Geometry dictates arithmetic

Ronald van Luijk

February 21, 2013
Utrecht
Curves

Example. Circle given by $x^2 + y^2 = 1$ (or projective closure in \mathbb{P}^2).
Curves

Example. Circle given by $x^2 + y^2 = 1$ (or projective closure in \mathbb{P}^2).

Definition.

Genus of a smooth projective curve C over \mathbb{Q} is the genus of $C(\mathbb{C})$.

<table>
<thead>
<tr>
<th>$g = 0$</th>
<th>$g = 1$</th>
<th>$g \geq 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Genus 0

$\mathbb{P}^2 \ni C : x^2 + y^2 = 1$

Points on the curve:
- $(0, 1)$
- $(\frac{4}{5}, \frac{3}{5})$
- $(1, 0)$
Genus 0

\[\mathbb{P}^2 \ni C : x^2 + y^2 = 1 \]
Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

Theorem. If a conic D over \mathbb{Q} has a rational point, then there is an isomorphism $\mathbb{P}^1(\mathbb{C}) \to D(\mathbb{C})$, so the genus of D is 0.

Theorem. Any curve of genus 0 over \mathbb{Q} is isomorphic to a conic.

Theorem. If a curve of genus 0 over \mathbb{Q} has a rational point, then it is isomorphic to \mathbb{P}^1 and it has infinitely many rational points.

$\mathbb{P}^2 \supset C: x^2 + y^2 = 1$
Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

Theorem. If a conic D over \mathbb{Q} has a rational point, then there is an isomorphism $\mathbb{P}^1(\mathbb{C}) \rightarrow D(\mathbb{C})$, so the genus of D is 0.

Theorem. Any curve of genus 0 over \mathbb{Q} is isomorphic to a conic.

Theorem. If a curve of genus 0 over \mathbb{Q} has a rational point, then it is isomorphic to \mathbb{P}^1 and it has infinitely many rational points.

$\mathbb{P}^2 \supset C: x^2 + y^2 = 1$
Genus 0

Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

$\begin{align*}
\mathbb{P}^2 & \supset C : x^2 + y^2 = 1 \\
& \text{Points: } (0, 1), (1, 0), (-1, 0), \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)
\end{align*}$
Theorem. If a conic over \(\mathbb{Q} \) has a rational point, then it has infinitely many.

Theorem. If a conic \(D \) over \(\mathbb{Q} \) has a rational point, then there is an isomorphism \(\mathbb{P}^1(\mathbb{C}) \rightarrow D(\mathbb{C}) \), so the genus of \(D \) is 0.
Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

Theorem. If a conic D over \mathbb{Q} has a rational point, then there is an isomorphism $\mathbb{P}^1(\mathbb{C}) \to D(\mathbb{C})$, so the genus of D is 0.

Theorem. Any curve of genus 0 over \mathbb{Q} is isomorphic to a conic.
Genus 0

Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

Theorem. If a conic D over \mathbb{Q} has a rational point, then there is an isomorphism $\mathbb{P}^1(\mathbb{C}) \to D(\mathbb{C})$, so the genus of D is 0.

Theorem. Any curve of genus 0 over \mathbb{Q} is isomorphic to a conic.

Theorem. If a curve of genus 0 over \mathbb{Q} has a rational point, then it is isomorphic to \mathbb{P}^1 and it has infinitely many rational points.
Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

Theorem. If a conic D over \mathbb{Q} has a rational point, then there is an isomorphism $P_1(\mathbb{C}) \rightarrow D(\mathbb{C})$, so the genus of D is 0.

Theorem. Any curve of genus 0 over \mathbb{Q} is isomorphic to a conic.

Theorem. If a curve of genus 0 over \mathbb{Q} has a rational point, then it is isomorphic to P_1 and it has infinitely many rational points.

$$N_C(B) = \text{number of } \left(\frac{a}{c}, \frac{b}{c} \right) \text{ with } |a|, |b|, |c| \leq B$$
Genus 0

\[\mathbb{P}^2 \ni C : x^2 + y^2 = 1 \]

Theorem. If a conic over \(\mathbb{Q} \) has a rational point, then it has infinitely many.

Theorem. If a conic \(D \) over \(\mathbb{Q} \) has a rational point, then there is an isomorphism \(\mathbb{P}^1(\mathbb{C}) \rightarrow D(\mathbb{C}) \), so the genus of \(D \) is 0.

Theorem. Any curve of genus 0 over \(\mathbb{Q} \) is isomorphic to a conic.

Theorem. If a curve of genus 0 over \(\mathbb{Q} \) has a rational point, then it is isomorphic to \(\mathbb{P}^1 \) and it has infinitely many rational points.

\[N_C(B) = \text{number of } (\frac{a}{c}, \frac{b}{c}) \text{ with } |a|, |b|, |c| \leq B \]

\[N_C(B) \sim \frac{4}{\pi} \cdot B \]
Theorem. The number $N_D(B)$ of rational points on a conic D grows linearly with the height B (or is zero).

$$N_C(B) = \text{number of } \left(\frac{a}{c}, \frac{b}{c} \right) \text{ with } |a|, |b|, |c| \leq B$$

$$N_C(B) \sim \frac{4}{\pi} \cdot B$$
Genus 1 (elliptic)
Genus 1 (elliptic)

\[E : y^2 = x^3 - 15x + 19 \]
Genus 1 (elliptic)

$E : y^2 = x^3 - 15x + 19$
Genus 1 (elliptic)

\[E : y^2 = x^3 - 15x + 19 \]
Genus 1 (elliptic)

Fact. $E(k)$ is an abelian group!

$E : y^2 = x^3 - 15x + 19$
Genus 1 (elliptic)

Fact. \(E(k) \) is an abelian group!

Theorem (Mordell-Weil). For any elliptic curve \(E \) over \(\mathbb{Q} \), the group \(E(\mathbb{Q}) \) is finitely generated.

Here: \(\text{rank} = 1 \), and \(\mathbb{Z} \cong E(\mathbb{Q}) = \langle (3, 1) \rangle \).

\[
E : y^2 = x^3 - 15x + 19
\]
Genus 1 (elliptic)

\[
\left(\frac{2622397863}{362178961}, \frac{117375339855079}{6892627806791} \right)
\]

\[E : y^2 = x^3 - 15x + 19\]

\[N_E(B) = \text{number of } \left(\frac{a}{c}, \frac{b}{c} \right) \text{ with } |a|, |b|, |c| \leq B\]

\[N_E(B) \sim \gamma \sqrt{\log B}\]

\[\gamma = 2.6768125\ldots\]
Genus 1 (elliptic)

\[
\left(\frac{2622397863}{362178961}, \frac{117375339855079}{6892627806791} \right)
\]

Number of \((a, b, c)\) with \(|a|, |b|, |c| \leq B\)

Theorem. For any elliptic curve \(E\) over \(\mathbb{Q}\) with \(r = \text{rank } E(\mathbb{Q})\), we have

\[N_E(B) \sim c (\log B)^{r/2}.\]
Genus $g \geq 2$

Examples.

- $y^2 = f(x)$ with f separable of degree $2g + 2$.
- Smooth projective plane curve of degree $d \geq 4$ with $g = \frac{1}{2}(d - 1)(d - 2)$.

Theorem ("Mordell Conjecture" by Faltings, 1983).

Any curve over \mathbb{Q} with $g \geq 2$ has only finitely many rational points.

Conclusion.

"The higher the genus, the lower the number of rational points."
Genus $g \geq 2$

Examples.

- $y^2 = f(x)$ with f separable of degree $2g + 2$.
- Smooth projective plane curve of degree $d \geq 4$ with $g = \frac{1}{2}(d - 1)(d - 2)$.

Theorem ("Mordell Conjecture" by Faltings, 1983).
Any curve over \mathbb{Q} with $g \geq 2$ has only finitely many rational points.
Genus $g \geq 2$

Examples.
- $y^2 = f(x)$ with f separable of degree $2g + 2$.
- smooth projective plane curve of degree $d \geq 4$ with $g = \frac{1}{2}(d - 1)(d - 2)$.

Theorem ("Mordell Conjecture" by Faltings, 1983).
Any curve over \mathbb{Q} with $g \geq 2$ has only finitely many rational points.

Conclusion.
"The higher the genus, the lower the number of rational points".
Definition.
Let \(X \) be a smooth projective variety with function field \(k(X) \). Then \(\Omega_{k(X)/k} \) is the \(k(X) \)-vectorspace of differential 1-forms, generated by \(\{ df : f \in k(X) \} \) and satisfying

\[
\begin{align*}
\text{d}(f + g) &= df + dg, \\
\text{d}(fg) &= f dg + g df, \\
da &= 0 \text{ for } a \in k.
\end{align*}
\]
Differentials

Definition.
Let X be a smooth projective variety with function field $k(X)$. Then $\Omega_{k(X)/k}$ is the $k(X)$-vectorspace of differential 1-forms, generated by $\{df : f \in k(X)\}$ and satisfying

- $d(f + g) = df + dg$,
- $d(fg) = fdg + gdf$,
- $da = 0$ for $a \in k$.

Proposition. We have $\dim_{k(X)} \Omega_{k(X)/k} = \dim X$.

Example.
For curve $C: y^2 = f(x)$ we have $2ydy = f'(x)dx$ in $\Omega_{k(C)/k}$.
Holomorphic differentials on curves

Definition. For a point P on a smooth projective curve C with local parameter $t_P \in k(C)$ and a differential $\omega \in \Omega_{k(C)/k}$, we write $\omega = f_P dt_P$; then ω is holomorphic at P if f_P has no pole at P.

Example.
Curve $C : y^2 = f(x)$ with f separable of degree $d \geq 3$. Then

$$\omega = \frac{1}{y} d(x - c) = \frac{1}{y} dx = \frac{2}{f'(x)} dy$$

is holomorphic everywhere.
Holomorphic differentials on curves

Definition. For a point P on a smooth projective curve C with local parameter $t_P \in k(C)$ and a differential $\omega \in \Omega_{k(C)/k}$, we write $\omega = f_P dt_P$; then ω is holomorphic at P if f_P has no pole at P.

Example.

Curve C: $y^2 = f(x)$ with f separable of degree $d \geq 3$. Then

$$\omega = \frac{1}{y} d(x - c) = \frac{1}{y} dx = \frac{2}{f'(x)} dy$$

is holomorphic everywhere.

Definition. Set $\Omega_{C/k} = \{ \omega \in \Omega_{k(C)/k} : \omega \text{ holom. everywhere} \}$.

Proposition. We have $g = \dim_k \Omega_{C/k}$.
Holomorphic differentials in general

Recall. If X smooth, projective, then $\dim_{k(X)} \Omega_{k(X)/k} = \dim X$.

Fact. If V is a vector space with $\dim V = n$, then $\dim \bigwedge^n V = 1$.
Holomorphic differentials in general

Recall. If X smooth, projective, then $\dim_{k(X)} \Omega_{k(X)/k} = \dim X$.

Fact. If V is a vector space with $\dim V = n$, then $\dim \bigwedge^n V = 1$.

Definition (unconventional notation for $(\dim X)$-forms).
Set $\Omega_{X/k} = \{\omega \in \bigwedge^{\dim X} \Omega_{k(X)/k} : \omega \text{ holom. everywhere}\}$.
Holomorphic differentials in general

Recall. If X smooth, projective, then $\dim_{k(X)} \Omega_{k(X)/k} = \dim X$.

Fact. If V is a vector space with $\dim V = n$, then $\dim \bigwedge^n V = 1$.

Definition (unconventional notation for $(\dim X)$-forms).
Set $\Omega_{X/k} = \{ \omega \in \bigwedge^{\dim X} \Omega_{k(X)/k} : \omega \text{ holom. everywhere} \}$.

Definition
For a k-basis $(\omega_0, \omega_1, \ldots, \omega_N)$ of $\Omega_{X/k}$, we get $f_i \in k(X)$ such that $\omega_i = f_i \omega_0$. The Kodaira dimension $\kappa(X)$ of X is -1 if $\dim_k \Omega_{X/k} = 0$, or the dimension of the image of the map $X \to \mathbb{A}^N$, $P \mapsto (f_1(P), f_2(P), \ldots, f_N(P))$.
Holomorphic differentials in general

Recall. If X smooth, projective, then $\dim_k(\Omega_{k(X)}/k) = \dim X$.

Fact. If V is a vector space with $\dim V = n$, then $\dim \bigwedge^n V = 1$.

Definition (unconventional notation for $(\dim X)$-forms).
Set $\Omega_{X/k} = \{ \omega \in \bigwedge^{\dim X} \Omega_{k(X)/k} : \omega \text{ holom. everywhere} \}$.

Definition (Wrong: use tensor powers of $\bigwedge^{\dim X} \Omega_{k(X)/k}$.)
For a k-basis $(\omega_0, \omega_1, \ldots, \omega_N)$ of $\Omega_{X/k}$, we get $f_i \in k(X)$ such that $\omega_i = f_i \omega_0$. The Kodaira dimension $\kappa(X)$ of X is -1 if $\dim_k \Omega_{X/k} = 0$, or the dimension of the image of the map $X \to \mathbb{A}^N$, $P \mapsto (f_1(P), f_2(P), \ldots, f_N(P))$.
Holomorphic differentials in general

Recall. If X smooth, projective, then $\dim_k(X) \Omega_k(X)/k = \dim X$.

Fact. If V is a vector space with $\dim V = n$, then $\dim \wedge^n V = 1$.

Definition (unconventional notation for $(\dim X)$-forms).
Set $\Omega_{X/k} = \{ \omega \in \wedge^{\dim X} \Omega_k(X)/k : \omega \text{ holom. everywhere} \}$.

Definition (Wrong: use tensor powers of $\wedge^{\dim X} \Omega_k(X)/k$.)
For a k-basis $(\omega_0, \omega_1, \ldots, \omega_N)$ of $\Omega_{X/k}$, we get $f_i \in k(X)$ such that $\omega_i = f_i \omega_0$. The Kodaira dimension $\kappa(X)$ of X is -1 if $\dim_k \Omega_{X/k} = 0$, or the dimension of the image of the map

$$X \to \mathbb{A}^N, \quad P \mapsto (f_1(P), f_2(P), \ldots, f_N(P)).$$

Proposition. For a curve C we get

$$\kappa(C) = \begin{cases}
-1 & g = 0 \\
0 & g = 1 \\
1 & g \geq 2
\end{cases}$$
Varieties of general type

In general, $-1 \leq \kappa(X) \leq \dim X$ (complex $X \Rightarrow$ high $\kappa(X)$).

Definition. We say that X is of general type if $\kappa(X) = \dim X$.
(“many” holom. differentials, “canonical bundle is pseudo-ample”)
Varieties of general type

In general, $-1 \leq \kappa(X) \leq \dim X$ (complex $X \Rightarrow$ high $\kappa(X)$).

Definition. We say that X is of general type if $\kappa(X) = \dim X$. ("many" holomorphic differentials, "canonical bundle is pseudo-ample")

Conjecture (Lang).
If X is a variety over \mathbb{Q} that is of general type, then the rational points lie in a Zariski closed subset, i.e., a finite union of proper subvarieties of X.
Varieties of general type

In general, $-1 \leq \kappa(X) \leq \dim X$ (complex $X \Rightarrow$ high $\kappa(X)$).

Definition. We say that X is of general type if $\kappa(X) = \dim X$. (“many” holom. differentials, “canonical bundle is pseudo-ample”)

Conjecture (Lang).
If X is a variety over \mathbb{Q} that is of general type, then the rational points lie in a Zariski closed subset, i.e., a finite union of proper subvarieties of X.

Corollary. Let $X \subset \mathbb{P}^3$ be a smooth, projective surface over \mathbb{Q} of degree ≥ 5. Then the rational points are all contained in some finite union of curves.
Fano varieties

Definition. A Fano variety is a smooth, projective variety X with ample anti-canonical bundle.

We have $\kappa(X) = -1$ and X is geometrically “easy”.

Conjecture (Batyrev-Manin). Suppose X over \mathbb{Q} is Fano. Set $\rho = \text{rk} \text{Pic} X$.

There is an open subset $U \subset X$ and a constant c with $N_{U}(B) \sim cB(\log B)^{\rho - 1}$.

This is proved in many cases for surfaces. False in higher dimension, but no counterexamples to lower bound.

Conclusion. The more complex a variety, the fewer rational points.
Fano varieties

Definition. A Fano variety is a smooth, projective variety X with ample anti-canonical bundle.

We have $\kappa(X) = -1$ and X is geometrically “easy”.

Conjecture (Batyrev-Manin).
Suppose X over \mathbb{Q} is Fano. Set $\rho = \text{rk} \text{Pic} X$.
There is an open subset $U \subset X$ and a constant c with

$$N_U(B) \sim cB(\log B)^{\rho-1}.$$
Fano varieties

Definition. A Fano variety is a smooth, projective variety X with ample anti-canonical bundle.

We have $\kappa(X) = -1$ and X is geometrically “easy”.

Conjecture (Batyrev-Manin).
Suppose X over \mathbb{Q} is Fano. Set $\rho = \text{rk Pic } X$.
There is an open subset $U \subset X$ and a constant c with

$$N_U(B) \sim cB(\log B)^{\rho-1}.$$

This is proved in many cases for surfaces.
False in higher dimension, but no counterexamples to lower bound.
Definition. A Fano variety is a smooth, projective variety X with ample anti-canonical bundle.

We have $\kappa(X) = -1$ and X is geometrically “easy”.

Conjecture (Batyrev-Manin).
Suppose X over \mathbb{Q} is Fano. Set $\rho = \text{rk} \text{Pic} X$.
There is an open subset $U \subset X$ and a constant c with

$$N_U(B) \sim cB(\log B)^{\rho-1}.$$

This is proved in many cases for surfaces.
False in higher dimension, but no counterexamples to lower bound.

Conclusion. The more complex a variety, the fewer rational points.
K3 surfaces

Definition. A K3 surface over \mathbb{Q} is a smooth, projective surface X with $X(\mathbb{C})$ simply connected and with trivial canonical bundle.

There is a unique holomorphic differential and we have $\kappa(X) = 0$.

K3 surfaces

Definition. A K3 surface over \mathbb{Q} is a smooth, projective surface X with $X(\mathbb{C})$ simply connected and with trivial canonical bundle.

There is a unique holomorphic differential and we have $\kappa(X) = 0$.

Examples

- Smooth quartic surfaces in \mathbb{P}^3.
- Double cover of \mathbb{P}^2 ramified over a smooth sextic.
- Desingularization of $A/\langle[-1]\rangle$ for an abelian surface A.
Theorem (Tschinkel-Bogomolov).
If \(\text{rk Pic } X \geq 5 \), then there is a finite extension \(K \) of \(\mathbb{Q} \) such that the \(K \)-rational points are Zariski dense on \(X \), i.e., rational points are potentially dense on \(X \).
Theorem (Tschinkel-Bogomolov). If $\text{rk Pic } X \geq 5$, then there is a finite extension K of \mathbb{Q} such that the K-rational points are Zariski dense on X, i.e., rational points are potentially dense on X.

Question. Is there a K3 surface X over a number field with $\text{rk Pic } X = 1$ and rational points potentially dense?
Theorem (Tschinkel-Bogomolov). If $\text{rk Pic } X \geq 5$, then there is a finite extension K of \mathbb{Q} such that the K-rational points are Zariski dense on X, i.e., rational points are potentially dense on X.

Question. Is there a K3 surface X over a number field with $\text{rk Pic } X = 1$ and rational points potentially dense?

Question. Is there a K3 surface X over a number field with $\text{rk Pic } X = 1$ and rational points not potentially dense?
Theorem (Tschinkel-Bogomolov). If \(\text{rk Pic} X \geq 5 \), then there is a finite extension \(K \) of \(\mathbb{Q} \) such that the \(K \)-rational points are Zariski dense on \(X \), i.e., rational points are potentially dense on \(X \).

Question. Is there a K3 surface \(X \) over a number field with \(\text{rk Pic} X = 1 \) and rational points potentially dense?

Question. Is there a K3 surface \(X \) over a number field with \(\text{rk Pic} X = 1 \) and rational points not potentially dense?

Question. Is there a K3 surface \(X \) over a number field \(K \) with \(X(K) \) neither empty nor dense?
K3 surfaces

Theorem (Logan, McKinnon, vL).
Take $a, b, c, d \in \mathbb{Q}^*$ with $abcd \in (\mathbb{Q}^*)^2$. Let $X \subset \mathbb{P}^3$ be given by

$$ax^4 + by^4 + cz^4 + dw^4.$$

If $P \in X(\mathbb{Q})$ has no zero coordinates and P does not lie on one of the 48 lines (no two terms sum to 0), then $X(\mathbb{Q})$ is Zariski dense.
K3 surfaces

Theorem (Logan, McKinnon, vL).
Take \(a, b, c, d \in \mathbb{Q}^*\) with \(abcd \in (\mathbb{Q}^*)^2\). Let \(X \subset \mathbb{P}^3\) be given by
\[
ax^4 + by^4 + cz^4 + dw^4.
\]

If \(P \in X(\mathbb{Q})\) has no zero coordinates and \(P\) does not lie on one of the 48 lines (no two terms sum to 0), then \(X(\mathbb{Q})\) is Zariski dense.

Question. Are the conditions on \(P\) necessary?

Conjecture (vL) Every \(t \in \mathbb{Q}\) can be written as
\[
t = \frac{x^4 - y^4}{z^4 - w^4}.
\]
\[S: x^3 - 3x^2y^2 + 4x^2yz - x^2z^2 + x^2z - xy^2z - xyz^2 + x \]
\[+ y^3 + y^2z^2 + z^3 = 0 \]

\[N \sim 13.5 \cdot \log B \]
K3 surfaces

Conjecture (vL).
Suppose X is a K3 surface over \mathbb{Q} with $\text{rk} \, \text{Pic} \, X_\mathbb{C} = 1$. There is an open subset $U \subset X$ and a constant c such that

$$N_U(B) \sim c \log B.$$
Theorem (Hasse). Let $Q \subset \mathbb{P}^n$ be a smooth quadric over \mathbb{Q}. Suppose that Q has points over \mathbb{R} and over \mathbb{Q}_p for every p. Then $Q(\mathbb{Q}) \neq \emptyset$.
Theorem (Hasse).
Let $Q \subset \mathbb{P}^n$ be a smooth quadric over \mathbb{Q}. Suppose that Q has points over \mathbb{R} and over \mathbb{Q}_p for every p. Then $Q(\mathbb{Q}) \neq \emptyset$.

Proposition (Selmer).
The curve $C \subset \mathbb{P}^2$ given by $3x^3 + 4y^3 + 5z^3 = 0$ has points over \mathbb{R} and over \mathbb{Q}_p for every p, but $C(\mathbb{Q}) = \emptyset$.
Brauer-Manin obstruction

To every variety X we can assign the Brauer group $Br X$. Every morphism $X \to Y$ induces a homomorphism $Br Y \to Br X$. For every point P over a field k we have $Br(P) = Br(k)$.

Corollary. If $(\prod_v X(Q_v))_{Br} := \phi^{-1}(0)$ is empty, then $X(Q) = \emptyset$.

Conjecture (Colliot-Thélène). This Brauer-Manin obstruction is the only obstruction to the existence of rational points for rationally connected varieties.
To every variety X we can assign the Brauer group $\text{Br } X$. Every morphism $X \to Y$ induces a homomorphism $\text{Br } Y \to \text{Br } X$. For every point P over a field k we have $\text{Br}(P) = \text{Br}(k)$.

Let X be smooth and projective.

Diagram:

\[
\begin{align*}
X(\mathbb{Q}) & \longrightarrow \prod_v X(\mathbb{Q}_v) \\
\downarrow & \quad \downarrow \phi \\
\text{Br}(\mathbb{Q}) & \longrightarrow \bigoplus_v \text{Br}(\mathbb{Q}_v) \longrightarrow \mathbb{Q}/\mathbb{Z}
\end{align*}
\]
Brauer-Manin obstruction

To every variety X we can assign the Brauer group $\text{Br} X$. Every morphism $X \to Y$ induces a homomorphism $\text{Br} Y \to \text{Br} X$. For every point P over a field k we have $\text{Br}(P) = \text{Br}(k)$.

Let X be smooth and projective.

$$
\begin{array}{ccc}
X(\mathbb{Q}) & \longrightarrow & \prod_v X(\mathbb{Q}_v) \\
\downarrow & & \downarrow \\
\text{Br}(\mathbb{Q}) & \longrightarrow & \bigoplus_v \text{Br}(\mathbb{Q}_v) \\
\downarrow & \phi & \downarrow \\
\bigoplus_v \text{Br}(\mathbb{Q}_v) & \longrightarrow & \mathbb{Q}/\mathbb{Z}
\end{array}
$$

Corollary. If $(\prod_v X(\mathbb{Q}_v))^\text{Br} := \phi^{-1}(0)$ is empty, then $X(\mathbb{Q}) = \emptyset$.

Conjecture (Colliot-Thélène). This Brauer-Manin obstruction is the only obstruction to the existence of rational points for rationally connected varieties.
Brauer-Manin obstruction

To every variety X we can assign the Brauer group $\text{Br} X$. Every morphism $X \to Y$ induces a homomorphism $\text{Br} Y \to \text{Br} X$. For every point P over a field k we have $\text{Br}(P) = \text{Br}(k)$.

Let X be smooth and projective.

\[
\begin{array}{ccl}
X(\mathbb{Q}) & \longrightarrow & \prod_v X(\mathbb{Q}_v) \\
\downarrow & & \downarrow \\
\text{Br}(\mathbb{Q}) & \longrightarrow & \bigoplus_v \text{Br}(\mathbb{Q}_v) \longrightarrow \mathbb{Q}/\mathbb{Z}
\end{array}
\]

Corollary. If $(\prod_v X(\mathbb{Q}_v))^{\text{Br}} := \phi^{-1}(0)$ is empty, then $X(\mathbb{Q}) = \emptyset$.

Conjecture (Colliot-Thélène). This Brauer-Manin obstruction is the only obstruction to the existence of rational points for rationally connected varieties.