y and z and thereby all rational cuboids with one side equal to x.
Similarly, one can easily find all edge and face cuboids with one side equal to x. Rathbun [25] had
a computer check all x ≤ 333, 750, 000, which resulted in 6800 body, 6749 face, 6380 edge and no
perfect cuboids. He mentions [26] that 4839 of the 6800 body or rational cuboids have an odd side
less than 333, 750, 000, thereby extending and correcting Kraitchik’s classical table [12, 13, 14].
Rathbun claims anno 1999 to have checked all x ≤ 1, 281, 000, 000 and has not found any perfect
cuboid. Leech [22] already noted some errata in Kraitchik’s table earlier and Rathbun agrees with
this on all but one entry.

J. Leech [18] analyses the problem of existence of all types of cuboids (he notes some minor
errata in [19]).

For rational or body cuboids he notes that for the equation x2
i +x2

i+1 = y2
i+2 there are positive

integers ai, bi with gcd(ai, bi) = 1 such that xi : xi+1 : yi+2 = a2
i − b2

i : 2aibi : a2
i + b2

i . Rearranging
the xi if necessary such that x1, x2 and x3 have ascending number of factors 2, we find that exactly
one number in both pairs (a1, b1) and (a2, b2) is even. The numbers a3 and b3 are both odd and
putting α = 1

2 (a3 + b3), β = 1
2 (a3− b3) we find x3 : x1 = 2αβ : α2−β2. From x1

x2
· x2

x3
= x1

x3
we find

a2
1 − b2

1

2a1b1
· a2

2 − b2
2

2a2b2
=
α2 − β2

2αβ
(5)

of which solutions correspond with rational cuboids. Note that we can take the ai, bi, α, β to be
positive integers such that the generating pairs (ai, bi) and (α, β) consist of numbers of opposite
parity. Note also that Lal and Blundon [17] listed all cuboids corresponding to solutions of (5)
with a1, b1, α, β ≤ 70. Leech himself [20] gives all solutions in which two of the pairs a1, b1, a2,
b2, α, β do not exceed 376. Leech [18] also derives the formulas (1) for the Euler cuboids and for
the derived cuboid of a rational cuboid. He states that using an infinite descent argument it may
be shown that ai/bi = 2 is impossible for a solution of (5), whence there are no rational cuboids
with two edges in the ratio 3 : 4.

The problem of finding edge cuboids was posed by “Mahatma” [24] and Bromhead [3] extends
the cuboid found by readers with sides 124, 957 and

√
13852800 to a one-parameter family of

solutions. The smallest real edge cuboid, i.e., with positive non-integral side, has sides 520, 576,√
618849 and body diagonal 1105. For edge cuboids we are looking for integral solutions of the

equations
x2

1 + x2
2 = y2

3 , t + x2
1 = y2

2 , t + x2
2 = y2

1 and t + y2
3 = z2.

Leech notes that for any solution ξ2 +η2 = ζ2 one can find τ such that τ+ξ2, τ+η2 and τ+ζ2 are
all squares by Fermat’s method’s for “triple equations” (see [48], p. 321–328), giving the solution

τ = (ζ8 − 6ξ2η2ζ4 + ξ4η4)/(2ξηζ)2. (6)
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This was also found by D. Zagier and J. Top. Leech also shows that then (ζ4 − ξ2η2)4 − y4
3 =

τ (ζ4 + ξ2η2)2 and as the difference of two fourth powers cannot be a square, τ cannot be either.
One could also look at the equations

x2
1 + x2

2 = y2
3 , z2 = x2

1 + y2
1 = x2

2 + y2
2 .

Fixing z we are looking for x1 and x2, both appearing in some representation z2 = x2 + y2 (we
can find all these representations from the factorization of z) such that x2

1 + x2
2 is a square not

equal to z2 (equality would yield t = 0). Leech [20] finds by a computer search over all composite
z with no prime divisors p ≡ 3(mod 4) that there are 160 solutions with z ≤ 250000 of which 78
have t > 0. Similar to the situation of rational cuboids, there are ai, bi, α and β such that

x2

x1
=

a2 − b2

2ab
,

z

x1
=
α2

1 − β2
1

2α1β1
,

z

x2
=
α2

2 − β2
2

2α2β2
,

of course satisfying the equation given by x2
z · z

x1
= x2

x1
. Putting u = α1/β1 and v = α2/β2 we find

for fixed x2/x1 = (a2 − b2)/(2ab) the elliptic curve

Ex2/x1 : x1v(u2 + 1) = x2u(v2 + 1) (7)

on which the point P = (u0, v0) = (a/b, (a + b)/(a − b)) has infinite order. Leech says that the
trivial solution t = 0 corresponds to P , but in fact by taking inverses of u0 or v0 one obtains three
other points that correspond with t = 0. They differ from P by a torsionpoint. This gives infinitely
many rational solutions with the same ratio x2/x1. The point 2P corresponds to the solution (6).
Leech remarks that many of the solutions with z ≤ 105 occur in cycles of four, i.e., for i = 1, 2, 3, 4
there are ξi and ηi such that z2 = ξ2i +η2i and ξ2i +ξ2i+1 = !. He also notes (again empirically) that
ξ1ξ3 = ξ2ξ4 for those cycles, so ξ2/ξ1 = ξ3/ξ4, whence the two solutions we get from ξ21 + ξ22 = !
and ξ23 + ξ24 = ! correspond to points on the same elliptic curve E as in (7). For all cycles of four
Leech notes that the line through these two points goes through the trivial point corresponding to
t = 0. He states that by brute force the converse may be proven, namely that for two points on the
same elliptic curve on such a line we get such a cycle of four and each non-trivial solution belongs
to such a cycle. For instance, the point Q = (u, v) = (a

b , a−b
a+b ), one of the points corresponding to

t = 0 on the elliptic curve (7) for x2/x1 = p/q with p = a2 − b2, q = 2ab and r = a2 + b2, and the
point 2Q, corresponding to (6), form a cycle of four. We get 2Q = ( q2

pr , p2

qr ), also corresponding
to a cuboid with x2/x1 = p/q. Of the other two cuboids in the cycle there is one with α1

β1
= a

b

and α2
β2

= q2

pr as the generators of ξ2i + η2i = ζ2, i.e., ξi : ηi = 2αiβi : α2
i − β2

i . The other has
α1
β1

= a−b
a+b and α2

β2
= p2

qr as the generators of ξ2i + η2i = ζ2. These both have x1 : y1 : z = q : p : r
so we conclude that every pythagorean triangle can occur as a body diagonal, an edge and a face
diagonal of some edge cuboid. From the cuboid corresponding to 2Q we can conclude that every
pythagorean triangle occurs as the diagonal and two edges of some edge cuboid. Mind that that
Leech [18] sometimes mixes up βi

αi
with αi

βi
. On some elliptic curves (7) there are more points than

generated by torsionpoints and points corresponding to t = 0. The two extra cuboids in the cycle
just described correspond to points on the elliptic curve for which x2

1 + x2
2 = y2

3 is generated by
a and b with a

b = pq
r2 . Leech gives a few more, contained in the cycle for which the generators for

ξ21 + ξ22 + ζ2 are

αi

βi
=

mn

m2 − n2
,

m3 − n3

m3 + n3
,

n(m4 + m2n2 + n4)
m(m4 −m2n2 − n4)

,
2m2n2

m4 −m2n2 − n4
,

and those for the ratios ξi/ξi±1 are

b

a
=

mn

m2 + n2
,

n(m4 −m2n2 − n4)
m(m4 −m2n2 + n4)

.

Leech [18] mentions that the problem of the face cuboids is related with the problem of finding
three integers all pairs of which have have their sums and differences squares, which is equivalent
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to finding three squares whose differences are squares, see Dickson [6], ch. 15, ref. 28 and ch. 19,
refs. 40–45. For a face cuboid, i.e., a solution of

x2
1 + x2

2 = y2
3 , x2

3 + x2
1 = y2

2 , x2
2 + y2

2 = z2, (8)

the integers 2(z2 +x2
1), 2(z2−x2

1) and 2|x2
2−x2

3| satisfy the first problem, the squares of z, y3 and
x2 the second. Leech doesn’t mention that the problems are actually equivalent with finding face
cuboids, any solution of the second problem gives squares we can take to be the squares of z, y3

and x2. Similar to what we have seen before, the generators for the equations (8) are integers αi,
βi, for i = 1, 2, 3 satisfying y2

x2
· x2

x1
= y2

x1
, i.e.

α2
1 − β2

1

2α1β1
· α

2
3 − β2

3

2α3β3
=
α2

2 + β2
2

2α2β2
. (9)

Writing ui = {(α2
i − β2

i )/(2αiβi)}2, this becomes u1u3 = 1 + u2, a recursive relation with period
5, discussed by Lyness [23] in the context of finding three integers whose pairs have sums and
differences squares. Exchange of the first equations of (8) and then of the left factors of (9) gives
a new solution corresponding to u2u4 = 1 + u3, whence solutions come in cycles of five. The ui in
a cycle correspond to the squares of the values y2/x2, x3/x1, x2/x1, y3/x3 and x1z/x2x3 of one
of the five occurring cuboids. Leech [20] gives all solutions in which two of the pairs αi, βi do not
exceed 376.

Leech [18] also shows that for a face cuboid there exist integers p, q, r and s such that

x1 =ps− qr, y2 = ps + qr, y3 = pr − qs, z = pr + qs,

x2
2 =(p2 − q2)(r2 − s2), x2

3 = 4pqrs,
β2

5

α2
5

=
p2 − q2

2pq

2rs

r2 − s2
.

(10)

The numbers p, q, r, s = 32, 22, 92, 72 give a solution which has the smallest face cuboid with
edges 104, 153 and 672 in its cycle of five. Another way of finding solutions is by noting that
z2 = x2

2 + y2
2 = x2

3 + y2
3 can be written as the sum of two squares in two different ways. For each z

we can find all the pairs (ai, bi) such that z2 = a2
i + b2

i and check if there are ai and bj such that
b2
j − a2

i = !. This enables Leech [20] to give all 89 face cuboids with z < 105.
He concludes from (10) that a pair of generators α, β occurs in some face cuboid if and only if

β2/α2 is expressible as the product or quotient of two ratios of the form (p2−q2)/2pq. This would
give a method of search for generators which can occur in solutions. Combining those would yield
all solutions. Strangely enough he says that this is not the case. Not even all cycles would be
found because some cycles, such as

β

α
=

4
13

,
1
13

,
1
9
,

14
27

,
16
21

(11)

would not include pairs of generator pairs with ratios whose squares are expressible as the product
and quotient of a pair of ratios of the form (p2−q2)/2pq according to Leech. This doesn’t seem to be
true since for the 4-tuples (p, q, r, s) = (65, 37, 481, 5) ,(45, 37, 333, 5), (169, 41, 41, 1), (81, 49, 9, 4)
and (81, 17, 17, 1) that we get from (10), the quotient of (p2 − q2)/2pq and (r2 − s2)/2rs are the
squares of the values in (11). And if x can be written as the quotient of two ratios of the form
(p2 − q2)/2pq then it can also be written as the product of such ratios, for we have

p2 − q2

2pq
=

2(p + q)(p− q)
(p + q)2 − (p− q)2

.

Using techniques of Diophantus’ Arithmetica Leech finds a parametric solution of (8), given
by

x1 = 4rst(s + t), x2 = 2rt2(t + 2s), x3 = s(s + t)(2r + t)(2r − t). (12)

with r = m2 + m + 1, s = 2m + 1, t = m2 − 1, which corresponds to the cycle

βi

αi
=

r(2s + t)
t2

,
t

2r
,

s + t

s
,

(t− r)(2r + t)
(t + r)(2r − t)

,
t(2s + t)

(2r − t)(2r + t)
. (13)

6



Leech seems to write occurring generating fractions β/α in such a way that β ≤ α. Using a
parametric expression for ratios of the form (p2− q2)/2pq whose product and quotient are squares
he finds the same cycle.

For fixed β2 and α2 substitution of u = α1/β1 and v = (α3 + β3)/(α3 − β3) gives the elliptic
curve

E: (α2
2 + β2

2)u(v2 − 1) = 2α2β2v(u2 − 1). (14)

Using a descent argument we can show again that there are no solutions with α/β = 2 or 3, i.e.,
none with edges in the ratio 3 : 4. A solution of (8) gives a point P on E for α5, β5. The point
−2P then corresponds to a cycle of solutions including

β

α
=

y2 − y3

y2 + y3
,
β5

α5
,

x3

x2
,

x1

z
.

The fifth pair corresponds to

{zx1(y2
2 − y2

3)}2 + {x2x3(y2
2 + y2

3)}2 = {y2y3(x2
2 + x2

3)}2.

Using this together with (13) we find that there are infinitely many rational curves on the surface
in P5 described by the equations in (8).

If a, b occurs as a pair of generators of x2
i + x2

i+1 = y2
i−1 in a perfect cuboid, then the ratios of

any two of a2− b2, 2ab, a2 + b2 is expressible as the product of two ratios of the form (p2−q2)/2pq.
Not many pairs a, b seem to satisfy this.

Leech then digresses on spherical triangles and the question of existence of four squares all
whose sums or all whose differences in pairs are square. If they exist then certain cycles are
contained in a constructed graph containing solutions for three squares in stead of four.

He concludes with a list of open problems. We will phrase all of those that imply (non)-
existence of perfect cuboids. The first two are equivalent with the problem of finding perfect
cuboids, the others are soluble if a perfect cuboid exists.

• Is there a ratio of the form (p2 + q2)/2pq and one of the form (p2 − q2)/2pq whose product
and quotient are both of the form (p2 − q2)/2pq?

• Are there non-trivial solutions of (a2c2 − b2d2)(a2d2 − b2c2) = (a2b2 − c2d2)2?

• Are there integers ζ and ξi, ηi for i = 1, 2, 3 with ζ2 = ξ2 + η2 and ξ2i + ξ2i+1 = !, even
without the condition ξ21 + ξ22 + ξ23 = ζ2?

• Is there a sequence of integers x0, x1, x2, x3, . . . such that for any two and three adjacent
elements the sum of their squares is a square? We could take x1, x2, x3, x1, x2, x3, x1, . . . for
a perfect cuboid. A finite sequence of length 8 exists.

• Is there a rational cuboid with sides x1, x2, x3 and an integer z such that z − x2
i = !?

• Is there a rational cuboid with sides x1, x2, x3 and an integer z such that z−x2
i −x2

i+1 = !?

• Are there four squares all pairs of which have square differences? For a perfect cuboid we
could take the squares of y3z, y2y3, x1z and x1y3.

• Is there a sequence of four squares of which the sums of all n ≤ 4 adjacent elements is a
square? Here we could take the squares of x1y3, x1x3, x2x3 and x2y3.

• Is there a cycle of solutions of (9) in which α1/β1 = (p2−q2)/2pq and α2/β2 = (r2+s2)/2rs?

A. Bremner [2] analyses the surface V ⊂ P5 given by

X2 + Y 2 = R2, Y 2 + Z2 = S2, Z2 + X2 = T 2,

7



describing rational cuboids. He proves that V is birationally equivalent with the surface W ⊂ P3

given by
(x2 − y2)(z2 − t2) = 2yz(x2 − t2).

He gives all lines and conics on the surface W . It turns out that there are precisely 22 straight
lines on W , of which 14 are defined over Q and 8 defined over Q(

√
2). Furthermore, he finds

all parametrizable plane cubics on W . There are infinitely many rational curves on W , of which
Bremner gives several. Finally, he gives five degree 8 parametrizations of curves on V of which
he claims three appear to be new. The other two were already found by Kraitchik [14]. All five
correspond to points on the same elliptic curve over Q(λ).

F. Beukers and B. van Geemen [1] analyse two surfaces V and W describing face and rational
cuboids respectively, namely

V =






a2 + b2 = x2

a2 + c2 = y2

a2 + b2 + c2 = u2
and W =






a2 + b2 = x2

a2 + c2 = y2

b2 + c2 = z2
(15)

They find infinitely many rational curves on both surfaces. To analyse the surface V , their first
step is to show that it is birationally equivalent with the affine surface in A3 given by

u2 = (p4 + q2)(q2 + 1).

Let E be the projective elliptic curve

E: y2z = x3 − 4xz2

with torsion point T = (0 : 0 : 1). Let G ∼= (Z/2)2 be the group of automorphisms of the abelian
surface E×E generated by τ : (P, Q) +→ (P +T, Q+T ) and ι: (P, Q) +→ (−P,−Q). Then F. Beukers
and B. van Geemen show that there is an isomorphism

Φ: (E × E) /G → V.

They also show that if C is a (hyper-)elliptic curve and

A: C → E and B: C → E

are rational maps commuting with the standard involutions on C and E, then the image of the
composite map P +→ Φ(A(P ), B(P )) from C to V is a rational curve. Taking A and B to be
endomorphisms of E and other concrete examples they find four degree ≤ 10 rational curves over
Q on V and one degree 6 rational curve over Q(i). Let E′ be the elliptic curve E/〈P +→ P + T 〉.
Then E′ is given by E′: y2z = x3 + xz2 and it is proven that V is the Kummer surface of E ×E′,
i.e., V is isomorphic over Q to E × E′ modulo the involution inv: (P, Q) +→ (−P,−Q). In section
4 we will further analyse the surface V .

They also show that the surface W is birationally equivalent with the pencil of elliptic curves

y2 = x(x + 1)(x + λ2), λ = (σ − σ−1)/2.

The Euler cuboids correspond with the points

x =
(3t2 − 1)2

(t2 − 1)(t2 + 1)2
, y =

9t9 + 84t7 − 122t5 + 52t3 − 7t

4(t2 − 1)2(t2 + 1)3
, σ = 2

t2 − 1
t2 + 1

.

Addition on this elliptic curve gives rise to infinitely many rational curves on W .
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3 Classification of surfaces and an application

As was announced, this paper will have a more geometrical approach than most of the articles
described in the previous section. In finding perfect cuboids we are actually looking for rational
points on a surface that will be described in section 3.2. It is easy to find some rational points on
this surface, namely those corresponding to cuboids with zero contents.

Finding rational points on an algebraic surface, or even deciding whether they exist, is in
general a difficult problem and before we start with a search one might ask the question of how
many points to expect. For a curve C over Q we know by Faltings’ Theorem that if the genus gC

is at least 2, then there are only finitely many rational points. In other words, the rational points
do not lie Zariski dense on the curve. If the genus is at most one, then there can be infinitely
many rational points on the curve which in that case are Zariski dense.

A generalization for higher dimensional varieties has not been proved yet, but there are certain
conjectures that would generalize the situation for curves. We will discuss these in section 3.4.
However, for a higher dimensional variety X neither the arithmetic, nor the geometric genus turns
out to be the appropriate invariant to consider. Instead we should look at the so-called Kodaira
dimension of X. The Kodaira dimension κ(X) is a number satisfying −1 ≤ κ(X) ≤ dim X. For a
curve C with genus 0, 1 or ≥ 2 we have κ(C) = −1, 0 or 1 respectively. Hence Faltings’ Theorem
states that if the Kodaira dimension of a curve C defined over Q is 1, then the set rational points
on C is not Zariski dense.

In this form Faltings’ Theorem generalizes directly to the Weak Lang Conjecture which says
that if X is a variety over Q and the Kodaira dimension κ(X) equals n = dim X, then the set
of rational points on X is not Zariski dense. Varieties satisfying κ(X) = dimX will be called of
general type.

In section 3.2 we will define a surface Υ describing perfect cuboids and we will state and prove
some of its properties. Then in section 3.3 we will define the Kodaira dimension of a variety and
we will see that Υ is indeed of general type. In section 3.4 we will try to find out what this means
for the rational points on Υ.

We will have to do some preparation before we can define the notion of Kodaira dimension. This
will be done in section 3.1. In this section we will mainly state several definitions and propositions
from Chapter II of R. Hartshorne’s Algebraic Geometry [47] and a partial generalization of Exercise
II.8.4 of that book. In the same section we will also state some definitions and propositions about
Hodge numbers. The Hodge numbers only return in Proposition 3.2.19, Corollary 3.3.34 and Bluff
1 and 2. Therefore the reader who is not interested in these results and who is familiar with
Chapter II of [47] can skip section 3.1, apart maybe from Lemma 3.1.36, and continue directly
with section 3.2. Note that rings are taken to be commutative with 1.

3.1 Definitions and tools

We will recall some algebraic geometrical notions such as divisors and the relation with invertible
sheaves with references for the proofs. We will not deal with these notions in their full generality,
but only to the extend needed. To avoid confusion about the notion variety, note that we take the
following definitions, following R. Hartshorne [47].

Definition 3.1.1 A variety over a field K is a geometrically integral separated scheme, which is
of finite type over K. Curves and surfaces are varieties of dimension 1 and 2 respectively.

Definition 3.1.2 A projective variety over K is a variety which is a closed subscheme of Pn
K .

Definition 3.1.3 A variety X over an algebraically closed field K is nonsingular if all its local
rings are regular local rings.

The Kodaira dimension of a nonsingular variety is defined in terms of its canonical sheaf, which
is an invertible sheaf. Invertible sheaves on X are closely related with divisors and line bundles
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on X. We will give a short overview.

Let X be a noetherian integral separated scheme which is regular in codimension one. Then
we can define the notion Weil divisor, see [47, II.6] for details and proofs.

Definition 3.1.4 A prime divisor on a noetherian integral separated scheme X which is regular
in codimension 1 is a closed integral subscheme of codimension 1. A Weil Divisor D on X is an
element of the free abelian group Div V generated by the prime divisors.

If for all the coefficients nY of a Weil divisor D =
∑

Y nY · Y we have nY ≥ 0 then we call
D effective, writing, D ≥ 0. We write D1 ≥ D2 if D1 − D2 ≥ 0. For the generic point η of
a prime divisor Y the local ring Oη,X is a discrete valuation ring with quotientfield K(X), the
function field of X. Let vY denote the corresponding valuation. For any nonzero rational function
f ∈ K(X)∗ on X there are only finitely many prime divisors Y with vY (f) &= 0, so we can define
the divisor (f) =

∑
Y vY (f) · Y . This gives a homomorphism

K(X)∗ → Div X: f +→ (f).

The divisors in the image of this homomorphism are called principal divisors. The group Div X of
all divisors divided by the subgroup of principal divisors is called the divisor class group of X, and
is denoted by Cl X. Two divisors with the same divisor class, i.e., that differ a principal divisor,
are called linearly equivalent. If Y is an integral subscheme of X given by the inclusion j: Y ↪→ X,
then we have a homomorphism j∗: Div X → Div Y given by

∑
nZ · Z +→

∑
nZ(Z ∩ Y ), where we

leave out those Z with Z ∩ Y = ∅. The morphism j∗ maps principal divisors to principal divisors
and hence induces a map j∗: ClX → Cl Y . We have the following proposition.

Proposition 3.1.5 Let Y be a noetherian integral separated scheme, which is regular in codimen-
sion one. Let Z be a proper closed subset of Y and let V = Y − Z. Then:

(i) there is a surjective homomorphism Cl Y → Cl V defined by D =
∑

niDi +→
∑

ni(Di ∩ V ),
where we ignore those Di ∩ V which are empty;

(ii) if codim(Z, Y ) ≥ 2, then ClY → Cl V is an isomorphism.

(iii) if Z is an irreducible subset of codimension 1, then there is an exact sequence

0 → Z → ClY → Cl V → 0,

where the first map is defined by 1 +→ 1 · Z.

Proof. See [47, Prop.II.6.5]. !
For arbitrary schemes we can define the notion Cartier divisor, but we will only deal with

integral schemes here. Hence let X be an integral scheme, OX its structure sheaf and KX the
constant sheaf corresponding to the functionfield K(X) of X, i.e., the local ring Oξ of the generic
point ξ of X (see [47, Exc.II.3.6]). Let O∗

X and K∗
X denote the sheaves of (multiplicative groups)

of invertible elements in OX and KX respectively.

Definition 3.1.6 We define a Cartier divisor on the integral scheme X to be a global section of
the sheaf K∗

X/O∗
X .

Remark 3.1.7 To see how Cartier divisors are defined on arbitrary schemes, see [47, II.6]. See
also [60, II.4] and [52, I.1].
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The multiplicative group structure of the sheaf K∗
X/O∗

X induces a group structure on the set
Γ(X,K∗

X/O∗
X) of all Cartier divisors, which we will write additively. The principal divisors are

those in the image of the natural map Γ(X,K∗
X) → Γ(X,K∗

X/O∗
X). The quotient is denoted

CaCl(X).

A Cartier divisor D can be given by {(Ui, fi)} where {Ui} is an open cover of X and fi ∈ K(X)∗,
such that fif

−1
j ∈ O∗

X(Ui ∩ Uj). If fi is regular on Ui for all i then we call the Cartier divisor
effective and write D ≥ 0. For two Cartier divisors D1, D2 we write D1 ≥ D2 if D1 − D2 ≥ 0.
If X is not only integral, but also noetherian, separated and regular in codimension one and
D = {(Ui, fi)} is a Cartier divisor, then we can define the associated Weil divisor by taking the
coefficient of each prime divisor Y to be vY (fi), where i is any index for which Y ∩ Ui &= ∅. As
X is noetherian, the sum

∑
vY (fi)Y is finite and gives us a well-defined Weil divisor D′ on X,

which is effective if and only if the original Cartier divisor D is effective.

Proposition 3.1.8 If X is a noetherian integral separated normal scheme, then this induces an
injective homomorphism

Γ(X,K∗
X/O∗

X) → Div X

from the group of Cartier divisors to the group of Weil divisors, where principal Cartier divisors
correspond to principal divisors in the image. Hence it induces an injective homomorphism

CaClX → Cl X.

If X is even locally factorial, then both these homomorphisms are actually isomorphisms. This
holds in particular in the case that X is a non-singular projective variety over a field K.

Proof. See [47, II.6.11] and [52, I.1]. !

Definition 3.1.9 Let X be an integral scheme and let D be a Cartier divisor on X, given by
{(Ui, fi)}. We define a subsheaf L(D) of KX as the sub-OX -module of KX generated by f−1

i on
Ui, i.e., for U ⊂ Ui we get L(D)(U) = f−1

i OX(U).

This sheaf is clearly locally isomorphic to OX , whence an invertible sheaf. This map D +→ L(D)
induces an injective homomorphism from CaClX to Pic X, the group of invertible sheaves on X
up to isomorphism.

Proposition 3.1.10 If X is integral, then this homomorphism CaCl X → PicX is an isomor-
phism.

Proof. See [47, Prop. II.6.15]. !

Corollary 3.1.11 If X is a noetherian integral separated normal scheme then we get an injective
homomorphism Pic X → ClX, which is an isomorphism if X is also locally factorial, in particular
if X is regular.

Proof. This follows from Propositions 3.1.8 and 3.1.10. !
If D is an effective divisor on a scheme X, then L(−D) is an invertible sheaf that we are

already familiar with.

Lemma 3.1.12 Let D be an effective Cartier divisor on a scheme X, and let Z be the associated
locally principal closed subscheme. Let IZ be the corresponding sheaf of ideals on X. Then IZ =
L(−D).
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Proof. See [47, Prop.II.6.18]. !

Definition 3.1.13 A (geometric) line bundle L on a variety X over a field K is a variety L with
a morphism f : L → X together with an open covering {Ui} of X and isomorphisms ψi: f−1(Ui) →
Ui × A1 such that for any i, j and any affine V ⊂ Ui ∩ Uj with coordinate ring A we get an
isomorphism ψ = ψj ◦ ψ−1

i : V × A1 → V × A1 that can be given by ψ: (P, x) +→ (P, ax) for some
a ∈ A, independent from P ∈ V and x ∈ A1. Hence every fibre Lx over a point x ∈ X is a
one-dimensional vectorspace over K.

To a line bundle L we can associate an invertible sheaf L(L), called the sheaf of sections of
L, see [47, Exc.II.5.18], where all this is done for arbitrary schemes. A section of f : L → X over
an open set U ⊂ X is a morphism s: U → L such that f ◦ s = idU . The presheaf L(L): U +→
{set of sections of f over U} is a sheaf of sets that has a natural structure of OX -module, which
makes it an invertible sheaf.

Proposition 3.1.14 The map L +→ L(L) described above induces a one-to-one correspondence
between the isomorphism classes of line bundles and PicX, the group of isomorphism classes of
invertible sheaves.

Proof. See [47, Exc.II.5.18]. !
Note that for every Cartier divisor class [D] we now have a corresponding isomorphism class

[L] of line bundles and an isomorphism class [L] of invertible sheaves with L ∼= L(D) ∼= L(L). If
X is a normal variety, then we can even associate a Weil divisor class to [D].

Let X be a non-singular variety of dimension n. Then for every point P ∈ X the tangent space
to X in P is a vector space of dimension n. The n-th exterior power of the dual space gives a
one dimensional vectorspace in every point of X. This defines a line bundle, the dual of which we
will call the canonical line bundle. In terms of sheafs we can define the canonical sheaf ωX as in
Definition 3.1.23. Let us first restate some properties of derivations, see [50, Sect.XIX.3].

Definition 3.1.15 Let R be a ring, A an R-algebra and M an A-module. By a derivation D: A →
M (over R) we mean an R-linear map satisfying the usual rules D(ab) = aD(b) + bD(a).

Remark 3.1.16 Note that D(1) = D(1 · 1) = 2D(1), so D(1) = 0, whence D(R) = 0. Such
derivations form an A-module DerR(A, M) in a natural way, where aD is defined by (aD)(b) =
aDb.

Definition 3.1.17 By a universal derivation for A over R, we mean an A-module Ω = ΩA/R,
and a derivation d: A → Ω, such that, given a derivation D: A → M , there exists a unique A-
homomorphism f : Ω → M making the following diagram commutative.

A ΩA/R

D

d

f

M

Remark 3.1.18 By this definition the A-module ΩA/R can be characterised by

HomA

(
ΩA/R, M

) ∼= DerR (A, M) .

The following proposition shows that the universal derivation exists.
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Proposition 3.1.19 Let A be an R-algebra. Let f : A ⊗R A → A be the multiplication homo-
morphism, i.e., f(a⊗ b) = ab, and let J be the kernel of f . Consider A⊗ A as am A-module by
multiplication on the left. Then J/J2 inherits a structure of A-module. Define a map d: A → J/J2

by da = 1⊗ a− a⊗ 1 (modulo J2). Then (J/J2, d) is a universal derivation for A/R.

Proposition 3.1.19 enables us to define a sheaf of relative differentials on a scheme X over
a scheme Y . Using Remark 3.1.18 we will then give a similar characterization of this sheaf of
differentials in the case that Y = SpecK for a field K.

Definition 3.1.20 Let f : X → Y be any morphism of schemes and let ∆: X → X ×Y X be the
diagonal morphism. Then ∆ induces an isomorphism of X onto its image ∆(X), which is a closed
subscheme of an open subset W of X ×Y X (see [47, prf. of Cor.II.4.2]). Let I be the sheaf of
ideals of ∆(X) in W . Then we define the sheaf of relative differentials of X over Y to be the sheaf
ΩX/Y = ∆∗(I/I2) on X.

Remark 3.1.21 Let X be a scheme over a field K. From the characterization of the universal
derivation in Remark 3.1.18 we find that the sheaf of differentials is the sheaf associated to the
presheaf which can be characterized by

ΩX/K(U) ∼= ΩOX(U)/K

for every open U of X. Note that the first Ω denotes a sheaf, where the second denotes an
OX(U)-module.

Proposition 3.1.22 Let X be an irreducible separated scheme of finite type over an algebraically
closed field K. Then ΩX/K is a locally free sheaf of rank n = dim X if and only if X is a
nonsingular variety over K.

Proof. See [47, Thm.II.8.15]. !

Definition 3.1.23 Let X be a nonsingular variety over an algebraically closed field K and let
ΩX/K be the sheaf of differentials on X, then the canonical sheaf ωX on X is defined as ωX =∧n ΩX/K , the n-th exterior power of the sheaf of differentials.

Let X be a nonsingular variety over an algebraically closed field K. The canonical sheaf ωX

corresponds to a divisor class KX , which we call the canonical divisor class. Note that K without
subscript denotes the field, while KX denotes a divisor class. The constant sheaf KX corresponds
to the function field K(X).

The sheaf ωX and the class KX are related as follows, see [47, Prop.II.6.15.] and [52, Ch.I.1.].
Choose a nonzero global section ω of ωX , i.e., a differential form of degree n = dimX. Note that
Lang [52, p.14] forgets to take ω nonzero. For any closed point P on the nonsingular variety X
let t1, . . . , tn be local parameters in P , i.e., generators for m/m2, where m is the maximal ideal
of the local ring at P . Let UP be a neighborhood of P on which for every point Q ∈ UP the
tj − tj(Q) form a set of local parameters. On UP we may write ω = ψP dt1 ∧ . . . ∧ dtn for some
ψP ∈ K∗

X(UP ) = K(X)∗. The collection of pairs (UP , ψP ) defines a Cartier divisor, which is called
the divisor associated with ω and is denoted by (ω). Since the K(X)-vectorspace of differential
forms of degree n has dimension 1 over K(X), we find that all divisors associated to some nonzero
differential form of degree n are linearly equivalent. They are called canonical divisors.

Conversely if D is a divisor which is linearly equivalent with the divisor (ω) associated with
a differential ω, say D = (f) + (ω) for some rational function f ∈ K(X)∗, then D is the divisor
associated with fω, so D is also a canonical divisor. The class of these divisors is the canonical
divisor class KX . By KX we will sometimes also denote a divisor contained in the canonical class.

Since the divisor (ω) is defined by the pairs (UP , ψP ), we find that L((ω))(U) = ψ−1
P OX(U) for

U ⊂ UP . Hence every section of L((ω))(U) ⊂ KX(U) comes from a rational function f ∈ K(X)
such that fψP is regular on U . Hence fω is a regular differential form on U . This map

L((ω))(U) → ωX(U): f +→ fω
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induces an isomorphism of sheaves between ωX and the sub-OX -module L((ω)) of KX .

If Y is a nonsingular subvariety of a nonsingular variety X over an algebraically closed field K,
then we can express the canonical sheaf on Y in the canonical sheaf of X and the so-called normal
sheaf of Y in X, see Proposition 3.1.27 and [47, II.8]. We will first define this normal sheaf.

Proposition 3.1.24 Let X be a nonsingular variety over an algebraically closed field K. Let
Y ⊂ X be an irreducible closed subscheme defined by a sheaf of ideals I. Then Y is nonsingular
if and only if ΩY/K is locally free and there is an exact sequence

0 → I/I2 → ΩX/K ⊗OY → ΩY/K → 0

of sheaves on Y . Furthermore, in this case, I is locally generated by r = codim(Y, X) elements,
and I/I2 is a locally free sheaf of rank r on Y .

Proof. See [47, Thm.II.8.17]. !

Definition 3.1.25 Let Y be a closed subscheme of a scheme X over K and let I be the corre-
sponding sheaf of ideals. We will call the sheaf I/I2 on Y the conormal sheaf of Y in X. Its dual
NY/X = HomOY (I/I2,OY ) is called the normal sheaf of Y in X.

Remark 3.1.26 Note that it follows from Proposition 3.1.24 that if Y is a nonsingular subvariety
of a nonsingular variety X, then the normal sheaf NY/X is locally free of rank r = codim(Y, X).
We will see later that it is also locally free if X = Pn and Y is a complete intersection.

Proposition 3.1.27 Let Y be a nonsingular subvariety of codimension r in a nonsingular variety
X. Let ωY and ωX be the canonical sheaves on Y and X respectively. Then ωY

∼= ωX ⊗
∧r NY/X .

In case r = 1, consider Y as a divisor, and let L = L(Y ) be the associated invertible sheaf on X.
Then ωY

∼= ωX ⊗ L⊗OY .

Proof. See [47, Prop. II.8.20]. !
In some situations we can use Proposition 3.1.27 to identify the canonical sheaf on Y with a

more familiar invertible sheaf. One specific such case is the situation in which Y is a complete
intersection in X = Pn. In that case we can combine Proposition 3.1.27 with Lemma 3.1.36.

Definition 3.1.28 Let Y be a closed subscheme of a nonsingular variety X. We say that Y is
a local complete intersection in X if the ideal sheaf IY of Y in X can be locally generated by
r = codim(Y, X) elements at every point.

Definition 3.1.29 A closed subscheme Y of projective n-space Pn
K over a field K is called a

(strict,global) complete intersection if the homogeneous ideal I of Y in S = K[x0, . . . , xn] can be
generated by r = codim(Y, Pn) elements.

Complete intersections are closely related to regular sequences, whence to the notion Cohen-
Macaulay. These notions are defined as follows.

Definition 3.1.30 Let A be ring and M an A-module. Let x1, . . . , xr ∈ A elements such that

(i) M/(x1, . . . , xr)M &= 0,

(ii) x1 is not a zero divisor in M and for every 1 < j ≤ r the element xj is not a zero divisor
in M/(x1, . . . , xj−1)M .

Then x1, . . . , xr is called a regular sequence for M .
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Definition 3.1.31 If A is a local ring with maximal ideal m, then the depth of M is the maximum
length of a regular sequence x1, . . . , xr for M with all xj ∈ m. We say that a local noetherian ring
A is Cohen-Macaulay if depthA = dim A. A scheme X is said to be Cohen-Macaulay if all its
local rings are Cohen-Macaulay.

Proposition 3.1.32 Let A be a local noetherian ring with maximal ideal m.

(a) If A is regular, then it is Cohen-Macaulay.

(b) If A is Cohen-Macaulay, then every localization of A at a prime ideal is also Cohen-Macaulay.

(c) If A is Cohen-Macaulay, then a set of elements x1, . . . , xr ∈ m forms a regular sequence for
A if and only if dimA/(x1, x2, . . . , xr) = dim A− r.

(d) If A is Cohen-Macaulay and x1, . . . , xr ∈ m is a regular sequence for A, then A/(x1, . . . , xr)
is also Cohen-Macaulay.

(e) If A is Cohen-Macaulay, and x1, . . . , xr ∈ m is a regular sequence, let I be the ideal I =
(x1, . . . , xr). Then the natural map

(A/I)[t1, . . . , tr] → grI A =
⊕

n≥0

In/In+1,

defined by sending tj +→ xj, is an isomorphism. In particular, I/I2 is a free A/I-module of
rank r, generated by the xj.

Proof. See [53, (a):p.121, (b,c,d):p.104–105, (e):p.110]. For the last statement of (e), see also [50,
Prop.XXI.4.1]. !

Lemma 3.1.33 Let K be an algebraically closed field and let H be a hypersurface in Pn
K , i.e.,

a locally principal subscheme of codimension 1. Then there is a homogeneous principal ideal
I ⊂ K[x0, . . . , xn], such that I is the homogeneous ideal of H. In other words, H is a complete
intersection.

Proof. Since H is locally principal, we can view H as an effective Cartier divisor and as Pn is a
noetherian regular variety, even as an effective Weil divisor. If divisors D1 and D2 have principal
homogeneous ideals (f1) and (f2) respectively, then the divisor D1 +D2 has principal ideal (f1f2),
so we may assume that H is a prime Weil divisor. Let l be a linear homogeneous form such that
H is not contained in the hypersurface l = 0 and let U be the open affine given by l &= 0. By a
homogeneous transformation of coordinates we may assume that l = x0. As H∩U is an irreducible
hypersurface in U = SpecK[x1/x0, . . . , xn/x0] ∼= An, we find that H ∩U is in U the zeroset of an
irreducible polynomial f in K[x1/x0, . . . , xn/x0] (see [47, Prop.I.1.13]). Let F be the homogenised
polynomial of f with respect to x0, i.e., F = xdeg f

0 · f . Then I = (F ) ⊂ K[x0, . . . , xn] is the
homogeneous ideal of the closure of H ∩ U in Pn. This is exactly H itself. !

Corollary 3.1.34 Let K be an algebraically closed field and let Y be a closed subscheme of codi-
mension r in Pn

K . Then Y is a complete intersection if and only if there are hypersurfaces (i.e.,
locally principal subschemes of codimension 1) H1, . . . , Hr, such that Y = H1∩· · ·∩Hr as schemes,
i.e., IY = IH1 + . . . + IHr .

Proof. Let Y be a complete intersection of codimension r given by the homogeneous ideal
I = (f1, . . . , fr). The fj all determine a closed subvariety Hj . The Hj are locally principal for if
l is a linear homogeneous form, then on the affine open set given by l &= 0 the ideal sheaf of the
hypersurface Hj is generated by fj/ldj , where dj is the degree of fj . Further, since Pn is integeral,
the fj/ldj are not zero divisors in the local rings at points of Pn. As Pn is also Cohen-Macaulay,
it follows that the Hj have codimension 1. Hence the Hj are hypersurfaces. On the same affine
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open l &= 0 the ideal sheaf of Y is generated by f1/ld1 , . . . , fr/ldr . As these open affines cover Pn

we find IY = IH1 + . . . + IHr .
Conversely, let H1, . . . , Hr be locally principal subschemes of codimension 1 in Pn, such that

IY = IH1 + . . . + IHr . Then Lemma 3.1.33 states that there are principal homogeneous ideals
Ij = (fj), such that Hj is the hypersurface given by fj = 0, i.e., on the open affine l &= 0
the ideal sheaf IHj is generated by fj/ldj . That means that on the same open affine the ideal
sheaf IY is generated by f1/ld1 , . . . , fr/ldr . This implies that the homogeneous ideal I of Y is
I = (f1, . . . , fr) and can be generated by r elements. Therefore Y is a complete intersection. See
also [47, exc.II.8.4(a)]. !

Remark 3.1.35 Note that a strict complete intersection Y ⊂ Pn is indeed a local complete
intersection as well, since the Hj of which Y is the intersection are locally principal.

Lemma 3.1.36 Let K be an algebraically closed field and let ρ: Y ↪→ Pn
K be a global complete

intersection of codimension r, say of hypersurfaces D1, . . . , Dr of degree d1, d2, . . . , dr respectively.
Let NY/Pn be the normal sheaf of Y in Pn. Let ωP be the canonical sheaf of Pn. Then we have
ωP ∼= OP(−n− 1) and if we set m = −n− 1 +

∑
di, then

ωP ⊗
r∧
NY/Pn ∼= ρ∗OP(m).

Before we prove this, first some algebraic results. The following result about exterior powers
will be needed.

Lemma 3.1.37 Let
0 → E′ → E → E′′ → 0

be an exact sequence of free R-modules of finite rank r, n and s respectively. Then there is a
natural isomorphism

ϕ:
r∧

E′ ⊗
s∧

E′′ →
n∧

E.

This isomorphism is the unique isomorphism having the following property. For the n elements
v1, . . . , vr ∈ E′ and w1, . . . , ws let u1, . . . us be liftings of w1, . . . , ws in E. Then

ϕ((v1 ∧ · · · ∧ vr)⊗ (w1 ∧ · · · ∧ ws)) = v1 ∧ · · · ∧ vr ∧ u1 ∧ · · · ∧ us.

Proof. See [50, Prop.XIX.1.2.]. !
In manipulating modules the following lemma will turn out to be quite useful.

Lemma 3.1.38 Let R and S be rings and let AR, RBS and CS be (bi-)modules. Then there is a
natural isomorphism

α: HomS(A⊗R B, C) → HomR(A, HomS(B, C))

defined for each f : A⊗R B → C by

[(αf)(a)](b) = f(a⊗ b).

Proof. See [49, Thm.IV.5.10]. !

Lemma 3.1.39 Let A be a local noetherian ring which is Cohen-Macaulay and suppose that the
elements x1, . . . , xr ∈ m form a regular sequence for A. Let Ij ⊂ A denote the ideal Ij = (xj) and
let I denote the ideal I = (x1, . . . , xr). Then Ij/I2

j is an A/Ij-module and I/I2 is an A/I-module.
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The natural maps Ij/I2
j → I/I2 induce natural maps Ij/I2

j ⊗A/I → I/I2 which induce a natural
homomorphism

f :
r⊕

j=1

(
Ij/I2

j ⊗A/Ij
A/I

)
→ I/I2 (16)

of A/I-modules. This homomorphism is actually an isomorphism. It induces the following natural
isomorphism.

HomA/I(I/I2, A/I) →
r⊕

j=1

(
HomA/Ij

(Ij/I2
j , A/Ij)⊗A/Ij

A/I
)
. (17)

Proof. From Proposition 3.1.32 we know that Ij/I2
j is a free A/Ij-module generated by xj , so

Ij/I2
j ⊗A/I is a free A/I-module of rank 1, generated by xj ⊗ 1. The A/I-module I/I2 is by the

same proposition also a free A/I-module, generated by x1, . . . , xr and of rank r. Hence the two
homomorphisms

ϕ: (A/I)r → I/I2: (aj)r
j=1 +→

r∑

j=1

ajxj ,

ψ: (A/I)r →
r⊕

j=1

(
Ij/I2

j ⊗A/I
)
: (aj)r

j=1 +→ (xj ⊗ aj)r
j=1

are both isomorphisms. These isomorphisms make the following commutative diagram, from which
it follows that f is an isomorphism as well.

⊕r
j=1

(
Ij/I2

j ⊗A/I
)

I/I2

(A/I)r

ϕ

f

∼ψ
∼

Using the fact that f is an isomorphism we find a sequence of canonical isomorphisms.

HomA/I

(
I/I2, A/I

) ∼= HomA/I




r⊕

j=1

(Ij/I2
j ⊗A/Ij

A/I), A/I





∼=
r⊕

j=1

HomA/I

(
Ij/I2

j ⊗A/Ij
A/I, A/I

)

∼=
r⊕

j=1

HomA/Ij

(
Ij/I2

j , HomA/I(A/I, A/I)
)

∼=
r⊕

j=1

HomA/Ij

(
Ij/I2

j , A/I
)

∼=
r⊕

j=1

HomA/Ij

(
Ij/I2

j , A/Ij

)
⊗A/Ij

A/I.

The first isomorphism follows from the fact that f is an isomorphism, the second from the fact
that a finite direct sum is a product. The third follows from Lemma 3.1.38 and the fourth
since HomR(R, R) ∼= R. Finally the fifth isomorphism follows from the fact that Ij/I2

j is a free
A/Ij-module of rank 1. This isomorphism is therefore induced by the natural homomorphim of
A/Ij-modules
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HomA/Ij
(Ij/I2

j , A/Ij) → HomA/Ij
(Ij/I2

j , A/I).

!
Lemma 3.1.39 is purely algebraic. The sheaves version of it will enable us to prove Lemma

3.1.36.

Corollary 3.1.40 Let K be an algebraically closed field and let Y be a closed subscheme of codi-
mension r ≤ n in X = Pn

K . Suppose that Y is a global complete intersection, say given as the
intersection D1 ∩ · · · ∩Dr, where the Dj are hypersurfaces in Pn. Let Ij be the ideal sheaf of Dj

in X and let IY be the ideal sheaf of Y in X. Then the natural morphism of sheaves on Y

r⊕

j=1

(
Ij/I2

j ⊗ODj
OY

)
→ IY /I2

Y (18)

is an isomorphism. It induces a natural isomorphism of sheaves

NY/X
∼=

r⊕

j=1

NDj/X ⊗OY , (19)

where NY/X and NDj/X denote the normal sheaves of Y and Dj in X respectively.

Proof. Note that the natural morphism Ij/I2
j → IY /I2

Y indeed induces a natural morphism as
in (18). It suffices to check that it is an isomorphism locally. Let P be a closed point on X.
Since a global complete intersection is also a local complete intersection there is an open affine
neighborhood U ⊂ Pn of P over which IY can be generated by r elements f1, . . . , fr ∈ B =
Γ(U,OU ). Let p ⊂ B be the maximal ideal corresponding to the point P ∈ U ∼= SpecB. Since X
is nonsingular, the local ring A = OP,X

∼= Bp is regular, whence Cohen-Macaulay by Proposition
3.1.32. The ideal IY of Y in SpecA is given by IY = (f1, . . . , fr) and as Y is of codimension r
in U we have dim A/IY = dim A− r, so from the same Proposition 3.1.32 we find that f1, . . . , fr

is a regular sequence for A. The ideal Ij of Dj in Spec A is given by Ij = (fj), so on SpecA the
morphism (18) is given by

r⊕

j=1

(
Ij/I2

j ⊗A/Ij
A/I

)
→ IY /I2

Y ,

by taking the corresponding sheaves of modules. This is exactly the isomorphism (16) of Lemma
3.1.39 and hence proves that (18) is an isomorphism. Similarly, it follows locally from the isomor-
phism (17) of Lemma 3.1.39 that the homomorphism in (19) is an isomorphism. !

Proof of Lemma 3.1.36. For the first assertion, see [47, exa.II.8.20.1]. Let I and Ij be the
sheaves of ideals of Y and Dj respectively in Pn. From Lemma 3.1.12 we find Ij

∼= L(−Dj) and
hence the sheaf Ij/I2

j on Dj is given by L(−Dj) ⊗ ODj . Since Dj is as a divisor on Pn linearly
equivalent with djH, where H is any hyperplane, it follows that we have an isomorphism

Ij/I2
j
∼= L(−Dj)⊗ODj

∼= L(−djH)⊗ODj
∼= OP(−dj)⊗ODj (20)
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of invertible sheaves on Dj . We get the following sequence of isomorphisms.

NY/Pn ∼= HomOY

(
I/I2,OY

)

∼= HomOY




r⊕

j=1

(
Ij/I2

j ⊗OY

)
,OY





∼=
r⊕

j=1

HomOY (OP(−dj)⊗OP OY ,OY )

∼=
r⊕

j=1

HomOP (OP(−dj),HomOY (OY ,OY ))

∼=
r⊕

j=1

HomOP (OP(−dj),OY )

∼=
r⊕

j=1

HomOP (OP(−dj),OP)⊗OY

∼=
r⊕

j=1

OP(dj)⊗OY .

The first isomorphism is a definition and the second follows from the isomorphism (18) of Corollary
3.1.40. The third follows from (20) and the fact that a finite direct sum is a direct product. The
fourth isomorphism follows from the sheaves version of Lemma 3.1.38, while the fifth is trivial.
The sixth follows from the fact that OP(d) is a locally free OP-module of rank 1. Finally the
last isomorphism follows from the fact that for any invertible sheaf L on a scheme X we have
L−1 ∼= HomOX (L,OX).

Since OP(d) ⊗ OY is locally free of rank 1, we have
∧1 OP(d) ⊗ OY = OP(d) ⊗ OY , so by

repeated use of Lemma 3.1.37 we find an isomorphism

r∧
NY/Pn ∼=

r∧ r⊕

j=1

OP(dj)⊗OY

∼= OP(d1)⊗ · · · ⊗ OP(dr)⊗OY

∼= OP
(∑

dj

)
⊗OY .

Using ωP ∼= OP(−n− 1) we find

ωP ⊗
r∧
NY/Pn ∼= OP(−n− 1)⊗OP

(∑
dj

)
⊗OY

∼= OP(m)⊗OY = ρ∗OP(m).

!
Two notions defined on nonsingular varieties in terms of the canonical sheaf are the m-genus

pm and the geometrical genus pg.

Definition 3.1.41 For a positive integer m and a nonsingular projective variety X over an alge-
braically closed field K the m-genus is defined as

pm(X) = dimK H0(X,ω⊗m
X ).

The geometrical genus pg is defined as pg(X) = p1(X).

These notions are birational invariants, see [47, Thm.II.8.19, Exc.II.8.8] and [60, Cor.II.6.4].
Hence in characteristic 0 we can define the m-genus and the geometric genus of an arbitrary variety
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to be the corresponding genus of a birational nonsingular projective variety due to resolution of
singularities by Hironaka.

There are some other numbers that people seem to be interested in. Instead of the canonical
sheaf ωX we can also use the sheaf of differentials ΩX/K to define the numbers hp,q as in Definition
3.1.42 for every pair (p, q) of nonnegative integers. These are in general not birational invariants.

Definition 3.1.42 Let X be a nonsingular connected compact variety over an algebraically closed
field K of dimension n and let ΩX/K be its sheaf of differentials. For integers p, q the group
Hp,q(X) and the number hp,q(X) are defined as

Hp,q(X) = Hq(X,
p∧

ΩX/K) and hp,q(X) = dimK Hp,q(X).

The numbers hp,q are called the Hodge numbers.

Remark 3.1.43 Note that from the fact that ωX =
∧n ΩX we find that pg(X) = hn,0(X).

Proposition 3.1.44 (Grothendieck’s Vanishing Theorem) Let X be a noetherian topologi-
cal space of dimension n. Then for all i > n and all sheaves of abelian groups F on X, we have
Hi(X,F) = 0.

Proof. See [47, Thm.III.2.7]. !

Corollary 3.1.45 Let X be a noetherian nonsingular connected compact variety of dimension n.
For nonnegative integers p, q with p > n or q > n we have hp,q(X) = 0.

Proof. If q > n, then it follows from Proposition 3.1.44 that Hq(X,
∧p ΩX) = 0. If p > n then it

follows from the fact that
∧p ΩX = 0. !

If X is defined over the complex numbers C, then we can view X = X(C) as a connected com-
pact complex manifold of dimension n. Hence we can consider the cohomology groups Hk(X, C)
of X with coefficients in C.

Definition 3.1.46 Let X be a connected compact complex manifold. Then we define the k-th
Betti number bk(X) to be bk(X) = dimC Hk(X, C).

Serre’s paper GAGA [55] tells us that we can identify Hp,q(X) = Hq(X,
∧p ΩX) with its

analytic brother Hq(Xh,
∧p ΩXh), where ΩXh is the sheaf of holomorphic differential forms on the

analytic space Xh associated to X, see also [47, Thm.B.2.1]. Under this identification we get the
following proposition.

Proposition 3.1.47 Let X be a a nonsingular connected projective variety defined over C. Then
there is a direct sum decomposition

Hk(X, C) ∼=
⊕

p+q=k

Hp,q(X),

which is the famous Hodge decomposition. Hence we have bk =
∑

p+q=k hp,q. We also have
hp,q = hq,p.

Proof. See [35, Cor’s.I.13.3,4]. Note that these corollaries in [35] are stated for compact Kähler
manifolds, but projective algebraic manifolds are indeed Kählerian. Note also that the definition
of Hp,q(X) is different in [35], but from the Dolbeault isomorphism from [35, Sect.I.12] we see
that their definition coincides with ours. !
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Proposition 3.1.48 (Poincaré duality) If X is a nonsingular projective variety of dimension
n defined over C, then Poincaré duality gives isomorphisms

Hk(X, C) ∼= H2n−k(X, C)

for 1 ≤ k ≤ 2n, whence bk(X) = b2n−k(X).

Proof. See [35, Sec.I.1.]. !

Remark 3.1.49 Note that for k > 2n we have bk = 0. This is a general result from alge-
braic topology, but also follows from Proposition 3.1.47 and Corollary 3.1.45. Note also that
for a projective nonsingular surface over an algebraically closed field K we have H0(X, Ω0

X) =
H0(X,OX) = K, so b0(X) = h0,0(X) = dimK K = 1. From Proposition 3.1.48 we also find
b2n(X) = hn,n(X) = 1 if K = C.

The betti and Hodge numbers are related by the equation bn =
∑

p+q=n hp,q, but there are
more relations. One of these can be best expressed by two different Euler characteristics, the
topological Euler characteristic and the Euler characteristic of the global sections.

Definition 3.1.50 Let X be a connected compact complex manifold. Then we define the topolog-
ical Euler characteristic as

χtop(X) =
2n∑

k=1

(−1)k dim Hk(X, C).

Definition 3.1.51 Let X be a projective variety over a field K of dimension n. As the sheaf OX

is coherent, the groups Hk(X,OX) are finite dimensional, so we can define the Euler characteristic
(of global sections) by

χ(X) =
n∑

k=0

(−1)k dimK Hk(X,OX)

of X and the arithmetic genus pa(X) = (−1)n(χ(X)− 1).

Proposition 3.1.52 (Noether formula) Let X be a nonsingular projective variety of dimension
n defined over C and let KX be a canonical divisor on X. Then χ(X) and χtop(X(C)) are related
by

χtop(X(C)) = 12χ(X)−K2
X .

Proof. See [36, Sect.I.14, p.12]. !

Lemma 3.1.53 Let X be a nonsingular projective variety over an algebraically closed field K and
let ωX be the canonical sheaf. Then we can also express the Euler characteristic as

χ(X) =
n∑

k=0

(−1)k dimK Hn−k(X,ωX) =
n∑

k=0

(−1)khn,n−k(X).

Proof. Serre’s duality (see [35, Thm.I.5.2] or [47, Cor.III.7.7]) says that if X is a nonsingular
variety with canonical sheaf ωX , then there is an isomorphism Hk(X,OX) ∼= Hn−k(X,ωX). The
first equality now follows directly. The second follows from the definition of the Hodge numbers
and the fact that

∧n ΩX
∼= ωX . !

For curves and surfaces the arithmetic genus is a birational invariant. In general it is invariant
under monoidal transformations, which comes close.

Definition 3.1.54 A monoidal transformation of a variety X is the operation of blowing up a
single point P .

21



Lemma 3.1.55 If X̃ → X is a monoidal transformation, then there are isomorphisms

Hi(X,OX) ∼= Hi(X̃,OX)

for all i ≥ 0.

Lemma 3.1.56 Let π: X̃ → X be a monoidal transformation. Then pa(X̃) = pa(X). If X is
either a nonsingular projective curve or a nonsingular projective surface, then pa(X) and χ(X)
are birational invariants.

Proof. For the first claim see [47, Cor.V.3.5]. For the last two see [47, Exc.II.5.3] for the curve
case and [47, Cor.V.5.6] for the surface. !

Remark 3.1.57 For a curve C we find from Lemma 3.1.53 with n = 1 and the fact that h1,1(C) =
1 that

pa(C) = 1− χ(C) = 1−
(
h1,1(C)− h1,0(C)

)
= h1,0(C) = pg(C).

The number pg(C) = pa(C) is called the genus of C. For a surface S we find similarly that

pa(S) = pg(S)− h2,1(S) ≤ pg(S).

Lemma 3.1.58 Let Y be a closed subvariety of Pn = Pn
K defined over a field K with homogeneous

coordinate ring S(Y ) =
⊕

d≥0 Sd, where Sd is the degree d part of S(Y ). Then there is a unique
polynomial PY of degree dim Y such that PY (l) = dimK Sl for l large enough.

Proof. See [47, Thm. I.7.5]. !

Definition 3.1.59 The polynomial mentioned in Lemma 3.1.58 is called the Hilbert polynomial
PY of the projective variety Y .

Lemma 3.1.60 Let Y ⊂ Pn be a projective variety with Hilbert polynomial PY . Then for the
Euler characteristic χ(Y ) we have χ(Y ) = PY (0).

Proof. See [47, exc.III.5.3]. !

3.2 A surface describing perfect cuboids

A perfect cuboid corresponds to a rational point on the surface Υ ⊂ P6
Q given by the equations

A2 + B2 − Z2 = 0,

B2 + C2 −X2 = 0,

C2 + A2 − Y 2 = 0,

A2 + X2 − U2 = 0.

(21)

Lemma 3.2.1 Let K be any field of characteristic char K &= 2 and consider the graded ring
R = K[A, B, C, X, Y, Z, U ]. Then the ideal I ⊂ R generated by the polynomials in (21) is a prime
ideal.

Proof. We will prove this lemma by showing that R/I has no zero divisors. Consider the
polynomial ring S = K(A, B, C)[X, Y, Z, U ] in four variables over the field L = K(A, B, C). We
will first show that R/I is a subring of S/IS, and then that S/IS is a field. These two facts indeed
imply that R/I has no zero divisors.

For the first fact, namely that R/I is a subring of S/IS, it suffices to show that I is the kernel
of the natural map R → S/IS, i.e., that R ∩ IS = I. We use the theory of Gröbner bases to
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show this. The ordering X > Y > Z > U induces a well-ordered lexicographic ordering on the
monomials of the polynomial ring S. One can check that the four polynomials of (21) give a
Gröbner basis with for IS with respect to this ordering.

Now suppose that for some f ∈ R ⊂ S we have f ∈ IS. Since the monomials are well-ordered
we can use induction with respect to the leading monomial of f to show that f ∈ I. For f = 0
this is immediate, so suppose that we have a nonzero f ∈ R ∩ IS. Since the polynomials of (21)
give a Gröbner basis for IS, the leading monomial M of f is divisible by the leading monomial of
one of the polynomials of (21), whence by X2, Y 2, Z2 or U2. Suppose M is divisible by X2, then
we can define

g = f − cM

X2
· (X2 −B2 − C2),

where c ∈ L is the coefficient of M in f . Since we have f ∈ R, the leading coefficient c is contained
in K[A, B, C], whence cM/X2 ∈ R. We find g ∈ R ∩ IS and since the leading monomial of g is
less than M , by the induction hypothesis we may assume that g ∈ I and it follows that f ∈ I.
The cases that M is divisible by Y 2, Z2 or U2 are similar, so we find indeed that R∩ IS = I and
R/I ⊂ S/IS. Define

L0 = L = K(A, B, C),
L1 = L0[X]/(X2 − a1), with a1 = B2 + C2,
L2 = L1[Y ]/(Y 2 − a2), with a2 = A2 + C2,
L3 = L2[Z]/(Z2 − a3), with a3 = A2 + B2,
L4 = L3[U ]/(U2 − a4), with a4 = A2 + B2 + C2.

From Kummer theory we know that if the sequence

L∗2
0 ⊂ L∗2

0 · 〈a1〉 ⊂ L∗2
0 · 〈a1, a2〉 ⊂ L∗2

0 · 〈a1, a2, a3〉 ⊂ L∗2
0 · 〈a1, a2, a3, a4〉 (22)

of subgroups of L∗
0 is strictly increasing, then we will have aj &∈ Lj−1 for all 1 ≤ j ≤ 4, whence Lj

would be a field for all j. In particular, L4
∼= S/IS would be a field. It remains to show that the

sequence (22) is indeed stricly increasing.
We will use the fact that K[A, B, C] is a unique factorization domain. Consider the prime

element B + iC, where i2 = −1. Every element in L∗2
0 has an even number of factors B + iC.

Since a1 doesn’t, we find a1 &∈ L∗2
0 . Similarly every element in L∗2

0 · 〈a1〉 has an even number
of factors A + iC, so a2 &∈ L∗2

0 · 〈a1〉 and analogously a3 &∈ L∗2
0 · 〈a1, a2〉. For the last step note

that a4 itself is prime in K[A, B, C], for if we view a4 as a polynomial in the variable C over
the unique factorization domain K[A, B], then a4 is an Eisenstein polynomial with respect to the
prime A + iB. Since a1, a2 and a3 are not divisible by a4, every element in L∗2

0 · 〈a1, a2, a3〉 has
an even number of factors a4. Therefore this group does not contain a4 and the sequence (22) is
strictly increasing. !

From Lemma 3.2.1 and the fact that dim Υ = 2 it follows that the surface Υ is a complete
intersection. It is geometrically irreducible and reduced, whence integral, has degree 16 and its
radical ideal I(Υ) in Q[A, B, C, X, Y, Z, U ] is given by the polynomials in (21). We will denote the
homogeneous coordinate ring of Υ by S(Υ) ∼= Q[A, B, C, X, Y, Z, U ]/I(Υ).

The map σ that sends a point [a : b : c : x : y : z : u] to [b : a : c : y : x : z : u] and the
map τ : [a : b : c : x : y : z : u] +→ [b : c : a : y : z : x : u] are automorphisms of Υ. For t one of
the seven coordinates let ιt denote the involution that multiplies the t-coordinate with −1. These
nine automorphisms generate a Galois invariant subgroup G0 of Aut(Υ).

The subgroup N generated by the ιt is normal in G0. Since the only relation among the ιt
is given by ιAιB · · · ιU = 1, the group N is generated by ιA, ιB, ιC , ιX , ιY , ιZ and isomorphic to
(Z/2)6 under the isomorphism

ϕ: N → (Z/2)6: ιqA

A ι
qB

B ι
qC

C ι
qX

X ι
qY

Y ι
qZ

Z ι
qU

U +→ (qA − qU , qB − qU , qC − qU , qX − qU , qY − qU , qZ − qU ).

The subgroup H = 〈σ, τ 〉 is isomorphic to S3. The subgroup H acts on N by conjugation. The
corresponding action on (Z/2)6 via ϕ is given by letting S3 act on the first and the last three
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coordinates at the same time. We have HN = G0 and H ∩ N = {1}, so G0 is the semidirect
product of H and N of order 6 · 26 = 384. Hence we have G0

∼= S3 ! (Z/2)6 with respect to the
action given by letting S3 act on the first and the last 3 coordinates at the same time.

Consider a point P = [a0 : b0 : c0 : x0 : y0 : z0] of Υ⊗Q with a0, z0 &= 0 with local ring OP,Υ⊗Q
and maximal ideal m. We can write

Z

A
− z0

a0
=

a0

2z0

(
B

A
− b0

a0

)2

+
b0

z0

(
B

A
− b0

a0

)
− a0

2z0

(
Z

A
− z0

a0

)2

,

so the element Z
A −

z0
a0
∈ m is congruent to b0

z0
(B

A −
b0
a0

) modulo m2. Similarly, if x0, y0, u0 &= 0, then
we can express the residues of X

A − x0
a0

, Y
A −

y0
a0

and U
A −

u0
a0

in m/m2 in those of B
A −

b0
a0

and C
A −

c0
a0

,
whence the vector space m/m2 is generated by B

A − b0
a0

and C
A − c0

a0
and therefore 2-dimensional,

so P is regular. Analogously, we can define the following three open subsets of Υ ⊗ Q in which
every point is regular.

open set given by local parameters
U1 X, Y, Z, A, B &= 0 C

A − c0
a0

, U
A − U0

a0

U2 U, X, A, B, C &= 0 Y
A − y0

a0
, Z

A − z0
a0

U3 X, Y, A, B, C &= 0 U
A − u0

a0
, Z

A − z0
a0

For each 1 ≤ i ≤ 3 not only Ui contains only regular points but also τUi and τ2Ui. This
gives 9 open sets of Υ⊗Q in which all points are regular. We define R1 and R2 to be the points
R1 := [1 : 0 : 0 : 0 : 1 : 1 : 1] and R2 := [1 : i : 0 : i : 1 : 0 : 0] on Υ⊗Q with i2 = −1. These points
are both singular. For i = 1, 2 let mi be the maximal ideal of the local ring ORi,Υ⊗Q. Then the
vector space m1/m2

1 is generated by the residues of B
A , C

A and X
A , while the vector space m2/m2

2 is
generated by the residues of C

A , Z
A and U

A .

Proposition 3.2.2 Let P be a point on Υ ⊗ Q and suppose that for 1 ≤ j, k ≤ 3 we have
P &∈ τkUj ⊗Q. Then there is an automorphism g ∈ G0 such that gP = R1 or gP = R2.

Proof. Let P = [a : b : c : x : y : z : u] be an arbitrary point on Υ.
First suppose abc &= 0. If y = z = 0, then −a2 = b2 = c2 &= 0 whence x2 = 2b2 &= 0 and

u2 = b2 &= 0, so we see P ∈ U2. Similarly, if z = x = 0 or x = y = 0, then we get P ∈ τU2 or
P ∈ τ2U2 respectively. Since P &∈ τkU2 for any k this gives a contradiction, so at most one of the
x, y, z equals 0 and we get P ∈ τkU3 for some k. Again a contradiction, so abc = 0.

Now suppose that exactly one of the coordinates a, b, c equals 0, then after applying some
power of τ we may assume ab &= 0 and c = 0. We then get xy = ±ab &= 0 and z = ±u. If
z = ±u &= 0, then P is contained in U1, contradiction, so we have z = u = 0 and a = ±ib. Now P
is up to some product of the ιA, ιB, ιX , ιY equal to R2.

Finally suppose that at least two of the coordinates a, b and c equal 0. Since a = b = c = 0
implies x = y = z = u = 0, a contradiction for homogeneous coordinates, we conclude that exactly
two of the coordinates equal zero and after applying a power of τ we may assume b = c = 0, whence
x = 0. Then up to some product of the ιA, ιY , ιZ , ιU the point P equals R1. !

Corollary 3.2.3 The 9 open subsets τkUj ⊗Q with 1 ≤ j, k ≤ 3 cover the regular locus of Υ⊗Q.
The surface Υ⊗Q contains exactly 48 singular points, all with a stabilizer in G0 of order 16.

Proof. Let P be a point not contained in the τkUj for 1 ≤ j, k ≤ 3. Then by Proposition 3.2.2
there is a g ∈ G0 with g(P ) = R1 or g(P ) = R2. Since R1 and R2 are singular, so is P . Hence
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the τkUj do indeed cover the regular locus of Υ⊗ Q. The orbits of R1 and R2 under the action
of G0 are easily determined to be






[1 : 0 : 0 : 0 : ±1 : ±1 : ±1],
[0 : 1 : 0 : ±1 : 0 : ±1 : ±1],
[0 : 0 : 1 : ±1 : ±1 : 0 : ±1]

and






[1 : ±i : 0 : ±i : ±1 : 0 : 0],
[0 : 1 : ±i : 0 : ±i : ±1 : 0],
[±i : 0 : 1 : ±1 : 0 : ±i : 0]

respectively. Since the orbits of R1 and R2 under G0 are different and both contain 24 different
points, this implies that we get 48 singular points, all with a stabilizer in G0 of order 384/24 = 16.
Note for instance that σR2 = R2. !

Actually, there are more automorphisms of Υ ⊗ Q, but these may not be Q-rational. With
i2 = −1, it is easily checked that the map ρ: [a : b : c : x : y : z : u] +→ [a : b : iu : iy : ix : z : ic]
gives an automorphism of Υ⊗Q and that we have the following relations.

ρ2 = ιAιBιZ ,
ιCρ = ριU , ιUρ = ριC ,
ιY ρ = ριX , ιXρ = ριY ,
ιAρ = ριA, ιBρ = ριB, ιZρ = ριZ ,
σρσ = ρ, ρτρ = ιCιY τρτ−1σ.

(23)

Let G be the group G = G0 · 〈ρ〉, where the product taken in Aut(Υ⊗Q). Using the relations in
(23) we can write any element of G as either

ιqA

A ι
qB

B ι
qC

C ι
qX

X ι
qY

Y ι
qZ

Z τ
tσs with 0 ≤ qA, qB , qC , qX , qY , qZ , s ≤ 1, 0 ≤ t ≤ 2. (24)

or

ιqA

A ι
qB

B ι
qC

C ι
qX

X ι
qY

Y ι
qZ

Z τ
t1ρτ t2σs with 0 ≤ qA, qB, qC , qX , qY , qZ , s ≤ 1, 0 ≤ t1, t2 ≤ 2. (25)

It is also easily checked that the elements in (24) and (25) all act differently on the set of singular
points of Υ ⊗ Q. This implies that G acts faithfully on the singular points and that #G =
26 · 3 · 2+26 · 32 · 2 = 29 · 3 = 1536. The group G also acts transitively on the set of singular points
for we have ρτ2R1 = R2. Hence the stabilizer of each singular point has order 1536/48 = 32.

We number the 48 isolated singularities R1, R2, . . . , R48, where R1 and R2 are as before. They
will turn out to be ordinary double points. We will see that this particular type of singularity is in
some way not too bad, but before we can define the notion ordinary double point we need another
definition, see [47, I.5, p.34].

Definition 3.2.4 (analytically isomorphic) Let X and Y be two varieties over an algebraically
closed field K and P and Q points on X and Y respectively with local rings OP and OQ. Let ÔP

and ÔQ denote the completions of OP and OQ at their maximal ideals. Then P and Q are said
to be analytically isomorphic if there is an isomorphism ÔP

∼= ÔQ as K-algebras.

One important fact about this notion is Corollary 3.2.6 to the following lemma.

Lemma 3.2.5 Let A be a noetherian ring and m a maximal ideal. Consider the scheme X =
SpecA with the point P corresponding to the ideal m. Let π: X̃ → X be the blow-up of X in
the point P and let E = π−1(P ) be the exceptional fibre above P . Then on X̃ we have E2 =
degOE(−1).

Further let Am be the localization of A at m and let Âm be its m-adic completion with maximal
ideal m̂ = mÂm. Let P ′ be the point on the scheme X ′ = Spec Âm corresponding to m̂ and let
π′: X̃ ′ → X ′ be the blow-up of X ′ in the point P ′ with exceptional fibre E′ = π′−1(P ′). Then E
and E′ are isomorphic and E2 = E′2.
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Proof. Let P ′′ be the point on X ′′ = SpecAm corresponding with the maximal ideal m′′ = mAm

and let π′′: X̃ ′′ → Spec Am be the blow-up of X ′′ at P ′′, write E′′ = π′′−1(P ′′). Define the graded
A-algebra

R =
⊕

k≥0

mk,

where we take m0 = A and the graded A-algebra structure is as follows. For f ∈ mk and g ∈ ml

the product fg is taken to be in mk+l. We have 1R = (1, 0, 0, . . .). Define similarly the graded
Am-algebra R′′ and the graded Âm-algebra R′ by

R′′ =
⊕

k≥0

m′′k, R′ =
⊕

k≥0

m̂k.

Since A is noetherian, we find from Theorem 7.2 in [42] that there are natural isomorphisms

mk/mk+1 ∼= m′′k/m′′k+1 ∼= m̂k/m̂k+1 (26)

for every k ≥ 0. The graded ring R/mR can be given by

R/mR ∼=
⊕

k≥0

mk/mk+1, (27)

where the degree k0 part is given by the term with k = k0. For the graded rings R′′/mR′′ and
R′/m̂R′ we find expressions similar to the one in (27), so from (26) we find the isomorphisms

R/mR ∼= R′′/mR′′ ∼= R′/m̂R′. (28)

Now by definition we get X̃ ∼= Proj R and X̃ ′ ∼= Proj R′ and X̃ ′′ ∼= ProjR′′, see [47, II.7,
p.163].

The morphism π is induced by the ringhomomorphism ϕ: A → R: a +→ a · 1R that makes R
into an A-algebra. Therefore, as P corresponds to the maximal ideal m, the exceptional fibre
E = π−1(P ) can be given by E ∼= Proj R/mR. Similarly we find E′ ∼= ProjR′/m̂R′ and E′′ ∼=
Proj R′′/mR′′, so from the isomorphisms (28) we find that there are isomorphisms E ∼= E′′ ∼= E′.
This means that the commutative diagram of rings and ideals

A

R

A

R′R′′

Â

m m′′ m̂

m̂R′mR mR′′

induces the following commutative diagram of schemes in which the two lowest horizontal
arrows are actually isomorphisms.
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π

Spec Â SpecA SpecA = X

ProjR = X̃

SpecA/m = P

Proj R′′/mR′′Proj R′/mR′

ProjR′ Proj R′′

Spec Â /m̂ SpecA /m′′

E′ E′′ E

Proj R/mR

∼ ∼ ∼

From [47, exa.V.1.4.1.] we know that the self intersection number E2 on X̃ equals

E2 = degNE/X = degE HomOE (I/I2,OE), (29)

where I is the sheaf of ideals of E in X̃, i.e., I is the sheaf of ideals on X̃ = ProjR corresponding
with the ideal mR ⊂ R. Writing S for the graded ring S = R/mR, we find from E ∼= Proj R/mR
that the sheaf I/I2 on E is isomorphic to the sheaf of modules induced by the graded S-module
M = mR/(mR)2. This sheaf is written as M̃ , see [47, Ch.II.5, p.116–117]. From (27) and the
isomorphism

M ∼=
⊕

k≥0

mk+1/mk+2

we see that M is isomorphic to S(1), the twisted module obtained by shifting the degree of S,
i.e., we have Mk

∼= Sk+1 where Sk and Mk denote the degree k parts of the graded ring S and the
graded S-module M respectively. By definition the sheaf on E = Proj S induced by the graded
S-module S(1) is the twisting sheaf OE(1) of Serre, see [47, Ch.II.5, p.117]. Hence we get

E2 = degHomOE (OE(1),OE) ∼= degOE(−1).

Similarly we find E′2 = degOE′(−1), so from the isomorphism E ∼= E′ we also find E2 = E′2. !

Corollary 3.2.6 Let X and Y be varieties containing the analytically isomorphic points P and Q
respectively. Let EP and EQ be the exceptional curves above P and Q after blowing up X and Y in
P and Q respectively. Then EP and EQ are isomorphic and they have the same self-intersection
number.

Proof. Let SpecA and Spec B be affine neighborhoods of P and Q respectively and let m and n
be the maximal ideals corresponding with the points P and Q. Let Am and Bn be the localizations
of A and B at m and n respectively and let Âm and B̂n be their completions with maximal ideals
m̂ and n̂ respectively. Let P ′ be the point on X ′ = Spec Âm corresponding to the ideal m̂ and let
Q′ be the point on Y ′ = Spec B̂n corresponding to the ideal n. Let X̃ ′ be the blow-up of X ′ in P ′

with exceptional fibre EP ′ above P ′ and let Ỹ ′ be the blow-up of Y ′ in Q′ with the exceptional
fibre EQ′ above Q′. From Lemma 3.2.5 we find that EP and EP ′ are isomorphic and that the
self intersection numbers E2

P and E2
P ′ on SpecA ⊂ X and X ′ respectively are equal. Similarly we

find EQ
∼= EQ′ and E2

Q = E2
Q′ , so it suffices to show that EP ′ and EQ′ are isomorphic and that

E2
P ′ = E2

Q′ .

27



The fact that P and Q are analytically isomorphic says that there exists an isomorphism
Âm → B̂n mapping m̂ to n̂. Then clearly we have EP ′ ∼= EQ′ and E2

P ′ = E2
Q′ .

Spec B̂ /n̂

∼

∼

∼

= =

πY πX

Spec B̂ Y ′ X ′ Spec Â

Spec Â /m̂P ′

π−1
Y (Q′) π−1

X (P ′)

EP ′EQ′

Ỹ ′ X̃ ′

Q′

∼

==
!

Definition 3.2.7 Let X be an algebraic surface and P a point on X. Let V = (0, 0, 0) be the
vertex of the cone in A3 given by x2 + y2 + z2 = 0. Then we call P an ordinary double point or
conical double point if P is analytically isomorphic to V .

The fact that ordinary double points are in some way not too bad is made precise in the
following lemma. The remark on the self-intersection number will be needed later.

Lemma 3.2.8 Let X be an algebraic surface over an algebraically closed field K and let P on X
be analytically isomorphic to the vertex of the cone over a nonsingular curve C ⊂ P2

K of degree d.
Let ϕ: X̃ → X be the blowing-up of X at P and let E = ϕ−1(P ) be the exceptional curve above
P . Then X̃ is nonsingular in an open neighborhood of the curve E, which is isomorphic to C
and E2 = −d. In particular, if P is an ordinary double point, then E is isomorphic to P1 and
E2 = −2.

Proof. By Lemma 3.2.6 the fibre above P of the blow-up in P depends only on the completion of
the local ring at P , so we only need to prove this in the case that P is the origin (0, 0, 0) ∈ A3 and
X is the surface in A3 determined by F = 0, where F ∈ K[X, Y, Z] is a homogeneous polynomial
describing C. In that case the blow-up of X is one of the standard examples of blowing up.
It follows for instance from [47, exc.I.5.7.] that E is isomorphic to the curve C and that X̃ is
nonsingular in an open neigboorhood of E. This also follows from [43, Exa.IV.27] in the case
F = X2 + Y 2 − Z2. From Lemma 3.2.5 we find E2 = degE OE(−1), so from the fact that
E ∼= C we find that E2 = degC OC(−1) = − degC OC(1). Let the embedding of C in P2 be
given by j: C ↪→ P2. Then we have OC(1) ∼= j∗OP(1) and if H is a line in P2 and D is the divisor
D = H∩C on C then j∗O(1) ∼= j∗L(H) ∼= L(D). Since degC L(D) = degC D (see [47, exc.II.6.12])
and degC D = (deg C)(deg H) = deg C = d (Theorem of Bézout), we find

E2 = − degC OC(1) = − degC j∗OP(1) = − degC L(D) = − degC D = −d.

This also follows from example V.2.11.4 on page 374 of [47] for n = 2. If P is an ordinary double
point, then we can take C to be the curve of degree d = 2 given by X2 + Y 2 + Z2 = 0. !

Lemma 3.2.9 All singular points on Υ⊗Q are ordinary double points.

Proof. Since G ⊂ Aut(Υ⊗ Q) acts transitively on the 48 singular points, we only need to show
that R1 = [1 : 0 : 0 : 0 : 1 : 1 : 1] is an ordinary double point. Since R1 lies in the affine part
A &= 0, the local ring OR1,Υ⊗Q can be given by

(Q[b, c, x, y, z, u]/I)m,
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with

I = ( b2 + c2 − x2, (1− z)(1 + z)− b2, (1− y)(1 + y)− c2, (1− u)(1 + u)− x2 ),
m = (b, c, x, y − 1, z − 1, u− 1).

(30)
There are fy, fz, fu ∈ ÔR1,Υ⊗Q such that f2

y = 1 + y, f2
z = 1 + z and f2

u = 1 + u, namely

fy =
√

2 +
1
2
√

2(y − 1)− 1
4
√

2(y − 1)2 + . . .

and similar fz and fu. These elements are units, so we can define b′ = bf−1
z , c′ = cf−1

y and
x′ = xf−1

u to find

ÔR1,Υ⊗Q
∼=
(
Q[b′, c′, x′, y, z, u]/(b′2 + c′2 − x′2, z − 1− b′2, y − 1− c′2, u− 1− x′2)

)
m

∼=
(
Q[b′, c′, x′]/(b′2 + c′2 − x′2)

)
(b′,c′,x′)

.

By substituting x′ = ix′′ this shows that R1 is indeed an ordinary double point. !

Definition 3.2.10 Let π: Υ̃ → Υ be the blowing-up of Υ in the 48 singular points and for i =
1, . . . , 48 let Ei be the exceptional fibre of π above Ri.

Corollary 3.2.11 The surface Υ̃⊗Q is nonsingular. For each i the fibre Ei is isomorphic to P1

and has self intersection number −2.

Proof. This follows directly from Lemma 3.2.8 and 3.2.9. !

Lemma 3.2.12 Let A be a commutative ring, R an A-algebra, A′ the integral closure of A in R
ans S a multiplicative subset of A. Then the integral closure of S−1A in S−1R is S−1A′.

Proof. See [37, V.1.5, Prop. 16]. !

Corollary 3.2.13 Let A be an integrally closed domain and S a multiplicative subset of A such
that 0 &∈ S. Then S−1A is integrally closed as well.

Proof. The field of fractions R of A is also the field of fractions of S−1A since 0 &∈ S. The
corollary follows by applying Lemma 3.2.12 to R with A′ = A. !

Lemma 3.2.14 Every commutative regular local ring is factorial, whence integrally closed.

Proof. See [42, Thm. 19.19]. !

Lemma 3.2.15 The surface Υ⊗Q is normal.

Proof. Since regular local rings are integrally closed by Lemma 3.2.14, we only need to show
that the local rings Bj = ORj ,Υ⊗Q at the singular points Rj are integrally closed. As the group
G ⊂ Aut(Υ⊗Q) acts transitively on the singular points, it suffices to do this for j = 1. Since R1

is contained in the affine part A &= 0, we can describe B = B1 as

B ∼=
(
Q[b, c, x, y, z, u]/I

)
m

,

where I and m are as in (30). By Corollary 3.2.13 it suffices to show that A := Q[b, c, x, y, z, u]/I
is integrally closed. The fact that this is sufficient also follows from the fact that an affine variety
is normal if and only if its coordinate ring is integrally closed, see [47, exc.I.3.17.].
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The embedding Q[b, c] ↪→ Q[b, c, x, y, z, u] induces an embedding Q[b, c] ↪→ A as Q[b, c]∩I = (0).
Let Q(A) be the quotient field of A and let t ∈ Q(A) be an element which is integral over A. Using
the fact that x2, y2, z2, u2 ∈ Q[b, c], we can write

t = f + xfx + yfy + zfz + ufu,

with f, fx, fy, fz, fu ∈ Q(b, c). Since u +→ −u induces an automorphism of A, the element

t′ = f + xfx + yfy + zfz − ufu

is integral over A as well, whence so is t− t′ = 2ufu and since char Q &= 2, so is ufu. Similarly, so
are xfx, yfy and zfz and hence

f, (xfx)2 = (b2 + c2)f2
x , (1 + c2)f2

y , (1 + b2)f2
z and (1 + b2 + c2)f2

u . (31)

Since Q[b, c] is a unique factorization domain, it is integrally closed. This implies that the elements
of (31), which are all contained in Q(b, c) and integral over Q[b, c], are actually all in Q[b, c]. Since
the factor b2 + c2 is squarefree, it follows from (b2 + c2)f2

x ∈ Q[b, c] that f2
x ∈ Q[b, c], whence

fx ∈ Q[b, c]. Analogously, since the factors 1 + b2, 1 + c2 and 1 + b2 + c2 are also squarefree, we
get fz, fy, fu ∈ Q[b, c]. Therefore we have t ∈ A, so A is integrally closed. !

Remark 3.2.16 It is a fact that if P is an ordinary double point of a surface S, then S is normal
at P . And more generally, if P is an isolated hypersurface singularity on a surface S, i.e., P is
analytically isomorphic to an isolated singular point on a hypersurface S′ ⊂ P3, then S is normal
at P . This follows from the following two facts. First that an irreducible affine hypersurface is
normal if and only if it is regular in codimension one, see [54, Ch.III.8, Prop.2]. Secondly the more
heavy machinery, stating that a local excellent ring is normal if and only if its completion is, see
[46, Sch.IV.7.8.3(v)].

Since almost all surfaces that we will encounter in this paper are complete intersections, we
will not prove the facts stated in Remark 3.2.16 or even refer to the complete proofs. Instead we
will use the following proposition to prove that our surfaces are normal. Lemma 3.2.15 also follows
from this proposition.

Proposition 3.2.17 Let Y be a locally complete intersection subscheme of a nonsingular variety
X over an algebraically closed field K. Then

(a) Y is Cohen-Macaulay,

(b) Y is normal if and only if it is regular in codimension 1.

Proof. See [47, Prop.II.8.23]. !

Lemma 3.2.18 The Hilbert polynomial PΥ of the surface Υ is given by PΥ(n) = 8(n2 − n + 1)
and the arithmetic genus pa(Υ) of Υ equals 7. The Euler characteristic χ(Υ) equals 8.

Proof. The degree n part Sn of the graded homogeneous coordinate ring S = S(Υ) is generated
by the residues of degree n monomials AqaBqbCqcXqX Y qY ZqZ UqU . Since we can express X2, Y 2,
Z2 and U2 in A, B and C, a basis for Sn over Q is given by those monomials with qX , qY , qZ , qU ∈
{0, 1}. Consider these monomials. The number of 3-tuples (qA, qB, qC) with qA+qB +qC = n−k is(n−k+2

2

)
, so for 0 ≤ k ≤ 4 there are exactly

(n−k+2
2

)
of these monomials with k of the qX , qY , qZ , qU

fixed to be equal to 1 and the other 4 − k equal to 0. For n ≥ 4 this gives
∑4

k=0

(4
k

)(n−k+2
2

)
=

8(n2−n+1) monomials that form a basis of Sn over K. From Lemma 3.1.60 and Definition 3.1.51
we find that χ(Υ) = PΥ(0) = 8 and the arithmetic genus pa(Υ) equals (−1)dimΥ(PΥ(0)− 1) = 7,
see [47, exc.I.7.2]. !
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Since the arithmetic genus is invariant under monoidal transformations, the arithmetic genus
pa(Υ̃) of Υ̃ equals 7 as well and we also have χ(Υ̃) = 8. We will see that the geometric genus
pg(Υ̃) coincides with the arithmetic genus. Actually we shall now compute all Hodge numbers of
Υ̃ but h1,1 which we will compute later, see Corollary 3.3.34.

Proposition 3.2.19 Set q = h1,0(Υ̃⊗ C), then the Hodge numbers of Υ̃⊗ C are given by

h0,2 h1,2 h2,2

h0,1 h1,1 h2,1

h0,0 h1,0 h2,0

=
7 + q q 1

q h1,1 q

1 q 7 + q

.

Hence we have pg(Υ̃) = 7 + q.

Proof. Unless stated otherwise the Hodge and betti numbers hp,q and bk denote those of Υ̃⊗C.
Since Υ̃ ⊗ C is projective we have H0(Υ̃ ⊗ C,OΥ⊗C) = C, so b0 = h0,0 = 1 and from Poincaré
duality 3.1.48 we also find h2,2 = b4 = 1. From Proposition 3.1.47 we find that h0,1 = h1,0 = q,
so b1 = h0,1 + h1,0 = 2q. The Poincaré duality then implies that b3 = b1 = 2q and as we have
b3 = h2,1 + h1,2 and h1,2 = h2,1, we find h2,1 = h1,2 = q.

For arithmetic genus pa = pa(Υ̃ ⊗ C) = pa(Υ̃) = pa(Υ) = 7 we have 7 = pa = pg − h2,1 =
pg−q = h2,0−q from Remark 3.1.57. Therefore we get h2,0 = pg = 7+q. Finally from Proposition
3.1.47 we also get h0,2 = h2,0 = 7 + q. !

Bluff 1 we have H1(Υ̃,OΥ) = 0, whence h1,0(Υ̃) = 0 and pg(Υ̃) = 7 and

h0,2 h1,2 h2,2

h0,1 h1,1 h2,1

h0,0 h1,0 h2,0

=
7 0 1
0 h1,1 0
1 0 7

.

Proof. There is no proof yet, for otherwise this result wouldn’t be a bluff. !

3.3 Computing canonical sheaves and Kodaira dimensions

There are several ways to classify surfaces, one of which is by the notion of Kodaira dimension,
which we will define in this section. The Kodaira dimension of a variety X is a birational invariant
integer −1 ≤ κ(X) ≤ dim X. If κ(X) = dim X then we say that X is of general type. Our main
goal is to prove that the surface Υ in P6 describing perfect cuboids is of general type, but we will
state more general propositions. In this section K will always denote an algebraically closed field
of characteristic &= 2. Also in this section, by abuse of notation, Υ and Υ̃ will denote the varieties
Υ⊗Q and Υ̃⊗Q over Q respectively.

Let X be a projective variety over K and let L be an invertible sheaf on X. Consider the
K-vectorspace H0(X,L) = Γ(X,L) of global sections. Following K. Ueno [60, II.5], we define

N(L, X) := {m ∈ Z>0 : dimK H0(X,Lm) &= 0}.

Actually Ueno only does this for invertible sheaves associated to divisors. Note that N(L, X) is a
semi-group under addition, for if we have f ∈ H0(X,Lm) and g ∈ H0(X,Ln), then we also have
f ⊗ g ∈ H0(X,Lm+n). Since X is projective, the dimension of H0(X,L) over K is finite. Hence
for m ∈ N(L, X) we can choose a basis φ0, . . . , φN for H0(X,Lm).

Let P be a point on X. As L is an invertible sheaf we can choose an open neighborhood U
of P such that L(U) is a free OX(U)-module of rank 1, say generated by s ∈ L(U). Hence there
are regular functions g0, . . . , gN ∈ OX(U) such that φj |U = gj · s. Note that s is not a unique
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generator of L(U) as a free OX(U)-module, whence neither are the gj . However the ratios gi : gj

are unique, so we can define a rational map

fm: X ""# PN
K : P +→ [g0(P ) : g1(P ) : · · · : gN (P )],

which we will also write as

fm: X ""# PN
K : P +→ [φ0(P ) : φ1(P ) : · · · : φN (P )],

without addressing the gj . If Lm is generated by its global sections, then fm is a morphism. In
general it determines a morphism from a maximal open set Um ⊂ X to projective space. The
set X \ Um is called the set of basepoints. For a different basis of H0(X,Lm) we get a rational
map f ′

m: X ""# PN which differs from fm only by the action of an element of GL(N + 1, K) on
PN

K . Hence fm(Um) and f ′
m(Um) are isomorphic and their dimensions are equal. Therefore the

following definition is well defined.

Definition 3.3.1 Let X be a projective variety over K and let L be an invertible sheaf on X.
Then we define the invertible sheaf dimension κ(L, X) of L on X by

κ(L, X) =
{
−1 if N(L, X) = ∅,
maxm∈N(L,X)(dim fm(Um)) if N(L, X) &= ∅.

Lemma 3.3.2 Let X be a projective variety over K and let L and L′ be two isomorphic invertible
sheaves on X. Then we have κ(L, X) = κ(L′, X).

Proof. Let ψ:L → L′ be an isomorphism and let φ0, . . . , φN be a basis of H0(X,Lm) giving a
rational map fm: X ""# PN . Then the ψφj form a basis of H0(X,L′m) giving a rational map
f ′

m: X ""# PN . Let P be a point on X and let U ⊂ X be an open neighborhood of P such that
L(U) and L′(U) are free OX(U)-modules of rank 1. Let s ∈ L(U) be a generator of L(U) as an
OX(U)-module. Then ψ(s) is a generator of L′(U) and if gj ∈ OX(U) satisfies φj |U = gj · s, then
ψφj |U = gj · ψ(s), so both fm and f ′

m can be given by

X ""# PN
K : P +→ [g0(P ) : g1(P ) : · · · : gN (P )].

!
From this lemma it follows that we may define the divisor dimension of a Cartier divisor as

follows.

Definition 3.3.3 Let X be a projective variety over K and let D be a Cartier divisor on X. Then
the divisor dimension of D is defined by κ(D, X) := κ(L(D), X), where L(D) is the invertible sheaf
associated to D.

From Definition 3.3.1 it is clear that −1 ≤ κ(L, X) ≤ dimX for any invertible sheaf on a
projective variety over K.

Definition 3.3.4 We say that an invertible sheaf L on a projective variety X over K is pseudo-
ample if κ(L, X) = dim X. We say that a Cartier divisor is pseudo-ample if κ(D, X) = dimX.

Remark 3.3.5 Let X again be a projective variety over K and let L be an invertible sheaf
on X. Suppose m ∈ N(L, X), let φ0, . . . , φN be a basis for H0(X,Lm) and let fm: X ""# PN

be the corresponding rational map. Let U ⊂ X be an open subset such that L(U) is a free
OX(U)-module and let Um ⊂ X be the maximal open subset on which fm is defined. Let Wm

be defined by Wm = fm(Um), then dimWm = dim fm(Um) = dim fm(U). Let s ∈ L(U) and
g0, . . . , gN ∈ OX(U) be such that φj |U = gj · s. Then on U the rational map fm is defined by

U ""# PN : P +→ [g0(P ) : g1(P ) : · · · : gN (P )].

Hence the function field of fm(U) is K( g1
g0

, . . . , gN

g0
) and dim Wm = dim fm(U) equals the tran-

scendence degree of this field over K.
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Lemma 3.3.6 Let X be a projective variety over K and let L be an invertible sheaf on X. Let
m ∈ N(L, X) be an integer. Let ψ0, . . . , ψr be elements of H0(X,Lm) and let h be the rational
map

h: X ""# Pr: P +→ [ψ0(P ) : · · · : ψr(P )].

Then κ(L, X) ≥ dimh(X).

Proof. Let s + 1 be the dimension of span(ψ0, . . . , ψr). After a permutation we may assume that
ψ0, . . . , ψs are linearly independent over K. We can extend them with elements φs+1, . . . , φN to
a basis of H0(X,Lm). Then we have two more rational maps

g: X ""# Ps: P +→ [ψ0(P ) : · · · : ψs(P )],

fm: X ""# PN : P +→ [ψ0(P ) : · · · : ψs(P ) : φs+1 : · · · : φN (P )].

Let β: Pr ""# Ps be the projection on the first s+1 coordinates. Then we have g = β ◦h so clearly
we have dim h(X) ≥ dim g(X). However, since the ψs+1, . . . , ψr are K-linear combinations of the
ψ0, . . . , ψs, we also find dimh(X) ≤ dim g(X), so dimh(X) = dim g(X). Let γ: PN ""# Ps be
the projection on the first s + 1 coordinates. Then we have dim fm(X) ≥ dim g(X) = dim h(X),
whence κ(L, X) ≥ dim h(X).

X

PN

Pr

Ps

h

βfm

γ

g

!

Corollary 3.3.7 Let X be a projective variety over K and let L be an invertible sheaf on X.
Then we have κ(L, X) = κ(Lk, X) for all positive integers k.

Proof. Clearly we have k ·N(Lk, X) ⊂ N(L, X), whence κ(Lk, X) ≤ κ(L, X), as for the latter we
are taking the maximum of a larger set of integers. It remains to show the converse. If κ(L, X) =
−1, the converse is evidently true, so we may assume that N(L, X) &= ∅. Let m ∈ N(L, X) be a
positive integer such that for a basis φ0, . . . , φN of H0(X,Lm) and the associated rational map
fm: X ""# PN we have dim fm(X) = κ(L, X).

Consider the r + 1 =
(N+k

k

)
elements Φ0, . . . , Φr ∈ H0(X, (Lk)m) of the form φj1 ⊗ · · · ⊗ φjk

with 0 ≤ j1 ≤ . . . ≤ jk ≤ N . Let h be the rational map

h: X ""# Pr: P +→ [Φ0(P ) : · · · : Φr(P )].

From Lemma 3.3.6 we conclude that κ(Lk, X) ≥ dim h(X), so it suffices to prove that dim h(X) =
dim fm(X). Let δ: PN → Pr be the k-uple embedding. Then we have h = δ ◦ fm and since δ
induces an isomorphism from PN onto its image (see [47, Exc.I.3.4]), we conclude that indeed
dimh(X) = dim fm(X).

δ

h

X

PN

Pr

fm

!
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Lemma 3.3.8 Let X be a normal projective variety and ρ: X → Pn a morphism. Let m > 0 be
an integer, then for the sheaf L = ρ∗O(m) on X we get dim ρ(X) ≤ κ(L, X) ≤ dimX.

Proof. By Proposition 3.3.7 it suffices to prove this for m = 1, so we assume L = ρ∗O(1). The
K-vectorspace H0(Pn,OP(1)) of global sections of OP(1) is generated by the coordinates x0, . . . , xn

of Pn. Hence H0(X,L) contains the sections ρ∗x0, . . . , ρ∗xn. Let h be the rational map

h: X ""# Pn: P +→ [ρ∗x0(P ) : · · · : ρ∗xn(P )].

Then from Lemma 3.3.6 we conclude that κ(L, X) ≥ dimh(X), but h is nothing but the morphism
ρ, whence κ(L, X) ≥ dim ρ(X), which proves the left inequality. The right inequality is a general
fact that we have seen before. !

In fact, if X is a projective variety and ρ: X → Pn is morphism such that dim ρ(X) = dimX,
then we can say even more, for which we will first prove the following lemma.

Lemma 3.3.9 Let X be an integral projective scheme of dimension ≥ 1 over K, and let L be a
pseudo-ample invertible sheaf on X. Then H0(X,L−1) = 0 and κ(L−1, X) = −1.

Proof. Since L is pseudo-ample, there is a positive integer n such that a basis of H0(X,Ln) gives
a rational map f : X → PN with

dim X = dim f(X) ≤ N = dimK H0(X,Ln)− 1.

Therefore we get dimK H0(X,Ln) ≥ dimX + 1 ≥ 2, so Ln admits at least two nonzero linearly
independent global sections, say f1 and f2. Now suppose that H0(X,L−1) &= 0. Then L−1

admits a nonzero regular global section as well, say g, and hence so does L−n, namely gn. Then
fign is a nonzero global section of Ln ⊗ L−n ∼= OX . Since OX admits only the constants as
global sections, fign is a nonzero constant for i = 1, 2, contradicting the fact that f1 and f2 are
linearly independent. For every positive integer m the sheaf Lm is pseudo-ample as well, whence
H0(X,L−m) = 0 and N(L−1, X) = ∅, so κ(L−1, X) = −1. !

Lemma 3.3.10 Let X be a normal projective variety and ρ: X → Pn a morphism such that
dim ρ(X) = dim X ≥ 1. For an integer m consider the sheaf L = ρ∗O(m) on X. Then

κ(L, X) = −1 if m < 0,
κ(L, X) = 0 if m = 0,
κ(L, X) = dim X if m > 0.

Proof. If m > 0 then from Lemma 3.3.8 we find that dim X = κ(L, X) and L is pseudo-ample. If
m = 0, then we get L ∼= OX , which has only the constants as global sections for X is projective.
Therefore the map fm corresponding to a basis of H0(X,Lm) ∼= H0(X,OX) ∼= K is constant for
each m, so κ(L, X) = 0. If m < 0, then we have just proven that L−k is pseudo-ample for every
integer k ≥ 1, whence from Lemma 3.3.9 we find that κ(L, X) = −1. !

Definition 3.3.11 (Kodaira dimension) For a nonsingular projective variety X we define the
Kodaira dimension to be κ(X) = κ(ωX , X), where ωX is the canonical sheaf. The map fm corre-
sponding to a basis of H0(X,ωm

X ) will be called the m-canonical map of X.

The Kodaira dimension is a birational invariant, i.e., for two birationally equivalent nonsingular
projective varieties X and X ′ we have κ(X) = κ(X ′), see [47, Thm. II.8.19]. In characteristic 0,
given a projective variety X, there exists a birationally equivalent nonsingular projective variety X̃
as resolution of singularities is known due to Hironaka. Lipman proved that for a surface S there
exists birationally equivalent nonsingular projective surface in arbitrary characteristic. Therefore
the following definition gives a well defined birational invariant.
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Definition 3.3.12 Let X be an arbitrary projective variety over K and assume either char K = 0
or dimX ≤ 2. The Kodaira dimension of X is defined to be the Kodaira dimension of a birationally
equivalent nonsingular projective variety X̃.

Clearly there is the inequality −1 ≤ κ(X) ≤ dimX. We can classify varieties of a given
dimension by the Kodaira dimension. Note that by definition we have κ(X) = dim X if and only
if the sheaf ωX is pseudo-ample. Some people call X in this case pseudo-canonical. We will use
the following term.

Definition 3.3.13 If X is a variety of dimension n = dim X ≥ 1 over a field k such that X ⊗ k
has Kodaira dimension κ(X) = n, then we say that X is of general type.

If X is a nonsingular variety over K of dimension n with function field K(X), and if ω0 and
ω1 are two nonzero differentials on X of degree n, then there is a rational function f ∈ K(X) such
that ω1 = f · ω0. Using this we define algebraic independence of differentials of degree dimX.

Definition 3.3.14 Let X be a nonsingular variety of dimension n over K with function field
K(X) and let ω0, ω1, . . . , ωk be nonzero differentials on X of degree n. Let f1, . . . , fk ∈ K(X) be
such that ωj = fj · ω0 for all 1 ≤ j ≤ k. Then ω0, . . . , ωk are said to be algebraically independent
over K if the rational functions f1, . . . , fk are.

Lemma 3.3.15 Let X be a nonsingular variety over K of dimension n and let ω0, . . . , ωk be k+1
algebraically independent regular differentials of degree n. Then we have κ(X) ≥ k. In particular,
X is of general type if there exist n + 1 algebraically independent regular differentials of degree n
on X.

Proof. The differentials ω0, . . . , ωk are algebraically, whence linearly independent over K, so
we can extend them with ωk+1, . . . , ωr to a basis ω0, . . . , ωr of H0(X,ωX) over K. For j with
k < j ≤ r let fj ∈ K(X) be such that ωj = fj · ω0. Then the 1-canonical map of X is given by
the rational map

f : X ""# Pr : P +→ [1 : f1 : · · · : fk : fk+1 : · · · : fr].

Let U be the largest open subset of X on which f is well defined and set W := f(U). Then we have
κ(X) ≥ dimW = tr. degK K(W ), where K(W ) is the function field of W , see also Remark 3.3.5.
This field is generated over K by f1, . . . , fr and since f1, . . . , fk are algebraically independent over
K, we find tr. degK K(W ) ≥ k. !

Remark 3.3.16 A closely related expression for the Kodaira dimension is the following, see [47,
Sect.V.6]. For a nonsingular projective variety X over an algebraically closed field K we have

κ(X) = tr. degK R− 1,

where R is the graded ring
R =

⊕

n≥0

H0(X,ω⊗n
X ).

We now have two different approaches to check if a variety is of general type, one using sheaf
theory and one using concrete differentials. We will be using both in order to get a feeling of
how to go from one approach to the other. We will start with a proposition about nonsingular
varieties. Then the singularities will come in, first only on curves, then on a cone over a curve,
the first surface. Then comes the surface Υ which will indeed turn out to be of general type and
after that we will see some more general results about surfaces.
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Proposition 3.3.17 Let X be a nonsingular complete intersection in Pn
K of dimension ≥ 1, say

of r hypersurfaces of degree d1, d2, . . . , dr. Let ρ: X ↪→ Pn
K be the embedding of X in Pn

K . Let ωX

be the canonical sheaf on X and set m = −n − 1 +
∑r

i=1 di, then ωX is isomorphic to ρ∗O(m)
and we have

κ(X) =






−1 if m < 0,
0 if m = 0,
dim X = n− r if m > 0.

For the proof of Proposition 3.3.17 we could refer to [60, exa.6.9.1] or in the case of surfaces,
i.e., r = n− 2, to [47, exc. V.6.1]. However, we will actually give two proofs for this proposition.
The first is an easy consequence of lemmata and propositions involving sheaf theory that we have
already seen. For the second proof, which uses concrete differentials, we will also first state several
lemmata. This proof is more laborious, but also gives extra insight in the situation.

First proof of Proposition 3.3.17. Let ωX and ωP denote the canonical sheaves on X and
Pn respectively. From Proposition 3.1.27, we find that ωX

∼= ωP⊗
∧r NX/Pn , which by Proposition

3.1.36 is isomorphic to ρ∗O(m) with m = −n− 1 +
∑r

i=1 di. Lemma 3.3.10 finishes the proof. !

Lemma 3.3.18 Let X be a subvariety of An
K of codimension k and suppose that X is a complete

intersection, namely given by f1 = . . . = fk = 0, with f1, . . . , fk ∈ K[x1, . . . , xn]. Then for
each nonsingular point P on X there is a surjection

∧n−k T ∗
P An

K →
∧n−k T ∗

P X and there is
exactly one differential ω ∈

∧n−k T ∗
P X such that for any lift ω′ ∈

∧n−k T ∗
P An

K of ω we have
ω′ ∧ df1 ∧ · · · ∧ fk = dx1 ∧ · · · ∧ dxn ∈

∧n T ∗
P An

K .

Proof. Let ψ be the submersion ψ: An
K → Ak

K : P +→ (f1(P ), . . . , fk(P )) and set Q = (0, . . . , 0) ∈
Ak

K . Let z1, . . . , zk denote the coordinates of Ak. Then we get X = ψ−1(Q) and for P ∈ X we
get an exact sequence

0 → TP X → TP An → TQAk → 0.

Dualizing gives
0 → T ∗

QAk ψ∗

−→ T ∗
P An → T ∗

P X → 0.

This implies that
∧n−k T ∗

P An
K →

∧n−k T ∗
P X is indeed a surjection and by Lemma 3.1.37 we get

an isomorphism

ϕ:
n−k∧

T ∗
P X ⊗

k∧
T ∗

QAk →
n∧

T ∗
P An.

Since ψ∗dzi = dfi we find from Lemma 3.1.37 that for every ω ∈
∧n−k T ∗

P X and any lift ω′ ∈∧n−k T ∗
P An

K of ω we have ϕ(ω⊗(dz1∧· · ·∧dzk)) = ω′∧df1∧· · ·∧dfk. Since dz1∧· · ·∧dzk &= 0 and∧n T ∗
P An is 1-dimensional, there is exactly one ω with ϕ(ω⊗(dz1∧· · ·∧dzk)) = dx1∧· · ·∧dxn. !

In the following Lemmata we will pose some concrete differentials that will turn out to be
useful. We will start with some affine results, which we will then turn into projective results.

Definition 3.3.19 Let polynomials f1, . . . , fk ∈ K[x1, . . . , xn] and a sequence J = (jt)k
t=1 be given

with 1 ≤ j1 < . . . < jk ≤ n. Then we define MJ(f1, . . . , fk) to be the determinant of the matrix

A =
(
∂fi

∂xjt

)k

i,t=1

,

whence it is a k × k-subdeterminant of the Jacobian matrix. If the polynomials fi are understood
from the context, then we write MJ = MJ (f1, . . . , fk).
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Lemma 3.3.20 In
∧k T ∗

P An we have

df1 ∧ · · · ∧ dfk =
∑

J

MJdxj1 ∧ · · · ∧ dxjk ,

where the sum is taken over all
(n

k

)
sequences J = (jt)k

t=1 with 1 ≤ j1 < . . . < jk ≤ n.

Proof. First note that dfi =
∑k

j=1
∂fi

∂xj
dxj , so by expanding it is clear that we can write df1∧ . . .∧

dfk =
∑

J CJdxj1 ∧ · · · ∧ dxjk for some coefficients CJ . By induction we see that these coefficients
can be given by

CJ =
∑

σ

sign(σ)
k∏

i=1

∂fσ(i)

∂xji

,

where the sum is taken over all the permutations σ ∈ Sk. This means that CJ = MJ . !

Lemma 3.3.21 Let X ⊂ An
K be a variety of codimension k. Suppose that X is a complete

intersection, say given by f1 = . . . = fk = 0 with f1, . . . , fk ∈ K[x1, . . . , xn]. For a sequence J as
in Definition 3.3.19 let I be the sequence I = (is)n−k

s=1 with 1 ≤ i1 < . . . < is ≤ n such that I and
J are disjoint. If we write ε(J) for the sign of the permutation

[
1 2 . . . n− k n− k + 1 . . . n
i1 i2 . . . in−k j1 . . . jk

]

then the differential

ωJ =
ε(J)
MJ

dxi1 ∧ · · · ∧ dxin−k

on X is the same for each J .

Proof. Using the fact that dxi ∧ dxi = 0 we find from Lemma 3.3.20 that for any lift ω′
J ∈∧n−k T ∗

P An
K of ωJ we have

ω′
J ∧ df1 ∧ · · · dfk = dx1 ∧ · · · ∧ dxn.

Lemma 3.3.18 says that this determines ωJ uniquely. !

Lemma 3.3.22 Let X ⊂ An
K and f1, . . . , fk be as in Lemma 3.3.21. Let P = (x1(P ), . . . , xn(P ))

be a nonsingular point on X. Then there exists a sequence J = (jt) as in Definition 3.3.19 and a
corresponding sequence I = (is) as in Lemma 3.3.21 such that MJ (P ) &= 0 and for s = 1, . . . , n−k
the functions xis − xis(P ) form a set of local parameters.

Proof. Since P is nonsingular, the rank of the k×n Jacobian matrix (∂fl/∂xj)1≤j≤n
1≤l≤k at P equals

k, so there exists a J = (jt)k
t=1 with 1 ≤ j1 < . . . < jk ≤ n such that the vectors (∂fl/∂xjt)l

are linearly independent at P . Then MJ (P ) &= 0. By a linear transformation we can bring
the corresponding k × k submatrix in triangular form. That is, there is an invertible matrix
A = (ar,t)k

r,t=1 such that for yr =
∑k

t=1 ar,txjt we have ∂fl

∂yr
(P ) = 0 for r < l. This means that we

can write

fl =
k∑

r=l

cl,r(yr − yr(P )) +
n−k∑

s=1

dl,s(xis − xis(P )) + h.o.t. (32)

with some constants cl,r and dl,s and where the higher order terms are monomials in the yr−yr(P )
and xis − xis(P ) of degree ≥ 2. Let OP,X be the local ring at P and mP be its maximal ideal.
Then mP /m2

P is generated by the xj −xj(P ) and therefore also by y1− y1(P ), . . . , yk − yk(P ) and
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xi1 −xi1(P ), . . . , xin−k −xin−k(P ). Since
∏k

l=1 cl,l = MJ (P ) &= 0, we find cl,l &= 0 for all l, so using
(32) we can write

yl − yl(P ) = −c−1
l,l

(
k∑

r=l+1

cl,r(yr − yr(P )) +
n−k∑

s=1

dl,s(xis − xis(P ))

)
(mod m2

P ).

This implies that in mP /m2
P we can express the yl−yl(P ) inductively in the xis −xis(P ), so these

form a set of local parameters. !

Corollary 3.3.23 Let X ⊂ An
K and ω = ωJ be as in Lemma 3.3.21. Then for any nonsingular

point P there is a neighborhood U of P such that ω has no zeroes or poles in U . In particular, if
X is nonsingular, then for the divisor (ω) on X we have (ω) = 0.

Proof. Let P be a nonsingular point, then by Lemma 3.3.22 there is a sequence J = (jt) as in
Definition 3.3.19 and a corresponding sequence I = (is) as in Lemma 3.3.21 such that MJ (P ) &= 0
and the xis − xis(P ) form a set of local parameters. Then there is an open neighborhood U of P
such that for all Q ∈ U we have MJ(Q) &= 0 and the xis − xis(Q) form a set of local parameters
in Q. Since dxis = d(xis − xis(Q)), this implies that the differential

ω = ωJ =
±1
MJ

dxi1 ∧ · · · ∧ dxin−k

has indeed no zeroes or poles in U . !
Knowing the behaviour of the differential ω = ωJ as in Lemma 3.3.21 on the affine part of a

projective variety X, we could check its behaviour at the hyperplane at infinity to find out its global
behaviour. It will turn out that the contribution of the hyperplane H at infinity to the divisor (ω)
is mH, where m = −n − 1 +

∑
deg fi. As a matter of fact, for polynomials g, h ∈ K[x1, . . . , xn]

the divisor of g
hω on the regular locus of X is given by (g) − (h) + (m − deg g + deg h)H. In

particular, taking g
h = lm for some linear polynomial, we get m− deg g + deg h = 0 and we find a

result for projective varieties similar to Lemma 3.3.21. Projectively, this is stated as follows.

Lemma 3.3.24 Let X ⊂ Pn
K be a variety of codimension k. Suppose that X is a complete

intersection, say given by F1 = . . . = Fk = 0, with F1, . . . , Fk ∈ K[X0, X1, . . . , Xn] homogeneous
polynomials. For a sequence J = (jt)k

t=1 with 0 ≤ j1 < . . . < jk ≤ n let MJ = MJ (F1, . . . , Fk)
be the determinant of the matrix (∂Fl/∂Xjt)l,t. For any i0 not in J let I = I(J, i0) be the unique
sequence (is)n−k

s=1 with 0 ≤ i1 < . . . < in−k ≤ n such that i0 is not in I and I and J are disjoint. If
we choose a linear form L ∈ K[X0, . . . , Xn], set m = −n− 1 +

∑k
i=1 deg Fi and we write ε(J, i0)

for the sign of the permutation
[

0 1 . . . n− k n− k + 1 . . . n
i0 i1 . . . in−k j1 . . . jk

]
,

then the differential

ωJ,i0 =
ε(J, i0)Xn−k+1

i0
Lm

MJ
d

(
Xi1

Xi0

)
∧ · · · ∧ d

(
Xin−k

Xi0

)
(33)

is the same for each J and i0 not in J . For each point P there is some neighborhood U on which
the divisor (ωJ,i0) is given by m(H ∩ U), where H is the hyperplane determined by L = 0.

Proof. Note that the degree of MJ is equal to
∑

(deg Fi − 1) = m + n + 1 − k, so (33) gives a
well defined differential. From

d

(
Xil

Xi0

)
= −

X2
il

X2
i0

d

(
Xi0

Xil

)
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and
d

(
Xis

Xi0

)
=

Xil

Xi0

d

(
Xis

Xil

)
− XilXis

X2
i0

d

(
Xi0

Xil

)

we conclude that

d

(
Xi1

Xi0

)
∧· · ·∧d

(
Xin−k

Xi0

)
= ε

Xn−k+1
il

Xn−k+1
i0

·d
(

Xi0

Xil

)
∧· · ·∧d

(
Xil−1

Xil

)
∧d

(
Xil+1

Xil

)
∧· · ·∧d

(
Xin−k

Xil

)
,

where ε is the sign of the permutation
[

i0 i1 . . . il il+1 . . . in−k

il i0 . . . il−1 il+1 . . . in−k

]
.

In combination with Lemma 3.3.21 it follows that ω(J, i0) is indeed the same for each J and i0 not
in J . Hence we can write ω = ω(J, i0). Each point P on X is contained in an open affine given by
Xi0 &= 0 for some i0. Just as in the proof of Corollary 3.3.23 we now find that if P is nonsingular,
then there is an open neighborhood U of P such that (ω)|U = m(H ∩ U). !

Corollary 3.3.25 Let X ⊂ Pn
K be a variety of codimension k. Suppose that X is a complete

intersection, say given by F1 = . . . = Fk = 0, with F1, . . . , Fk ∈ K[X0, X1, . . . , Xn] homogeneous
polynomials of degree deg Fl = dl. Let ρ denote the embedding of the regular locus Xreg of X in
Pn, so ρ: Xreg ↪→ Pn and set m = −n − 1 +

∑k
l=1 dl. Then the canonical sheaf ωXreg of Xreg is

isomorphic to ρ∗O(m).

Proof. Let P be any nonsingular point. Then from Lemma 3.3.24 we find that there is an open
neighborhood U of P such that if H ⊂ Pn is a hyperplane, then mρ∗H∩U is a canonical divisor on
U . As these open sets cover Xreg it follows that mρ∗H is a canonical divisor on Xreg. Therefore
the canonical sheaf of Xreg is isomorphic to the sheaf L(mρ∗H) on Xreg, which is isomorphic to
ρ∗O(1)m ∼= ρ∗O(m). !

Second Proof of Proposition 3.3.17. If X is nonsingular, then Xreg = X, so from
Corollary 3.3.25 we find that the canonical sheaf ωX is isomorphic to ρ∗O(m). Lemma 3.3.10
finishes the proof. !

We now know how to compute the Kodaira dimension of nonsingular projective complete
intersections. The next step is to consider singular varieties. We will start with curves, for which
the Kodaira dimension will turn out to depend only on the genus. In general some inequalities
about the m-genus imply inequalities involving the Kodaira dimension.

Lemma 3.3.26 Let X be an algebraic variety over K. Then for the Kodaira dimension we have
κ(X) > 0 if and only if for some positive integer m the inequality pm(X) ≥ 2 holds for the
m-genus. We have pm(X) = 0 for all m if and only if κ(X) = −1.

Proof. Let X̃ be a nonsingular projective surface over K that is birationally equivalent with X
and suppose m is a positive integer such that dimK H0(X̃, ω⊗m

K ) ≥ 2. Let ω1, ω2 ∈ H0(X̃, ω⊗m
K ) be

two linearly independent differentials. Then for some nonconstant rational function we can write
ω1 = fω2. Since X is by definition geometrically irreducible, the algebraic closure of K in the field
K(X) of rational functions on X is equal to K itself. Hence the nonconstant rational function
f is transcendental over K, so the m-canonical map of X̃ is nonconstant and κ(X) = κ(X̃) > 0.
Conversely, if κ(X̃) > 0, then there exists a positive integer m such that the transcendence degree
of H0(X,ω⊗m

X ) is at least 2, whence pm(X) ≥ 2. We have pm(X) = 0 for all m if and only if
N(ωX , X) = ∅, so if and only if κ(X) = −1. !

Corollary 3.3.27 Let C be a curve. Then the Kodaira dimension depends only on the (geometric)
genus. If we have pg(C) = 0, pg(C) = 1 or pg(C) ≥ 2, then we have κ(C) = −1, κ(C) = 0,
κ(C) = 1 respectively.
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Proof. Since κ(C) ≤ dim C = 1, the first statement of Lemma 3.3.26 is equivalent with the fact
that κ(C) = 1 if and only if pm(C) ≥ 2 for some integer m. Hence if pg(C) = p1(C) ≥ 2, then
κ(C) = 1. If pg(C) = 0, then C is (geometrically) isomorphic to P1 and a canonical divisor is
given by KC = −2(Q) for any point Q. Therefore mKC ≤ KC for positive integers m and we
get H0(C, ω⊗m

C ) = 0. This implies that pm(C) = 0 for all m, so from Lemma 3.3.26 we find
κ(C) = −1. Finally, if pg(C) = 1, then C is an elliptic curve (over some field extension). On an
elliptic curve there exists a regular nonvanishing differential ω, so a canonical divisor KC can be
given by KC = (ω) = 0. Hence mKC = KC for all m and therefore pm(C) = p1(C) = pg(C) = 1
Again from Lemma 3.3.26 it follows that κ(C) = 0. !

From the Theorem of Riemann-Hurwitz we know that if C → D is a finite separable morphism
of curves, then the inequality pg(C) ≥ pg(D) holds. It actually holds in more generality and by
Corollary 3.3.27 it implies that κ(C) ≥ κ(D), which also holds in a far more general situation.

Lemma 3.3.28 Let f : X → Y be a generically surjective rational map of algebraic varieties such
that dim X = dimY . Then we have κ(X) ≥ κ(Y ).

Proof. See [60, Thm.II.6.10]. !

Remark 3.3.29 A variety is called unirational if it is a rational image of projective space. From
Proposition 3.3.17 we know that κ(Pn) = −1 for all n. Together with Lemma 3.3.28 this implies
that for any unirational variety X we have κ(X) = −1.

For a nonsingular ruled surface X we also have κ(X) = −1, see [47, Thm.V.6.1.] or [35, Thm.
VI.1.1.]. An example of a ruled surface is a cone over a curve.

E′

Dα

PEψ ϕ

Cα

∼

Z X̃ X

Example 3.3.30 Let C be a nonsingular curve in P2
K given by F = 0 for some homogeneous

polynomial F ∈ K[X, Y, Z] of degree e. Using the inclusion K[X, Y, Z] ↪→ K[X, Y, Z, W ] we can
define the cone X ⊂ P3 over C given by F = 0, see also [47, exc.I.2.10]. It is normal because of
Proposition 3.2.17 and has a vertex P = [xP : yP : zP : wP ] = [0 : 0 : 0 : 1], which is the only
singular point of X. Let ϕ: X̃ → X be the blow-up of X in the point P and set E = ϕ−1(P ). The
surface X̃ can be given in P3

K × P2
K by

F (R, S, T ) = 0, XT = ZR, Y R = XS, Y T = ZS,

where X, Y, Z, W are the homogeneous coordinates of P3 and R, S, T are the homogeneous coor-
dinates of P2. Then ϕ is given by projection on P3.

For α ∈ K∗ let Cα denote the intersection of X with the hyperplane H ⊂ P3 given by Z−αW .
Then Cα is a nonsingular curve not passing through P which is isomorphic to C, whence ϕ−1(Cα)
is isomorphic to Cα. We will show that as a divisor on X̃ it is linearly equivalent with E using
the Segre-embedding, see [47, exc.I.2.14].
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The Segre-embedding gives an embedding of X̃ in P11. Using the fact that XS = Y R, XT =
ZR and Y T = ZS we can project P11 onto P8 to get an embedding of X̃ into P8. After some
calculations we find that its image Z in P8 can be given by

b01b31 = b03b11, b01b33 = b03b31, b22b33 = b2
23, F (b01, b02, b03) = 0,

b01b22 = b02b12, b02b23 = b03b22, b11b33 = b2
31, F (b11, b12, b31) = 0,

b01b23 = b03b12, b02b33 = b03b23, b12b23 = b22b31, F (b12, b22, b23) = 0,
b01b23 = b02b31, b11b22 = b2

12, b12b33 = b23b31, F (b31, b23, b33) = 0,
b01b12 = b02b11, b11b23 = b31b12,

where b01, b02, b03, b11, b12, b22, b23, b31, b33 are homogeneous coordinates of P8. The isomorphism
X̃ → Z is given by

[x : y : z : w]× [r : s : t] +→ [wr : ws : wt : xr : xs : ys : yt : zr : zt]

Its inverse will be denoted ψ and can locally be given by

[b01 : b02 : b03 : b11 : b12 : b22 : b23 : b31 : b33] +→






[b11 : b12 : b31 : b01],
[b12 : b22 : b23 : b02],
[b31 : b23 : b33 : b03]

×






[b01 : b02 : b03],
[b11 : b12 : b31],
[b12 : b22 : b23],
[b31 : b23 : b33]

It is easy to check that Z, and hence X̃, is nonsingular. The curve E is isomorphic to E′ = ψ−1(E),
which is given by b11 = b12 = b22 = b23 = b31 = b33 = 0 on Z. On P8 the radical ideal I(E′) of E′

is generated by
b11, b12, b22, b23, b31, b33, F (b01, b02, b03).

Hence the projection on the b01, b02 and b03 coordinates induces an isomorphism between E′ and
the curve C. These facts also follow from [47, exc.I.5.7].

For α ∈ K∗ define Dα = ψ−1ϕ−1(Cα), then Dα is isomorphic to Cα. On Z the curve Dα is
given by b33 − αb03 = b23 − αb02 = b31 − αb01 = 0. On P8 the radical ideal I(Dα) is equal to the
ideal Iα generated by

b33 − αb03, b11b22 − b2
12, b12b31 − b11b23, F (b01, b02, b03),

b23 − αb02, b22b33 − b2
23, b23b12 − b22b31, F (b11, b12, b31),

b31 − αb01, b33b11 − b2
31, b31b23 − b33b12, F (b12, b22, b23).

The ideal Iα=0 is equal to I(X) + (b33), which is the intersection of two radical ideals, namely
I(E′) and J , where J is the ideal generated by

b03, b23, b11b22 − b2
12, F (b01, b02, b03),

b31, b33, b22b33 − b2
23, F (b11, b12, b31),

b33b11 − b2
31, F (b12, b22, b23)

and its zeroset has dimension zero. For α &= 0 we also happen to have I(X)+(b33−αb03) = Iα+J .
It follows that for α &= 0 and f = (b33 − αb03)b−1

33 = 1 − αb03/b33 the principal divisor (f) on Z

equals Dα − E′, so E′ is linear equivalent with Dα. Hence on X̃ we now know that E is indeed
linearly equivalent with ϕ−1(Cα).

Let L ∈ K[X, Y, Z, W ] be homogeneous linear polynomial with L(P ) &= 0 and let H ⊂ P3 be
the hyperplane given by L = 0 and write U = X − {P}. By Lemma 3.3.24 the divisor of the
differential

ω =
W 3Le−4

∂F
∂X

d

(
Y

W

)
∧ d

(
Z

W

)

equals (ω)|U = (e − 4)(H ∩ U), but to compute the Kodaira dimension we need to look at X̃ or
Z. Since U is isomorphic to ϕ−1(U) = X̃ − E, we only need to find out the contribution of E to

41



(ϕ∗ω), so we can restrict to the affine part W &= 0 of P3. We first look at the affine part T &= 0
of P2. Hence we are looking at A3 ×A2 ∼= A5 with coordinates x, y, z, r, s on which X̃ is given by
y = zs, x = zr and F (r, s, 1) = 0. On this affine part we have ∂F/∂x = ze−1∂F (r, s, 1)/∂r, so
ϕ∗ω is given by

ϕ∗ω =
le−4

∂F
∂x

d(zs) ∧ dz =
le−4z
∂F
∂x

ds ∧ dz =
le−4

ze−2 ∂F (r,s,1)
∂r

ds ∧ dz =
le−4

ze−2 ∂F (r,s,1)
∂s

dr ∧ dz.

Here we put l = L(x, y, z, 1). Since E ∼= C is nonsingular, we have

∂F (r, s, 1)
∂r

(P ) = 0 or
∂F (r, s, 1)

∂s
(P ) = 0

for every P ∈ E. Since E is given by z = 0 on this affine part, this implies that in a neighborhood
V of this affine part of E we get (ϕ∗ω)|V = (e − 4)(ϕ∗H ∩ V ) + (2 − e)(E ∩ V ). Looking at the
affine parts R &= 0 and S &= 0 we find similar results, which after putting together imply that
(ϕ∗ω) = (e− 4)ϕ∗H + (2− e)E. Since E is linear equivalent with ϕ∗H and L(ϕ∗H) is isomorphic
to ϕ∗O(1), this implies that the canonical sheaf on X̃ is isomorphic to ϕ∗O(−2). Since ϕ∗O(2) is
pseudo-ample, it follows from Lemma 3.3.9, that κ(X) = κ(ϕ∗O(−2), X) = −1.

Similar as in this example we can compute the Kodaira dimension of Υ using concrete differ-
entials.

Proposition 3.3.31 The surface Υ is of general type. The canonical sheaf on Υ̃ is isomorphic
to π∗O(1).

Proof. Since Υ is of general type if and only if Υ̃ is, it suffices by Lemma 3.3.8 to show that the
canonical sheaf on Υ̃ is isomorphic to L(π∗H) for any hyperplane H ⊂ P6

Q as we have L(π∗H) ∼=
π∗L(H) ∼= π∗O(1). Hence it suffices to show that for any linear form L ∈ Q[A, B, C, X, Y, Z, U ]
such that L(Ri) &= 0 for any singular point Ri, the differential

ω =
A3L

CY ZU
d

(
X

A

)
∧ d

(
B

A

)
(34)

on Υ induces a differential π∗ω on Υ̃ which is regular everywhere.
We could check easily that ω is regular on the open sets τkUi, with i, k = 1, 2, 3, described in

section 3.2. However, since ω is the differential described in (33), Lemma 3.3.24 already tells us
that on the regular locus U = Υreg of Υ we have (ω)|U = H ∩U , where H ⊂ P6

Q is the hyperplane

given by L = 0. Hence we only need to check that π∗ω on Υ̃ is regular in a neighborhood of
π−1(Ri) for the singular points Ri. Since G ⊂ Aut(Υ) acts transitively on the singular points and
g(ω) = ± g(L)

L ω for all g ∈ G, it suffices to do this for R1 = [1 : 0 : 0 : 0 : 1 : 1 : 1] only.
We will look at the affine part A &= 0 on which ω can be written as

ω =
l

cyxu
dx ∧ db.

The point R1 is contained in the open set U given by yzu &= 0. The point R1 on U locally looks like
the vertex (0, 0, 0) on the surface in A3

Q given by f = 0 with f = b2 + c2 − x2. Just as in Example

3.3.30 we now find that the contribution of E1 on Υ̃ to the divisor (π∗ω) is (2 − deg f)E1 = 0.
Hence on Υ̃ we find (π∗ω) = π∗H. It follows that the canonical sheaf is indeed isomorphic to
π∗L(H) ∼= π∗O(1) and by Lemma 3.3.8 we find for the Kodaira dimension that κ(Υ) = κ(Υ̃) =
2. !
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Remark 3.3.32 We have seen that Proposition 3.3.31 follows from regularity of π∗ω on Υ̃ for
ω as in (34). This also follows from Lemma 3.3.15. Indeed, we can choose 2 other linear forms
L′, L′′ ∈ Q[A, B, C, X, Y, Z, U ] such that L′/L and L′′/L are algebraically independent. Then the
differentials ω, ω′ = L′

L ω and ω′′ = L′′

L ω are 3 = dim Υ̃ + 1 algebraically independent regular
differential forms of degree 2 on Υ̃, so the Kodaira dimension equals dim Υ̃.

Corollary 3.3.33 Let KΥ be a canonical divisor on Υ̃. Then we have K2
Υ

= 16.

Proof. Let H ⊂ P6
Q be a hyperplane that does not contain any of the 48 singular points of

Υ. Then D′ = π∗H is a canonical divisor on Υ̃, whence D′ is linearly equivalent with KΥ and
D′2 = K2

Υ
. Write D = H ∩Υ. Since H does not contain any of the singular points and π induces

an isomorphism Υ̃−
⋃48

j=1 Ej → Υreg = Υ− {Rj : 1 ≤ j ≤ 48} we find that D′2 = D2, where the
first is a self intersection number on Υ̃ and the second on Υ.

Let H ′ ⊂ P6 be another hyperplane and let H and H ′ be such that H ∩ H ′ intersects Υ
transversally. Since D is linearly equivalent with H ′ ∩Υ we find D2 = deg(H ∩Υ) ∩ (H ′ ∩Υ) =
deg(H ∩H ′) ∩Υ. Since H ∩H ′ is a line intersecting Υ transversally, it intersects Υ by Bézout’s
Theorem in deg Υ = 16 points, so D2 = 16 and K2

Υ
= D′2 = D2 = 16. !

Corollary 3.3.34 The topological Euler characteristic χtop(Υ̃(C)) equals 80. For the Hodge num-
ber h1,1 of Υ̃⊗ C we have h1,1(Υ̃⊗ C) = 64 + 2q, where q = h1,0 is as in Proposition 3.2.19.

Proof. Remember that χ(Υ̃) = 8, so from the Noether Formula 3.1.52 and Corollary 3.3.33 we
find

χtop(Υ̃(C)) = 12χ(Υ̃⊗ C)−K2
Υ

= 12 · 8− 16 = 80.

From the Hodge numbers already computed in Proposition 3.2.19 we find that 80 = χtop(Υ̃(C)) =
1− 2q + (14 + 2q + h1,1)− 2q + 1 = 16 + h1,1 − 2q, from which h1,1 follows. !

Bluff 2 We actually have h1,1(Υ̃⊗ C) = 64.

Proof. From Bluff 1 we know that h1,0 = q = 0. Hence it follows from Corollary 3.3.34 that
h1,1 = 64. !

Because Υ is a complete intersection which is nonsingular except for some isolated singular
points which are ordinary double points, the fact that Υ is of general type will also follow from
proposition 3.3.35 together with Lemma 3.3.8 for then we have ej = 2 for all j.

First let us set some notation. Let X ⊂ Pn be a surface over K which is a complete intersection
of n − 2 hypersurfaces of degree d1, . . . , dn−2. Suppose that X is nonsingular except for some
isolated singular points Q1, . . . , Qt. Suppose also that for all j = 1, . . . , t there is a nonsingular
curve Cj ⊂ Pn of degree ej such that Qj is analytically isomorphic to the vertex of the cone
over Cj . Let j denote the inclusion j: X ↪→ Pn and let U = Xreg be the maximal regular open
subset of X, i.e., Xreg = X \ Xsing, where Xsing is the singular locus of X. Let π: X̃ → X be
the blow-up of X in the points Qj . Let Ej = π−1(Qj) be the fibre of π above Qj . Let H be a
hyperplane of Pn that does not contain any of the Qj . This is possible since we can work over
an algebraically closed, whence infinite, field. Define U ′ := π−1(U) and ρ = j ◦ π. Finally write
P := Pn, P ′ = Pn \ Xsing and m = −1− n +

∑n−2
i=1 di.

Proposition 3.3.35 Under the assumptions above the surface X̃ is regular and a canonical divisor
on X̃ is given by

mρ∗H +
t∑

j=1

(2− ej)Ej .
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We have the following diagram and will first compute the canonical sheaf on U ′ via those of
U , P ′ and P . Then we will compute a canonical divisor on X̃ from the canonical sheaf on U ′.

U ′ X̃

U X

P ′ P

ππ

j j

ρ

∼

Lemma 3.3.36 The surface X̃ is regular, Ej is isomorphic to Cj, has genus gj = 1
2 (ej−1)(ej−2)

and self intersection number E2
j = −ej .

Proof. Apart from the genus gj this is just a restatement of Lemma 3.2.8. Hence the genus gj of
Ej is equal to that of Cj . Since Cj is a nonsingular degree ej curve embedded in P2, the genus of
Cj indeed equals 1

2 (ej − 1)(ej − 2). !

Lemma 3.3.37 Let ωU be the canonical sheaf on the nonsingular variety U = Xreg. Then we
have an isomorphism ωU

∼= j∗O(m) of sheaves on U .

Proof. Let I be the idealsheaf of X in P and I′ the ideal sheaf of U in P ′. Let ωP ′ and ωP denote
the canonical sheaves on P ′ and P respectively. Then ωP |P ′ ∼= ωP ′ and I|P ′ ∼= I ′. It follows that

(ωP ⊗
n−2∧

(I/I2)∨)|U ∼= ωP ′ ⊗
n−2∧

(I ′/I ′2)∨.

By taking Y = U and X = P ′ for the X and Y in Proposition 3.1.27 we find that the right hand
side is isomorphic to ωU . The left hand side is isomorphic to j∗O(m)|U by Lemma 3.1.36. !

Lemma 3.3.38 Let ωU ′ be the canonical sheaf on the nonsingular variety U ′. Then we have an
isomorphism ωU ′ ∼= ρ∗O(m) of sheaves on U ′.

Proof. Since π induces an isomorphism from U ′ to U , we find from Lemma 3.3.37 and the fact
that ρ∗ = π∗ ◦ j∗ that

ωU ′ ∼= π∗ωU
∼= π∗j∗O(m) = ρ∗O(m).

!
Before we can compute the canonical divisor on X̃, we need the following propositions. Re-

member that for a noetherian integral separated scheme Y which is regular in codimension one the
group Div Y is the group of divisors on Y and that Cl Y is the group of divisor classes. Remember
also that if Y is also factorial, then the group Cl Y is isomorphic to the group CaCl Y of Cartier
divisors and hence with the group PicY of invertible sheaves.

Proposition 3.3.39 (Adjunction Formula) If C is a nonsingular curve of genus gC on a non-
singular surface S, and if KS is a canonical divisor on S, then

2gC − 2 = C · (C + KS).

Proof. See Hartshorne [Proposition V.1.5]. !
Proof of Proposition 3.3.35. Since X̃ is a nonsingular variety we can apply Proposition

3.1.5 and it tells us that there is a surjective homomorphism Cl X̃ → Cl U ′. Let M denote the
kernel. The 48 exceptional curves Ej of codimension 1 are irreducible, whence prime divisors, so
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we find that there is an exact sequence which is the top row of the following commutative diagram
in which the two rows and the two columns are exact. Note that the top two vertical arrows are
not injections.

Div X̃ Div U ′

K(U ′)∗

0

0

M

0

0

Pic X̃

Cl X̃ Cl U ′

∼
Pic U ′

0 0

Zt

∼K(X)∗

∼

Let KX ∈ Div X̃ be a (canonical) divisor the class of which corresponds with the sheaf ωX
and let H ⊂ Pn be a hyperplane that does not contain any singular point of X. Then the class
of mρ∗H ∈ Div X̃ in Cl X̃ corresponds with ρ∗O(m). The two sheaves ωX , ρ∗O(m) ∈ Pic X̃
have the same images in PicU ′, whence also in ClU ′. Therefore the image [D|U ′ ] in Cl U ′ of
D := KX − mρ∗H ∈ Div X̃ is 0. Hence the image of D in Div U ′ is principal, say D ∩ U = (f)
for some rational function f ∈ K(U ′). Since U ′ and X̃ are birationally equivalent, they have the
same function field, so we can view f as an element of K(X̃). The divisor D− (f) ∈ Div X̃ maps
to 0 in Div U ′, so from the exactness of the top row of the diagram we find that we can write it
as D − (f) =

∑
j rjEj for certain integers rj . This means that for K ′

X
:= KX − (f) we have

K ′
X

= mρ∗H +
t∑

j=1

rjEj .

Since K ′
X

is also a canonical divisor we can use Proposition 3.3.39 to compute the rj . Note that
the Ej are isomorphic to Cj by Lemma 3.3.36 and that they have genus gj = 1

2 (ej − 1)(ej − 2).
Substituting C = Ei and KS = K ′

X
in the adjunction formula, we find

ej(ej − 3) = 2gi − 2 = C · (C + K ′
X

) = Ei · (Ei + ρ∗(mH) +
t∑

j=1

rjEj). (35)

Since Ei∩ρ∗(H) = ∅ and Ei∩Ej = ∅ for i &= j, we get Ei ·mρ∗(H) = Ei ·Ej = 0 for i &= j. Therefore
(35) simplifies to ej(ej−3) = E2

i +riE2
i = (1+ri)E2

i . Lemma 3.2.8 says that E2
i = −ei, so ri = 2−ei

and KX is linearly equivalent with the canonical divisor K ′
X

= ρ∗(mH) +
∑t

i=1(2− ej)Ej . !

Corollary 3.3.40 Let X ⊂ Pn
K be a projective surface which is a complete intersection, say

X is the intersection of n − 2 hypersurfaces of degree d1, . . . , dn−2. Suppose that X is regular
except maybe for some isolated singular points all of which are ordinary double points. Set m =
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−n− 1 +
∑

di, then the Kodaira dimension of X equals

κ(X) =






−1 if m < 0,
0 if m = 0,
2 if m > 0.

Proof. Let π: X̃ → X be the blow-up of X in the singular points. Let H ⊂ Pn be a hyperplane
not containing any of the singular points. From Proposition 3.3.35 we find that X̃ is nonsingular
and that mπ∗H is a canonical divisor on X̃, as all the ei equal 2. Hence the canonical sheaf on X̃
is isomorphic to π∗O(m) and the proof is finished by Lemma 3.3.10. !

In Corollary 3.3.40 we found an isomorphism between ωX and π∗O(m) for some integer m, as
the exceptional curves Ei did not contribute to the canonical class. This enabled us to immediately
deduce the Kodaira dimension from m. If the Ei do contribute to the canonical class, then we
can assume to know more about them in order to get the same result, an isomorphism between
ωX and π∗O(m′) for some integer m′. We will give two versions based on different assumptions.

Corollary 3.3.41 Let again X be as above, a complete intersection in Pn
K of hypersurfaces of

degree d1, . . . , dn−2 with isolated singular points Qi that are analytically isomorphic to the vertex
of the cone over a degree ei nonsingular curve Ci ⊂ P2. In addition, assume that for the blow-up
π: X̃ → X of X at the points Qi the exceptional fibres Ei = π−1(Qi) are as a divisor on X̃ all
linearly equivalent with ρ∗H for some (any) hyperplane H. Set m′ = −n− 1 +

∑
dj +

∑
(2− ei),

Then m′ρ∗H is a canonical divisor on X̃ and the Kodaira dimension of X equals

κ(X) =






−1 if m′ < 0,
0 if m′ = 0,
2 if m′ > 0.

Proof. From Proposition 3.3.35 we know that a canonical divisor is given by mρ∗H +
∑t

i=1(2−
ej)Ej with m = −n − 1 +

∑
dj . Since Ej is linearly equivalent with ρ∗H we find that m′ρ∗H is

a canonical divisor as well. The proof is again finished by Lemma 3.3.10. !

Corollary 3.3.42 Let X, X̃ and the Ei be as in Corollary 3.3.41, a complete intersection in
Pn

K of hypersurfaces of degree d1, . . . , dn−2 with isolated singular points Qi that are analytically
isomorphic to the vertex of the cone over a degree ei nonsingular curve Ci ⊂ P2. In addition,
consider the divisor

∑
i(2− ei)Ei on X̃ and assume that it is linearly equivalent with the divisor

lρ∗H for some (any) hyperplane H and an integer l. Set m′ = m + l. Then m′ρ∗H is a canonical
divisor on X̃ and the Kodaira dimension of X equals

κ(X) =






−1 if m′ < 0,
0 if m′ = 0,
2 if m′ > 0.

Proof. From Proposition 3.3.35 we know that a canonical divisor is given by mρ∗H +
∑t

i=1(2−
ej)Ej with m = −n− 1 +

∑
dj . Since

∑
i(2− ei)Ej is linearly equivalent with lρ∗H we find that

m′ρ∗H is a canonical divisor as well. The proof is again finished by Lemma 3.3.10. !

Example 3.3.43 Let C ⊂ P2
K be a nonsingular curve of degree e and X ⊂ P3

K the cone over C

with vertex P . Let π: X̃ → X be the blow-up of X in the point P . Let H ⊂ P3 be a hyperplane not
containing P , write C ′ = π∗H and let E = π−1(P ). Then Proposition 3.3.35 says that a canonical
divisor on X̃ is given by (e − 4)C ′ + (2 − e)E. This is exactly what we have seen in Example
3.3.30. Since E is linearly equivalent with C ′, a canonical divisor is given by −2C ′ = −2π∗H.
Note that this means that the canonical sheaf on Xreg = X − {P} is pseudo-ample for e ≥ 5,
while the canonical sheaf on X̃ has no global sections at all, so still κ(X) = −1.
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Remark 3.3.44 We computed the Kodaira dimension of the singular variety X as that of X̃.
One might hope for a definition of Kodaira dimension in terms of X itself, without having to
pass to a birationally equivalent nonsingular variety. In the special case that X contains only
ordinary double points as singular points we have seen that the canonical divisor on U = Xreg is
pseudo-ample if and only if the canonical divisor on X̃ is pseudo-ample. One might hope that this
is the case under weaker assumptions, such as normality of X. However, we have seen in Example
3.3.43 that only normality is not enough to assume, even when X is a complete intersection.

On a nonsingular variety X the canonical sheaf ωX is isomorphic to the so-called dualizing
sheaf ω◦

X , see [47, III.7]. Hence on these nonsingular varieties we can define the Kodaira dimension
as the divisor dimension of the dualizing divisor associated to the dualizing sheaf. One might
therefore hope that this does generalize to singular varieties. This would require that κ(ω◦

X , X) is
a birational invariant, for so is the Kodaira dimension. However, on complete intersections X the
dualizing sheaf restricts to the canonical sheaf on the regular locus Xreg, i.e., ω◦

X |Xreg ∼= ωXreg .
For locally complete intersections this follows from Proposition 3.1.27 and Theorem III.7.11 in
[47]. Taking X to be the cone of Example 3.3.43 which is regular in codimension one, it follows
that the dualizing sheaf ω◦

X on the cone X is isomorphic to OX(e − 4), this is pseudo-ample for
e ≥ 5, yet we have seen that the canonical, whence the dualizing, sheaf on X̃ is not. Hence this
hope evaporates by the same example 3.3.43.

In Corollary 3.3.40 we have seen that if X̃ is the blow-up of a surface X in an ordinary double
point P , then the exceptional fibre above P does not contribute to the canonical class of X̃. This
is in general true for a larger class of singular points, the so-called A-D-E singularities. For a
proof see [35, Prop.III.3.4]. Together with Corollary 3.3.42 this implies the following Theorem.

Theorem 3.3.45 Let j: X ↪→ Pn
k be a surface which is a complete intersection in Pn

K , say of
hypersurfaces of degree d1, . . . , dn−2. Suppose that X is regular except maybe for some isolated
singular points Q1, . . . , Qt. Furthermore, suppose that Qi is either an A-D-E singularity, in
which case we set ei = 2, or that Qi is analytically isomorphic to the vertex of the cone over a
degree ei nonsingular curve Ci ⊂ P2. Let π: X̃ → X be the blow-up of X at the singular points
Qi and let Ei be the exceptional divisor above Qi. Consider the divisor

∑
i(2 − ei)Ei on X̃ and

assume that it is linearly equivalent with the divisor lρ∗H for some (any) hyperplane H and an
integer l, where ρ = j ◦ π. Set m′ = m + l, then the Kodaira dimension of X equals

κ(X) =






−1 if m′ < 0,
0 if m′ = 0,
2 if m′ > 0.

3.4 Conjectures about surfaces of general type

S. Lang has made some conjectures about rational points on varieties of general type. For a
more complete discussion see [51], [61] and [41]. Following an article of L. Caporaso, J. Harris
and B. Mazur [39], we will call them the weak, the strong and the geometric Lang Conjecture,
respectively. Note that the field K is no longer algebraically closed. The notions Υ and Υ̃ are
again only used for the varieties defined over Q.

Conjecture 3.4.1 (Weak Lang Conjecture) If X is a variety of general type defined over a
number field K, then the set X(K) of K-rational points of X is not Zariski dense.

Conjecture 3.4.2 (Strong Lang Conjecture) Let X be any variety of general type, defined
over a number field K. There exists a proper closed subvariety Ξ ⊂ X such that for any number
field L containing K, the set of L-rational points of X lying outside of Ξ is finite.

Conjecture 3.4.3 (Geometric Lang Conjecture) If X is any variety of general type, the
union of all irreducible, positive-dimensional subvarieties of X not of general type is a proper,
closed subvariety Ξ.
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Note that the Weak Lang Conjecture would imply that if X is a surface of general type over
Q, then there are finitely many curves of genus ≤ 1 on X such that there are only finitely many
Q-rational points on X that are not on any of these curves.

Note also that the Strong Lang Conjecture is implied by the Weak together with the Geometric
Lang Conjecture. The Strong Lang Conjecture is also implied by a much more general conjecture
of P. Vojta, see [61, Conj.3.4.3] and [41, p.1–11]. The Strong Lang Conjecture has been proven
for arbitrary subvarieties of abelian varieties by Faltings [45]. The Geometric Lang Conjecture
has been proved for surfaces satisfying some inequality concerning Chern numbers. This is stated
more precise in Proposition 3.4.6.

Definition 3.4.4 For a nonsingular algebraic surface X the Chern classes c1 and c2 are defined
as follows. We have

c1(X) = −KX and c2(X) = 12(1 + pa)−K2
X ,

where KX is a canonical divisor on X, the number K2
X is the self intersection number of KX and

pa = pa(X) is the arithmetic genus of X.

Remark 3.4.5 Actually, the definition of the Chern classes is usually different, but it coincides
with this definition, see [47, App.A, exa.4.1.2]. Note that from the Noether formula 3.1.52 we find
that in the case of nonsingular projective surfaces over C we have c2(X) = χtop(X(C)).

Proposition 3.4.6 Let X be a smooth minimal projective surface of general type. Suppose that
for the Chern classes c1 and c2 we have c2

1 > c2, then X contains only finitely many curves of
genus 0 or 1.

Proof. See Bogomolov [40, Thm.0.4]. !

We have not proven that Υ̃ is a minimal surface. However, if we had, we still would not be
able to use Proposition 3.4.6 to prove that the surface Υ̃ contains only finitely many curves of
genus 0 or 1, for we have c1(Υ̃)2 < c2(Υ̃) by the following proposition.

Proposition 3.4.7 For the surface Υ̃ we have c1(Υ̃)2 = 16 and c2(Υ̃) = 80.

Proof. From Corollary 3.3.33 we know that K2
Υ

= 16 for any canonical divisor KΥ on Υ̃. Hence
we have c2

1 = K2
Υ

= 16. We have just seen that c2(Υ̃) = χtop(Υ̃(C)), so from Corollary 3.3.34 we
find that c2(Υ̃) = 80. !

The surface Υ ⊗ Q does contain several curves of genus ≤ 1, corresponding to trivial perfect
cuboids. The hyperplane A = 0 intersects Υ in 8 rational curves of degree 2, all in the same orbit
under G and all defined over Q. The hyperplane X = 0 intersects Υ ⊗ Q in 4 elliptic curves of
degree 4, all defined over Q(i) and in the same orbit. The hyperplane A = B intersects Υ ⊗ Q
also in 4 elliptic curves of degree 4, all in the same orbit and defined over Q(

√
2). Hence none of

these elliptic curves contains any Q-rational point. We now have three orbits of curves.
{

ABC = 0, 24 degree 2 curves defined over Q and isomorphic to P1,
U = 0, 8 degree 2 curves defined over Q(i) and isomorphic to P1.

{
XY Z = 0, 12 degree 4 elliptic curves defined over Q(i).

{
(A2 −B2)(B2 − C2)(C2 −A2) = 0, 24 degree 4 elliptic curves defined over Q(

√
2),

(A2 + U2)(B2 + U2)(C2 + U2) = 0, 24 degree 4 elliptic curves defined over Q(
√

2, i).
(36)
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Representatives of these three orbits are

A = 0, A = m2 − n2, A = 2mn,
B = m2 − n2, B = 2imn, B = 2mn,
C = 2mn, C = 2mn, C = m2 − n2,
X = m2 + n2, X = 0, X = m2 + n2,
Y = 2mn, Y = m2 + n2, Y = m2 + n2,
Z = m2 − n2, Z2 = m4 − 6m2n2 + m4, Z = 2

√
2mn,

U = m2 + n2. U = m2 − n2. U2 = m4 + 6m2n2 + n4.

(37)

Proposition 3.4.8 There are infinitely many cuboids, pairwise not similar, with positive sides
that are “perfect” over Q(

√
2,
√

3).

Proof. Let E denote most right elliptic curve of (37) on Υ. It contains the point

P = [2
√

6 : 2
√

6 : 1 : 5 : 5 : 4
√

3 : 7]

corresponding with (m, n) = (
√

3,
√

2). The point P has infinite order, all its multiples are points
over Q(

√
2,
√

3). !

Example 3.4.9 Let P be as in the proof of Proposition 3.4.8. Then up to torsion the point 4P
corresponds with (m, n) = (1382351, 174860

√
6) giving rise to the cuboid

A = 483435791720
√

6
B = 483435791720

√
6

C = 1727438169601
X = 2094350404801
Y = 2094350404801
Z = 966871583440

√
3

U = 2405943600001

Remark 3.4.10 Similarly, we find that if L is a field over which the elliptic curve C: y2 = x4 +
6x2 + 1 has positive rank, then there are infinitely many cuboids that are “perfect” over L(

√
2).

Note that E is isomorphic over Q to the elliptic curve E: y2 = x3 − x. This curve has rank 0 over
Q(
√

2, i).

Proposition 3.4.11 There are no straight lines on Υ⊗Q.

Proof. Suppose that L were a line on Υ ⊗ Q and consider the hyperplane H ⊂ P6 given by
Y − Z = 0. Then by Bézout L would either lie in H, or it would have exactly one point in
common with H. In the first case we find that the line would also be in the intersection of Υ with
one of the hyperplanes B ±C. We have already seen that these intersections only contain elliptic
curves. Hence the line L intersects H in exactly one point, say P .

Since L is on Υ, we find from Z2 − Y 2 = B2 − C2 that B(P ) = ±C(P ) on L. Hence either
B + C or B −C has a single zero on L at P . It follows that either the function (Z − Y )/(B + C)
or (Z − Y )/(B − C) has neither zeros nor poles on L. By applying ιC to L if necessary, we may
assume it is the former, which is apparantly a nonzero constant on L, say λ ∈ Q∗

. That means
that L is one component of the intersection of Υ ⊗ Q with the hyperplane Hλ given by fλ = 0
with fλ = Z − Y − λ(B + C). The radical ideal of the intersection Υ ∩Hλ is given by

I(λ) =
(
fλ, A

2 + B2 − Z2, A2 + C2 − Y 2, B2 + C2 −X2, A2 + B2 + C2 − U2
)

= I1 ∩ I2(λ),

where I1 and I2(λ) are given by

I1 =
(
B + C, Z − Y, 2B2 −X2, A2 + B2 − Y 2, A2 + X2 − U2

)
,

I2(λ) =
(
fλ, gλ, B

2 + C2 −X2, A2 + X2 − U2, 4A2 − (λ− λ−1)2X2 − 2(λ2 − λ−2)BC
)
,
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with gλ = 2λY + (λ2 − 1)B + (λ2 + 1)C. Over Q(
√

2) the component given by I1 falls out in two
elliptic curves of degree 4, so the line L is a component of the zeroset V (λ) of I2(λ). Since V (λ)
should have degree 8 in total by Bézout, there are more components and hence I2(λ) is not prime.
We will show that I2(λ) is prime for λ &∈ {0,±1,±i}. Therefore we fix λ such that λ4 &= 0, 1. Since
fλ and gλ are linear, we get an isomorphism

Q[A, B, C, X, Y, Z, U ]/I2(λ) ∼= Q[A, B, C, X, U ]/I3(λ),

with

I3(λ) =
(
B2 + C2 −X2, A2 + X2 − U2, 4A2 − (λ− λ−1)2X2 − 2(λ2 − λ−2)BC

)
.

If we put
a1 = (B + iC) (B − iC) ,

a2 =
(
λ2 − 1

)2

4λ2

(
B +

λ+ 1
λ− 1

C

)(
B +

λ− 1
λ+ 1

C

)
,

a3 =
(
λ2 + 1

)2

4λ2

(
B +

λ+ i

λ− i
C

)(
B +

λ− i

λ+ i
C

)
,

(38)

then we can write
I3(λ) =

(
X2 − a1, A

2 − a2, U
2 − a3

)
.

If we view Q[A, B, C, X, U ] as a polynomial ring in three variables A, X, U over the unique factor-
ization domain Q[B, C] with fraction field L = Q(B, C), then we find that Q[A, B, C, X, U ]/I3(λ)
can be embedded in L[A, X, U ]/I3(λ), so in order to show that the former is an integral domain
it suffices to show that the latter is a field. Define L0 = L and

L1 = L[X]/(X2 − a1),

L2 = L1[A]/(A2 − a2),

L3 = L2[U ]/(U2 − a3).

For 1 ≤ j ≤ 3 the ring Lj is a field if Lj−1 is a field and aj &∈ Lj−1. Using Kummer theory we
find just as in the proof of Lemma 3.2.1, that L3

∼= L[A, X, U ]/I3(λ) is field if the sequence

L∗2
0 ⊂ L∗2

0 · 〈a1〉 ⊂ L∗2
0 · 〈a1, a2〉 ⊂ L∗2

0 · 〈a1, a2, a3〉

of subgroups of L∗
0 is strictly increasing. This follows also just as in the proof of Lemma 3.2.1 from

the fact that Q[B, C] is a unique factorization domain and if λ &∈ {0,±1,±i}, then all six linear,
whence irreducible, factors in (38) are different.

We conclude that λ ∈ {0,±i,±1}, but it is easily checked that for each of these 5 possibilities
V (λ) consists of components that we have already seen in (36), whence it does not contain a
line. !
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4 A surface and its Néron-Severi group

So far we have found only trivial rational points on the surface Υ, i.e., rational points with
ABC = 0. Finding non-trivial rational points on Υ appears to be rather difficult, if they exist
at all. One way to search for these points is to consider the surface Υ/H for some subgroup
H ⊂ Aut(Υ). For every rational point found on this surface, we could check if it lifts to a rational
point on Υ. The problem is now to find as many rational points on Υ/H as possible. In this
chapter we will take H to be the group of order 2 generated by ιZ . This gives a surface V and
in order to find lots of rational points on V , we will try to find as many rational curves on V as
possible.

4.1 A surface describing face cuboids

Definition 4.1.1 Let V be the surface V = Υ/〈ιZ〉 defined over Q and let θ: Υ → V be the
corresponding map.

The surface V can be given as a surface in P5
Q by the equations

A2 + C2 − Y 2 = 0,

B2 + C2 −X2 = 0,

A2 + X2 − U2 = 0.

(39)

The map θ is then given by projection along the Z-axis. Consider the graded homogeneous
coordinate ring R = Q[A, B, C, X, Y, U ] of P5

Q and let I ⊂ R be the ideal generated by the
polynomials in (39). Similarly to Lemma 3.2.1 it follows that the ideal I is prime, actually it
follows already from the proof of Lemma 3.2.1. Therefore V is geometrically integral and the
radical ideal IV = I ⊂ Q[A, B, C, X, Y, U ] corresponding to V is prime and generated by the
polynomials of (39), whence V is a complete intersection. It has degree 8 by Bézout’s Theorem.

Let G1 be the subgroup of G ⊂ Aut(Υ⊗Q) consisting of all elements that commute with ιZ .
The group G1 is commutative and generated by σ, ρ and the ιt, where t is any of the 7 coordinates
of P6. The group G1 induces a group GV

∼= G1/〈ιZ〉 of automorphisms of V ⊗Q of order 27 = 128.

It turns out that of the 48 singular points of Υ ⊗ Q, there are 16 with Z = 0. These are
ramification points of θ above nonsingular points of V ⊗Q. The other 32 singular points of Υ⊗Q
lie in pairs above 16 singular points of V ⊗ Q. The group GV acts transitively on these singular
points of V ⊗Q. A representative of their orbit is Q: [A : B : C : X : Y : U ] = [1 : 0 : 0 : 0 : 1 : 1].
Computations similar to those of Proposition 3.2.2 or computations using a Jacobian show that
these 16 points are the only singular points of V ⊗ Q. As they are isolated singular points, it
follows from Proposition 3.2.17 that V ⊗ Q, whence V , is normal. Other computations, similar
to those of Lemma 3.2.9 show that Q is an ordinary double point, whence all singular points of
V ⊗Q are. This implies that if we blow up V at the 16 singular points, then we get a nonsingular
surface and the exceptional fibre above each singular point is isomorphic to P1.

Definition 4.1.2 Let π: Ṽ → V be the blow-up of V at its 16 singular points.

Remark 4.1.3 Although not all 16 singular points are defined over Q, the singular locus is,
whence so is Ṽ .

We can apply Corollary 3.3.41 to the surface V ⊗Q to get the canonical sheaf on Ṽ ⊗Q and
the Kodaira dimension of V . With n = 5, d1 = d2 = d3 = 2 and e1 = · · · = e16 = 2 we find
m′ = 0, so the zero divisor on Ṽ ⊗ Q is a canonical divisor and the canonical sheaf on Ṽ ⊗ Q is
isomorphic to OV ⊗Q, the structure sheaf of Ṽ ⊗ Q. Hence we find that the Kodaira dimension
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of V is 0 and the geometrical genus equals pg(V ) = pg(Ṽ ⊗ ⊗Q) = pg(Ṽ ) = dimH0(Ṽ ,OV ) = 1
since Ṽ is projective.

We can compute the Hilbert polynomial PV of V as we did in Lemma 3.2.18 for Υ. We find
that

PV (n) =
3∑

k=0

(
3
k

)(
n− k + 2

2

)
= 4n2 + 2,

so the arithmetic genus of V equals pa(V ) = PV (0) − 1 = 1. Since the arithmetic genus is
invariant under monoidal transformations we also find pa(Ṽ ) = 1. For the irregularity q we then
get q = pg(Ṽ ) − pa(Ṽ ) = 1 − 1 = 0. Together with the fact that the zero divisor KV = 0 is a
canonical divisor, this implies that Ṽ is a K3 surface.

Write hp,q and bk for the Hodge and betti numbers hp,q(Ṽ ⊗ C) and bk(Ṽ ⊗ C) of Ṽ ⊗ C
respectively. Using Proposition 3.1.47 and Poincaré duality 3.1.48 we find that h1,0 = h0,1 =
h2,1 = h1,2 = q = 0, that h2,0 = h0,2 = pg = 1 and that h0,0 = h2,2 = 1. We have b0 = b4 = 1,
b1 = b3 = 0 and b2 = 2 + h1,1. Using the fact that K2

V
= 0 we find from the Noether formula

3.1.52 that h1,1 = 20. All the Hodge numbers are hence given by

h0,2 h1,2 h2,2

h0,1 h1,1 h2,1

h0,0 h1,0 h2,0

=
1 0 1
0 20 0
1 0 1

.

The surface V is also analysed by F. Beukers and B. van Geemen in [1], see section 2. We will
recapitulate some of their results.

Let W ⊂ A3 be the surface given by

z2 =
(
p4 + q2

) (
q2 + 12

)
,

then V and W are birationally equivalent by the following rational maps.






p = B+X
C ,

q = B+X
A+Y ,

z = 2U(B+X)2

C2(A+Y ) .

and






A = p2 − q2,
B = (p2 − 1)q,
C = 2pq,
X = (p2 + 1)q,
Y = p2 + q2,
U = z.

Let E be the elliptic curve given by

E: y2z = x3 − 4xz2,

with the 2-torsion point T : [x : y : z] = [0 : 0 : 1]. Then E × E is an abelian surface with
automorphisms ι: (P, Q) +→ (−P,−Q) and γ: (P, Q) +→ (P + T, Q + T ), both of order 2. The map

Φ: E × E → V

given by 




A = y2
1y2

2 − 16x2
1x

2
2,

B = 4(y2
1x

2
2 − y2

2x2
1),

C = 8x1x2y1y2,
X = 4(y2

1x2
2 + y2

2x2
1),

Y = y2
1y2

2 + 16x2
1x

2
2,

U = (y2
1 + 8x1z1)(y2

2 + 8x2z2)
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is a morphism that factors through (E × E)/〈ι, γ〉, inducing an isomorphism between V and
(E × E)/〈ι, γ〉.

Let Φ̃ be the morphism Φ̃ = Φ ◦ α, where α is the automorphism α: (P, Q) +→ (P + Q, Q) of
E × E, i.e.,

Φ̃: E × E → V : (P, Q) +→ Φ(P + Q, Q).

Let τ be the automorphism (involution) of E that sends P to P + T and let E′ denote the elliptic
curve E′ = E/〈τ 〉. Then E′ can be given by

E′: y2z = x3 + xz2.

Let τ ′ be the automorphism τ ′ = id× τ of E×E, then (E×E)/〈τ ′〉 ∼= E×E′. Note that we have
α−1〈ι, γ〉α = 〈τ ′, ι〉, whence we have isomorphisms

V ∼= (E × E)/〈ι, γ〉 ∼= (E × E)/〈τ ′, ι〉 ∼= (E × E′)/〈inv〉,

where inv is the automorphism inv: (P, Q) +→ (−P,−Q) of E × E′.

E × E V

E × E′ (E × E)/〈ι, γ〉

α

mod inv

Φ
∼

∼

E × E

This implies that V is the Kummer surface of the abelian surface E × E′.

4.2 Generators of the Néron-Severi group

In this section we will give generators for the Néron-Severi group of Ṽ ⊗C. This is the free group
generated by curves on Ṽ ⊗C modulo algebraic equivalence. Therefore, in order to find generators,
we’d better have some curves at our disposal.

The hyperplane C = 0 intersects V in 4 conics given by

C = 0, Y = ±A, X = ±B, A2 + B2 = U2.

We will denote these by DCj1j2 , where j1 = sign Y/A and j2 = sign X/B, whence DC+− for
example denotes the curve given by C = 0, Y = A, X = −B and A2 + B2 = U2. The hyperplane
A = 0 intersects V in 4 conics as well, given by

A = 0, Y = ±C, X = ±U, B2 + C2 = X2.

We will denote these by DAj1j2 , with j1 = sign Y/C and j2 = sign X/U . Similarly we find 4 conics
DBj1j2 with B = 0 and j1 = sign X/C and j2 = sign Y/U . The hyperplane Y = 0 intersects V in
an algebraic set that over Q falls out in 4 conics, namely

iA = ±C, B = ±U, Y = 0, B2 + C2 = X2

where i is fixed and i2 = −1. These conics will be denoted by DY j1j2 with j1 = sign iA/C and
j2 = sign B/U . Analogously, we find 4 conics DXj1j2 with j1 = sign iB/C and j2 = sign A/U
in the intersection of V with the hyperplane X = 0. Finally, the hyperplane given by U = 0
intersects V ⊗Q in the 4 conics with

iX = ±A, iY = ±B, B2 + C2 = X2, U = 0.

These 4 conics will be denoted DUj1j2 with j1 = sign iX/A and j2 = sign iY/B. Each of these 24
conics contains exactly 4 singular points and each singular point is contained in 6 of the conics.
It turns out that there are no straight lines on V ⊗Q.
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Proposition 4.2.1 There are no straight lines on V ⊗Q.

Proof. Suppose that L were a line on V . Then L can be parametrised by linear homogeneous
polynomials in s and t, i.e., there are homogeneous linear polynomials fA, fB , fC , fX , fY , fU ∈
Q[s, t] such that

f2
A + f2

C = f2
Y ,

f2
B + f2

C = f2
X ,

f2
A + f2

X = f2
U .

Suppose fA = a1s + a2t, fC = c1s + c2t and fY = y1s + y2t. Then from the first equation we find
y2
1 = a2

1 + c2
1, y2

2 = a2
2 + c2

2 and y1y2 = a1a2 + c1c2, whence

(a2
1 + c2

1)(a
2
2 + c2

2) = y2
1y2

2 = (a1a2 + c1c2)2,

which rewrites to (a1c2 − a2c1)2 = 0, whence a1c2 = a2c1. If a1 &= 0, then fC = c1
a1

fA. If a2 &= 0,
then fC = c2

a2
fA and if a1 = a2 = 0, then fA = 0. In all cases there exists a linear form g ∈ Q[s, t]

and constants a, c ∈ Q such that fA = ag and fC = cg. Then fY = yg for some constant y with
y2 = a2 + c2. Together with the other two equations we find similarly that there is a linear form
g′ ∈ Q[s, t] with constants a, b, c, x, y, u ∈ Q such that fA = ag′, fB = bg′, . . . , fU = ug′. This
implies that L is just the point [a : b : c : x : y : u], contradiction. !

Remark 4.2.2 Proposition 3.4.11 follows from this proposition as every straight line on Υ ⊗ Q
would map to a straight line on V ⊗ Q. The proof of Proposition 3.4.11 therefore seems to be
more complicated than needed.

On Ṽ ⊗Q we have 16 more rational curves, the exceptional curves above the singular points.
We name the singular points as follows.

Q1 = [0 : 1 : 0 : 1 : 0 : 1], Q2 = ιUQ1, Q3 = ιXQ1, Q4 = ιBQ1,
Q5 = [1 : 0 : 0 : 0 : 1 : 1], Q6 = ιUQ5, Q7 = ιY Q5, Q8 = ιAQ5,
Q9 = [0 : i : 1 : 0 : 1 : 0], Q10 = ιBQ9, Q11 = ιCQ9, Q12 = ιY Q9,
Q13 = [i : 0 : 1 : 1 : 0 : 0], Q14 = ιXQ13, Q15 = ιCQ13, Q16 = ιAQ13.

For j = 1, . . . , 16 the exceptional curve above Qj is isomorphic to P1 and will be denoted Ej .

Let λ and ζ be coordinates of P1 and consider the rational map

ϕ: V ""# P1: [A : B : C : X : Y : U ] +→
{

[Y −A : C] or
[C : Y + A],

which is only not well defined in the four singular points with A = C = Y = 0, i.e., in Q1, Q2, Q3

and Q4.

Definition 4.2.3 Let E ′
λ denote the inverse image of [λ : 1] under ϕ and write E ′

∞ for the inverse
image of [1 : 0], all of them not including the points Q1, Q2, Q3, Q4. Let Eλ denote the closure of
E ′
λ in V , i.e., Eλ = E ′

λ ∪ {Q1, Q2, Q3, Q4} and let Ẽλ denote the closure of π−1(E ′
λ) in Ṽ .

Let K by any field extension of Q. For λ ∈ K let Hλ, H ′
λ ⊂ P5

K denote the hyperplanes given
by Y − A = λC and λ(Y + A) = C respectively. The hyperplane Hλ cuts out on V ⊗K the two
conics DC+± and Eλ ⊗K. After intersecting with H ′

λ only Eλ ⊗K remains left. This helps us to
describe Eλ, which in turn will enable us to describe Ẽλ on Ṽ .
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For λ = 0 ∈ Q we find that Eλ consists of the two conics DC+± and for λ = ∞ of the conics
DC−±. For λ &= 0,∞ the radical ideal of Eλ is given by

Iλ =
(
Y −A− λC, 2A + (λ− λ−1)C, B2 + C2 −X2, 4B2 + (λ+ λ−1)2C2 − 4U2

)
. (40)

As the first two polynomials in (40) are linear, it follows that Eλ is isomorphic to the intersection
of two quadratic surfaces in P3

K , namely

B2 + C2 −X2 and 4B2 + (λ+ λ−1)2C2 − 4U2. (41)

With the distinguished point

O(B : C : X : U) = [−1 : 0 : 1 : 1]

this becomes an elliptic curve over K for almost all λ ∈ K. Now consider K = Q. The curve is
singular for λ = 0,±i,±1,∞. For these λ the intersection Eλ decomposes on V ⊗Q as the sum

E1: DA++ + DA+−,

E−1: DA−+ + DA−−,

Ei: DY ++ + DY +−,

E−i: DY −+ + DY −−,

E0: DC++ + DC+−,

E∞: DC−+ + DC−−.

Proposition 4.2.4 There is a morphism ϕ̃: Ṽ → P1 such that for P ∈ Ṽ − (E1 ∪ E2 ∪ E3 ∪ E4)
we have ϕ̃(P ) = ϕ(π(P )).

Proof. The problem is to extend ϕ ◦ π to the whole of Ṽ . For λ &= 0,±1,±i,∞ the fibre Eλ is
nonsingular, in particular at Q1, Q2, Q3 and Q4. For j = 1, 2, 3, 4 it follows that Ẽλ intersects Ej

exactly in 1 point, which we will call Q̃j(λ).
For each λ = 0,∞,±1,±i both the two nonsingular conics of which Eλ consists contain exactly

2 of the 4 points Q1, Q2, Q3, Q4. The two conics intersect at 2 other points that are singular on V .
Hence for j = 1, 2, 3, 4 again Eλ is nonsingular at Qj , so Ẽλ intersects Ej also for these λ exactly
in 1 point, which we will call Q̃j(λ) again.

Fix j ∈ {1, 2, 3, 4}. For different λ the curve Eλ goes through Qj with an other direction, so
the morphism

P1 → Ej :λ +→ Q̃j(λ)

is injective. It is not constant, whence it is surjective so it is an isomorphism. This implies that
we can extend the rational map ϕ ◦ π: Ṽ → P1, which is a priori only defined outside E1, E2, E3,
E4, to a morphism ϕ̃: Ṽ → P1 by sending Q̃j(λ) to [λ : 1] for j = 1, 2, 3, 4.

P1 6 [λ : 1]ϕ

π ϕ̃

Eλ

Ẽλ

V

Ṽ

Qj ∈

∈Q̃j(λ)

Although we worked with an extension of Q, the morphism ϕ̃ is defined over Q itself. !
The inverse image of [λ : 1] under ϕ̃ is exactly Ẽλ. For λ &= 0,∞,±1,±i the irreducible

nonsingular curve Eλ ⊗ Q on V ⊗ Q does not contain any singular points other than Q1, Q2, Q3

and Q4, so Ẽλ ⊗ Q does not contain any exceptional curves and is isomorphic to Eλ ⊗ Q. To
describe Ẽλ ⊗ Q for λ = 0,∞,±1,±i it is convenient to have a notation for the conics on Ṽ that
are isomorphic under π to conics on V .
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Definition 4.2.5 Let D be a curve on V , which is nonsingular at the singular points of V . Then
the closure of π−1(D ∩ V reg) in Ṽ is isomorphic to D and will be denoted D̃.

Lemma 4.2.6 Consider the morphism ϕ̃ ⊗ Q: Ṽ ⊗ Q → P1
Q. The fibre of ϕ̃ ⊗ Q is singular at

λ = 0,∞,±1,±i. These fibres decompose as follows.

Ẽ0: D̃C++ + D̃C+− + E5 + E6,

Ẽ∞: D̃C−+ + D̃C−− + E7 + E8,

Ẽ1: D̃A++ + D̃A+− + E9 + E10,

Ẽ−1: D̃A−+ + D̃A−− + E11 + E12,

Ẽi: D̃Y ++ + D̃Y +− + E13 + E14,

Ẽ−i: D̃Y −+ + D̃Y −− + E15 + E16.

For each λ = 0,∞,±1,±i the two conics in the decomposition of Ẽλ ⊗ Q do not intersect each
other on Ṽ , neither do the two exceptional curves. The conics both have exactly one (different)
point in common with each of the exceptional curves.

Proof. First consider λ = 0 and the conics DC+± of which E0 on V consists. Apart from the
points Q1, Q2, Q3 and Q4, the only singular points of V on DC+± are Q5 and Q6. These are the
intersection points of DC++ and DC+−. Hence the only exceptional curves in the pre-image of
E ′
0 = E0 − {Q1, Q2, Q3, Q4} under π are the exceptional curves E5 and E6. It follows that Ẽ0 on

Ṽ consists of 4 irreducible curves, namely E5, E6 and the conics D̃C+±.
Similarly, the only singular points of V on E∞, apart from Q1, Q2, Q3 and Q4, are Q7 and Q8

and these are the intersection points of the conics DC−±. Then Ẽ∞ consists of E7, E8 and the
conics D̃C−± on Ṽ . Note that Ẽ∞ consists of 4 irreducible curves as well.

Just as before, the only singular points of V ⊗ Q on Eλ ⊗ Q, apart from Q1, Q2, Q3, Q4, for
λ = 1,−1, i,−i are the pairs (Q9, Q10), (Q11, Q12), (Q13, Q14) and (Q15, Q16) respectively. The
decompositions follow just as in the case of λ = 0.

In all six cases each of the two conics is nonsingular at the two intersection points Qi and Qj

at which the conics intersect transversally. It follows that the conics do not intersect anymore on
Ṽ ⊗Q and that they both intersect Ei and Ej in exactly one (different) point. !

The pre-image of the generic point of P1
Q under ϕ is the elliptic curve over the function field

Q(λ) of P1, also denoted by Eλ. It can be given in P3
Q(λ) as the intersection of the two quadrics

given by (41) and it can be brought into Weierstrass form

Cλ: y2z = x(x + 4λ2z)(x + (λ2 + 1)2z)

by the map





A = 2(1− λ2)yz,
B = (x− 2λ(λ2 + 1)z)(x + 2λ(λ2 + 1)z),
C = 4λyz,
X = x2 + 8λ2xz + 4λ2(λ2 + 1)2z2,
Y = 2(λ2 + 1)yz,
U = (x + 2(λ2 + 1)z)(x + 2λ2(λ2 + 1)z)

or






x = 4λ2C(U −B),
y = 8λ3(U + X)(U −B),
z = C(X + B).

The elliptic curve Cλ/Q(λ) has discriminant ∆(λ) and j-value j(λ) given by

∆(λ) = 28λ4(λ2 + 1)4(λ+ 1)4(λ− 1)4 and

j(λ) = 16
(λ4 + 2λ3 + 2λ2 − 2λ+ 1)(λ4 − 2λ3 + 2λ2 + 2λ+ 1)

λ4(λ2 + 1)4(λ+ 1)4(λ− 1)4
.
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Lemma 4.2.7 Let φ:S → P1 be a nonsingular minimal model for ϕ: Eλ → P1. The nonsingular
fibres of φ⊗Q at λ = 0,∞,±1,±i are all of type I4.

Proof. This follows from Tate’s algorithm. For λ = 0,±1,±i it follows directly from the valuation
of ∆(λ) and j(λ). For λ = ∞ we should first do some rewriting to see that Eλ looks locally at
λ = ∞ exactly the same as at λ = 0. !

Proposition 4.2.8 The surface Ṽ together with the morphism ϕ̃ gives a minimal nonsingular
model for Eλ.

Proof. As we have seen the surface Ṽ is nonsingular, so it is minimal if and only if the (singular)
fibres are what they should be as described by the Tate algorithm. For λ &= 0,∞,±1,±i the fibre
Ẽλ ⊗ Q is indeed an elliptic curve isomorphic to Eλ ⊗ Q, for π induces an isomorphism outside
the singular points of V . The singular fibres should all be of type I4 and by Lemma 4.2.6 this is
exactly what the singular fibres of ϕ̃: Ṽ → P1 look like. !

Let NS(Ṽ ⊗ C, C) denote the Néron-Severi group of Ṽ ⊗ C over C. Then NS(Ṽ ⊗ C, C) is a
finitely generated Z-module and it follows from Shioda [56, Cor.1.5] that

rankNS(Ṽ ⊗ C, C) = rank Eλ(C(λ)) + 2 + 6 · (4− 1).

Since the rank of the Néron-Severi group of a K3-surface cannot exceed 20 (see [35]) it follows
that rankNS(Ṽ , C) = 20 and rank Eλ(C(λ)) = 0. This means that the Mordell-Weil group of
Eλ(C(λ)) is a torsion group. Three points on Eλ are

T1 : [A : B : C : X : Y : U ] =
[
1− λ2 : 0 : 2λ : 2λ : 1 + λ2 : 1 + λ2

]
,

T2 : [A : B : C : X : Y : U ] =
[
1− λ2 : i(1 + λ2) : 2λ : i(1− λ2) : 1 + λ2 : 0

]

T3 : [A : B : C : X : Y : U ] = [0 : 1 : 0 : −1 : 0 : 1],

corresponding with

T1 : [x : y : z] = [2λ(λ2 + 1) : 2λ(λ2 + 1)(λ+ 1)2 : 1],

T2 : [x : y : z] = [−2(λ2 + 1) : 2i(λ2 + 1)(λ2 − 1) : 1],

T3 : [x : y : z] = [−4λ2 : 0 : 1].

We will see in Proposition 4.2.12 that T1 and T2 generate the Mordell-Weil group over C(λ). For
this proposition we need a generalization of the Theorem of Lutz and Nagell, see [57, Cor.VIII.7.2].
This can be stated much more general than the version we need, which is stated in Corollary 4.2.11.

Proposition 4.2.9 Let R be a discrete valuation ring with quotient field K and valuation v. Let
m be the maximal ideal of R and k = R/m its residue field. Let m ≥ 1 be an integer relatively
prime to char k. Let E/K be an elliptic curve, Ẽ/k the reduction of E modulo m and set

E1(K) = {P ∈ E(K) : P̃ = Õ}.

Then the subgroup E1(K) of E(K) has no non-trivial points of order m.

Proof. Let R̂ and K̂ denote the completions with respect to v of R and K respectively. Then
E1(K) is a subgroup of

E1(K̂) = {P ∈ E(K̂) : P̃ = Õ},
which has no non-trivial points of order m by Proposition VII.3.1(a) of [57]. !

Remark 4.2.10 It is easily checked that the proof Proposition VII.3.1 of [57] does not use com-
pleteness. The completeness is only used for right exactness of an exact sequence of which right
exactness is not used.
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Corollary 4.2.11 Let k be a field of characteristic char k = 0 and let K be the field K = k(t),
where t is transcendental over k. Let E/K be an elliptic curve given by the Weierstrass equation

E: y2 = x3 + a2x
2 + a4x + a6 =: f(x)

with a2, a4, a6 ∈ k[t]. Let P ∈ E(K) be a non-zero torsion point. Then

(a) x(P ), y(P ) ∈ k[t] and

(b) 2P = O or y(P )2|∆(E) = −16(4a3
2a6 − a2

2a
2
4 + 4a3

4 + 27a2
6 − 18a2a4a6).

Proof. Let P ∈ E(K) be a point of order m. Let m be any nonzero prime ideal of k[t] and let
v be the corresponding valuation. We will show that v(x(P )) ≥ 0. If the equation for E is not
minimal with respect to v, and (x′, y′) are coordinates for a minimal equation, then we have

v(x(P )) ≥ v(x′(P )) and v(y(P )) ≥ v(y′(P ))

(see [57, Prop.VII.1.3d]). Hence we may assume that the equation for E is minimal with respect
to v. Let R be the localization R = k[t]m of k[t] at m. Then R is a discrete valuation ring with
respect to v and with quotient field K. The residue field l = R/mR is a finite field extension of k.
Let Ẽ/l be the reduction of E modulo m.

Suppose that we had v(x(P )) < 0. Then we would also have v(y(P )) < 0 and from minimality
of the equation for E we find that P reduces to P̃ = Õ, whence P ∈ E1(K). Since char l = 0
we can apply Proposition 4.2.9 to find that P is not a non-trivial point of order m. From this
contradiction we conclude that v(x(P )) ≥ 0. This holds for every valuation corresponding to a
nonzero prime ideal of k[t], so indeed we find x[t] ∈ k[t]. This immediately implies that y(P )2 =
x(P )3 + a2x(P )2 + a4x(P ) + a6 ∈ k[t], whence y(P ) ∈ k[t], thus proving part (a).

To prove part (b), suppose that P ∈ E(K) is a non-zero torsion point with 2P &= O. Then
from part (a) we know that x(P ), y(P ), x(2P ), y(2P ) ∈ k[t]. Let ψ, φ ∈ k[t][x] be given by

ψ = −27x3 − 27a2x
2 − 27a4x + 4a3

2 − 18a2a4 + 27a6,

φ = 3x2 + 2a2x− a2
2 + 4a4.

Then it is directly verified that ψ(x)f(x) + φ(x)f ′(x)2 = −∆(E)/16 ∈ k[t]. Note that we also
have the following equations.

4y(P )2 (x(2P ) + a2 + 2x(P )) = f ′(x(P ))2

y(P )2 = f(x(P ))

The first one follows from the addition formula for x(2P ) and the second from the fact that P is
a point on E. Multiplying the first by φ, the second by ψ and adding them up gives

y(P )2 (4φ(x(2P ) + a2 + 2x(P )) + ψ) = −∆(E)/16.

As all these factors are contained in the unique factorization domain k[t], we conclude that
y(P )2|∆(E). !

Proposition 4.2.12 The Mordell Weil group Eλ(C(λ)) is isomorphic to Z/4Z × Z/4Z and gen-
erated by T1 and T2. The group Eλ(Q(λ)) is isomorphic to Z/2Z×Z/4Z and generated by T1 and
T3.

Proof. Let P &= O be any torsion point in Eλ(C(λ)). Then from Corollary 4.2.11 we know that
x(P ), y(P ) ∈ C[λ] and that either 2P = O or

y(P )2 = x(P )
(
x(P ) + 4λ2

) (
x(P ) + (λ2 + 1)2

)
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is a divisor of
∆(λ) = 28λ4(λ+ i)4(λ− i)4(λ+ 1)4(λ− 1)4.

As C[λ] contains infinitely many units, this still leaves infinitely many possibilities. First note
that we can narrow down the possible degrees for x(P ). As the degree of f(x(P )) = y(P )2 as
a polynomial in C[λ] should be even and at most deg ∆(λ) = 20, it follows from the following
tabular that the degree of x(P ) ∈ C[λ] equals 0, 2, 3, 4 or 6.

deg x(P ) deg f(x(P ))
≥ 7 ≥ 21
6 18
5 15
4 8 + deg(x(P ) + (λ2 + 1)2)
3 10
2 6 + deg(x(P ) + 4λ2)
1 7
0 6

We also know that (x(P ), x(P ) + 4λ2) is a pair of polynomials (g, h) in C[λ] both dividing ∆(λ),
whence with g = cg′ and h = dh′ for some constants c, d ∈ C and monic divisors g′, h′ of ∆(λ),
say of degree n and m, of the form

g′ = λ∗(λ+ i)∗(λ− i)∗(λ+ 1)∗(λ− 1)∗ =
n∑

j=0

cjλ
j ,

h′ = λ∗(λ+ i)∗(λ− i)∗(λ+ 1)∗(λ− 1)∗ =
m∑

j=0

djλ
j ,

where the stars mean any exponent from 0 to 4. Then g and h satisfy h = g + 4λ2, whence

g′ − c2λ
2 = α(h′ − d2λ

2) (42)

for some α ∈ C. Furthermore we have n = 0, 2, 3, 4, 6 and

m =






n if n = 3, 4, 6,
0 or 2 if n = 2,
2 if n = 0.

Hence for these pairs (m, n) we can compute all polynomials of the form

λ∗(λ+ i)∗(λ− i)∗(λ+ 1)∗(λ− 1)∗

of degree m and n. In this finite set of polynomials we can look for all pairs (g′, h′) satisfying (42).
Then from the equations g = cg′, h = dh′ and h = g + 4λ2 we can compute the constants c and
d by looking at the coefficients. This gives a finite set of all possible polynomials g for x(P ). We
let a computer compute all these possibilities and check for each possibility whether f(x(P )) was
a square in C[λ]. Out came 9 polynomials, 3 of which are 0, −4λ2 and −(λ2 + 1)2 giving rise to
2-torsion points. The other 6 give rise to 12 points of order 4. Together with O this gives a total of
16 points, all contained in the group generated by T1 and T2 which is isomorphic to Z/4Z×Z/4Z.

As the group Eλ(C(λ)) is not invariant under complex conjugation, the group Eλ(Q(λ)) has at
least index 2 in Eλ(C(λ)), so at most order 8. The group generated by T1 and T3 is contained in
Eλ(Q(λ)) and is isomorphic to Z/2Z× Z/4Z, whence Eλ(Q(λ)) is generated by T1 and T3. !

Knowing that ϕ̃: Ṽ → P1 is a minimal nonsingular model for Eλ we can find generators of
NS(Ṽ ⊗ C, C) by the ideas of Swinnerton-Dyer [59]. These tell us that the group NS(Ṽ ⊗ C, C)
is spanned over Z by
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• the locus of the point Oλ,

• the components of the singular fibres in the pencil Eλ and

• the loci of the generators T1, T2 of the group Eλ(C(λ)).

Lemma 4.2.13 The Néron-Severi group NS(Ṽ ⊗C, C) of Ṽ ⊗C is generated by the exceptional
curves E4, . . . , E16 and the conics D̃B++, DU−+, D̃A±±, D̃Y ±±, D̃C±±.

Proof. The locus of the point Oλ on Ṽ is E4. The locus of the points T1 and T2 on Ṽ are the
conics D̃B++ and D̃U−+ respectively. From the ideas of Swinnerton-Dyer it follows that we get
a set of generators by adding the irreducible components of the singular fibres given in Lemma
4.2.6. !

We have already seen that the rank of NS(Ṽ ⊗C, C) equals 20, so instead of the 27 generators
given in lemma 4.2.13, we want 20 generators. First we extend the 27 generators to 33 by adding
the last 3 exceptional curves E1, E2 and E3 and the conics D̃B±±. This is done because these are
defined over Q. We filter these 33 generators to 20 by using intersection theory. The intersection
numbers are relatively easy to compute. Clearly, we have Ei · Ej = 0 if i &= j. As KV = 0 is a
canonical divisor and for the genus we have g(Ej) = 0, we find from the adjunction formula that
E2

j = −2. Similarly, we have D̃2 = −2 for any of the 17 considered conics D̃ on Ṽ . Since all these
conics are nonsingular, we find that

D̃ · Ej =
{

0 if Qj does not lie on D = π(D̃),
1 if Qj lies on D.

It remains to compute D̃1 · D̃2 for 2 different conics out of the considered 17. It turns out that
each pair D1, D2 out of the 17 considered conics on V ⊗ C intersect each other either not at all,
or transversally in 1 or 2 points. The points of intersection are in most cases singular points of
V ⊗C, so after blowing up at the singular points these conics do not intersect each other anymore
on Ṽ ⊗ C. The only pairs of conics that intersect each other in a nonsingular point of V ⊗ C are

DAj1j2 and DBl1l2 , with j1j2 = l1l2,

DU−+ and DCj1j2 , with j1j2 = 1.

Hence the 10 pairs
D̃Aj1j2 and D̃Bl1l2 , with j1j2 = l1l2,

D̃U−+ and D̃Cj1j2 , with j1j2 = 1

still intersect on Ṽ ⊗ C and their intersection number is 1. For all other pairs out of the 17
considered conics on Ṽ ⊗ C the intersection number equals 0. We now have all 332 = 1089
intersection numbers which give the intersection matrix. Indeed, it has rank 20 as expected. From
the intersection matrix we also find that 13 of the 33 given classes in NS(Ṽ ⊗ C, C) are Z-linear
combinations of the 20 others. Hence the latter 20 form a set of generators for NS(Ṽ ⊗C, C). We
find the following proposition.

Proposition 4.2.14 The Néron-Severi group NS(Ṽ ⊗C, C) of Ṽ ⊗C has rank 20 and is generated
by the classes of the exceptional curves E1, E3, E4, E5, E6, E7, E8, E10, E12, E13 and the conics
D̃A±−, D̃Y ++, D̃U−+, D̃C++, D̃C+−, D̃C−+, D̃B++, D̃B+−, D̃B−+. Apart from the 5 divisors
E10, E12, E13, D̃Y ++ and D̃U−+ these are all defined over Q.

Remark 4.2.15 The intersection matrix of these 20 divisors has determinant −16 and is given
by
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E
1

E
3

E
4

E
5

E
6

E
7

E
8

E
1
0

E
1
2

E
1
3

DA+− -2 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

DA−− 0 -2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

DB++ 0 1 -2 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

DB+− 1 0 0 -2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

DB−+ 1 0 0 0 -2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

DC++ 0 0 0 0 0 -2 0 0 0 1 1 0 0 1 1 0 0 0 0 0
DC+− 0 0 0 0 0 0 -2 0 0 0 0 1 1 1 1 0 0 0 0 0

DC−+ 0 0 0 0 0 0 0 -2 0 0 1 0 0 0 0 1 1 0 0 0

DY ++ 0 0 0 0 0 0 0 0 -2 0 1 1 0 0 0 0 0 0 0 0

DU−+ 0 0 0 0 0 1 0 0 0 -2 0 0 0 0 0 0 0 1 1 0
E1 0 0 0 0 0 1 0 1 1 0 -2 0 0 0 0 0 0 0 0 0
E3 1 1 0 0 0 0 1 0 1 0 0 -2 0 0 0 0 0 0 0 0
E4 0 0 0 0 0 0 1 0 0 0 0 0 -2 0 0 0 0 0 0 0
E5 0 0 1 0 1 1 1 0 0 0 0 0 0 -2 0 0 0 0 0 0
E6 0 0 0 1 0 1 1 0 0 0 0 0 0 0 -2 0 0 0 0 0
E7 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 -2 0 0 0 0
E8 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 -2 0 0 0
E10 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -2 0 0
E12 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -2 0
E13 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2
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5 What more to do on perfect cuboids

So far we still haven’t found a perfect cuboid, nor a proof of nonexistence. In section 3.4 we have
seen that conjecturally there are few rational points on the surface Υ, where “few” means that
the set of rational points on Υ is not Zariski dense.

Although it is highly forbidden to use probability theory on numbers, if we were to use it
anyway, we would find that the expected number of perfect cuboids with all sides greater than a
fixed number x is less than x−3/2. Together with the fact that from computer searches we know
that there are no perfect cuboids with any side less than 109, this gives at least psychological
support to believe that there are indeed “few” perfect cuboids.

Obviously, there are basically two roads to take to get any further with the question of the
(non)existence of perfect cuboids. One could try to find either a concrete perfect cuboid or a proof
of nonexistence. We will now state some ideas that might help to find an approach to the problem.

Idea 1. We can use Proposition 4.2.14 to find out more about the rational curves on Ṽ . For any
rational curve C found on Ṽ we can try to find rational points on C that lift to a rational point
on Υ. First of all we could try to find all rational curves on Ṽ of small degree, just as A. Bremner
does in [38].

We could also try to follow a result of H. Sterk [58], stating the following. Let Aut(Ṽ ⊗C) be
the group of (biholomorphic) automorphisms of the K3 surface Ṽ ⊗C. Then Aut(Ṽ ⊗C) is finitely
generated and the number of Aut(Ṽ ⊗C)-orbits in the collection of complete linear systems which
contain an irreducible rational curve is finite. It may be possible to find all these orbits and their
irreducible rational curves.

Idea 2. As long as we don’t know whether the surface Υ contains any non-trivial rational points,
we’d better have as much birationally equivalent surfaces at our disposal as possible. This might
help both in case one tries to find perfect cuboids and in case one tries to prove nonexistence.

Apart from Υ and Υ/〈ιZ〉 that we have seen in the previous sections, one may want to study
Υ/H for any subgroup H of G ⊂ Aut(Υ). In [2] A. Bremner analysed a surface which was
birationally equivalent with the surface Υ/〈ιU 〉, see section 2. Some other interesting surfaces are
the following.

W. Colman [5] shows that a perfect cuboid corresponds with a rational solution to the system
of elliptic curves

w4 + 2Aw3 + 2w2 − 2Aw + 1 = s2, w4 +
8
A

w3 + 2w2 − 8
A

w + 1 = t2, (43)

fibered over the conic AD = D2 + 1.

It is sometimes convenient to work with a hypersurface instead of a variety of higher codimen-
sion. The rational map






A = uw(v2 − z2),
B = vw(u2 − z2),
C = 2uvzw,
X = vw(u2 + z2),
Y = uw(v2 + z2),
Z = uv(z2 − w2),
U = uv(z2 + w2)

or






u = C(Y −A)(U + Z),
v = C(X −B)(U + Z),
w = C(X −B)(Y −A),
z = (X −B)(Y − A)(U + Z),

shows that Υ is birationally equivalent with the hypersurface in P3 given by

(z2 + w2)2u2v2 = w2(u2 + v2)(z4 + u2v2).
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Lots of automorphisms are revealed by rewriting this equation as
(u

z
− z

u

)2
+
(v

z
− z

v

)2
=
(w

z
− z

w

)2
, (44)

Idea 3. We have seen in section 2 that Leech [18] states that there are no rational cuboids with
sides A, B and C such that A : B = 4 : 3. This is done by considering equation (5). Note that
we can assume that A : B = 2ab : (a2 − b2). Substituting u = α/β and v = a2/b2 this equation
becomes

a2 − b2

2ab
u(v2 − 1) = v(u2 − 1),

an elliptic curve with parameter a/b. Using an infinite descent it can be shown that for a/b = 2
this elliptic curve has no nontrivial rational points. It follows that there are no rational cuboids
with sides A, B, C under the extra constraint A : B = 4 : 3.

Using the same method we can prove nonexistence of rational cuboids under similar constraints.
It may also be interesting to prove nonexistence of rational or perfect cuboids under various other
types of extra constraints.

Idea 4. If we want to search for perfect cuboids, then that would of course be done by computer.
Apart from inventing new search algorithms, there are several algorithms, described in section 2,
that might be made much faster by considering p-adic constraints. Such constraints may be found
by imitating N. Elkies’ search for solutions of the equation a4 + b4 + c4 = d4 in [44]. Note that
we will not be able to prove that Υ has no nontrivial points over the p-adic numbers Zp for some
prime p. Indeed, for x ∈ Zp with x ≡ 1(mod pn) for n large enough (n ≥ 1 for p > 2 and n ≥ 3 for
p = 2), we know that x is a square in Zp. Hence the cuboid with sides 1, p2n and p4n is “perfect”
over Zp.
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