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Motivation from Diophantine equations

Example:

Noam Elkies found the following identity.

958004 + 2175194 + 4145604 = 4224814

The equation x4 + y4 + z4 = t4 describes a surface in projective

threespace P3. Elkies proved that the rational points are dense.
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Some definitions

In this talk, a surface will always be smooth, projective, and
geometrically integral.

A K3 surface is a surface X with dimH1(X,OX) = 0 on which
the canonical sheaf is trivial.

Examples:

• A smooth quartic surface in P3.

• If A is an abelian surface, then the minimal nonsingular model
of A/[−1] is a K3 surface. Such surfaces are called Kummer
surfaces.
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Question 1 Does there exist a K3 surface X over a number field

K such that the set X(K) of K-rational points on X is neither

empty nor dense?
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A few more definitions

The Néron-Severi group NS(X) of a surface X is the group of
divisor classes modulo algebraic equivalence.

As linear equivalence implies algebraic equivalence, the Néron-
Severi group NS(X) of a surface X is a quotient of the Picard
group PicX.

For a K3 surface linear and algebraic equivalence are equivalent,
so we get an isomorphism PicX ∼= NS(X).

The Néron-Severi group of a surface X over a field K is a
finitely generated abelian group. The Picard number ρ(X) of
X is defined to be the rank of this group. The Picard number
of X = X ×K K is called the geometric Picard number of X.
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Inequalities

We have 1 ≤ ρ(X) ≤ ρ(X). The first inequality comes from the

existence of a hyperplane section, the second from the injection

NS(X) ↪→ NS(X).

The Néron-Severi group NS(X) injects into an H2, so we also

have ρ(X) ≤ b2, where b2 is the second betti number. For K3

surfaces we get

1 ≤ ρ(X) ≤ ρ(X) ≤ 22.
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Let X be a quartic surface in P3.

Then the following are equivalent.

(a) X has Picard number 1.

(b) Every curve on X is equal to the complete

intersection of X with a hypersurface.
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Let X be a quartic surface in P3.

Then the following are equivalent.

(a) X has Picard number 1.

(b) Every curve on X is equal to the complete

intersection of X with a hypersurface.

Vague idea:

The higher the Picard number of X, the “easier” it is for X to

have lots of rational points.
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Let X be a K3 surface over a number field K. If there exists a

finite field extension K′/K such that X(K′) is Zariski dense in X,

then we say that the rational points on X are potentially dense.
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Let X be a K3 surface over a number field K. If there exists a

finite field extension K′/K such that X(K′) is Zariski dense in X,

then we say that the rational points on X are potentially dense.

Theorem [F. Bogomolov – Y. Tschinkel] Let X be a K3 surface

over a Number field. If either

(a) ρ(X) = 2 and X does not contain a (−2)-curve, or

(b) ρ(X) ≥ 3 (except for 8 isomorphism classes of PicX),

then the rational points on X are potentially dense.
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Let X be a K3 surface over a number field K. If there exists a

finite field extension K′/K such that X(K′) is Zariski dense in X,

then we say that the rational points on X are potentially dense.

Theorem [F. Bogomolov – Y. Tschinkel] Let X be a K3 surface

over a Number field. If either

(a) ρ(X) = 2 and X does not contain a (−2)-curve, or

(b) ρ(X) ≥ 3 (except for 8 isomorphism classes of PicX),

then the rational points on X are potentially dense.

Question 2 Is there a K3 surface X over a number field with

ρ(X) = 1 on which the rational points are potentially dense?
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Let X be a K3 surface over a number field K. If there exists a

finite field extension K′/K such that X(K′) is Zariski dense in X,

then we say that the rational points on X are potentially dense.

Theorem [F. Bogomolov – Y. Tschinkel] Let X be a K3 surface

over a Number field. If either

(a) ρ(X) = 2 and X does not contain a (−2)-curve, or

(b) ρ(X) ≥ 3 (except for 8 isomorphism classes of PicX),

then the rational points on X are potentially dense.

Question 2 Is there a K3 surface X over a number field with

ρ(X) = 1 on which the rational points are potentially dense?

Question 3 Is there a K3 surface X over a number field with

ρ(X) = 1 on which the rational points are not potentially dense?
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At the AIM conference on rational and integral points on higher-

dimensional varieties in December 2002, Sir P. Swinnerton-Dyer

posed the following easier variation of these questions.

Question 4 Is there a K3 surface over a number field with Picard

number 1 on which there are infinitely many rational points?

We will see that they do exist, even with the geometric Picard

number equal to 1. We can also take the ground field to be Q.
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Question 4 Is there a K3 surface over a number field with Picard
number 1 on which there are infinitely many rational points?

Of the two aspects
“having infinitely many rational points”

and
“having geometric Picard number 1,”

the latter appears to be the harder question, even though Deligne

has proved in 1973 that a general quartic surface in P3 has geo-
metric Picard number 1.

The quartic surfaces in P3 are parametrized by elements of P34

and “general” means “up to a countable union of proper closed
subsets of P34”.

A priori this could exclude all quartic surfaces defined over Q !
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What was known?

Theorem [T. Terasoma, 1985] For given numbers (2n; a1, . . . , ad)

not equal to (2; 3), (2n; 2) and (2n; 2,2), there is a smooth com-

plete intersection X over Q of dimension 2n defined by equations

of degrees a1, · · · , ad such that the middle geometric Picard num-

ber of X is 1.

Theorem [J. Ellenberg, 2004] For every even integer d there

exists a number field K and a polarized K3 surface X/K, of

degree d, with ρ(X) = 1.
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Explicit constructive result

Theorem [T. Shioda] For every prime m ≥ 5 the surface in P3

given by

wm + xym−1 + yzm−1 + zxm−1 = 0

has geometric Picard number 1.

The challenge to find an explicit K3 surface with geometric Pi-

card number 1 has been around for at least 25 years. The chal-

lenge has been attributed to D. Mumford.
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Theorem The quartic surface in P3(x, y, z, w) given by

wf = 3pq − 2zg

with f ∈ Z[x, y, z, w] and g, p, q ∈ Z[x, y, z] equal to

f =x3 − x2y − x2z + x2w − xy2 − xyz + 2xyw + xz2 + 2xzw + y3

+ y2z − y2w + yz2 + yzw − yw2 + z2w + zw2 + 2w3,

g =xy2 + xyz − xz2 − yz2 + z3,

p = z2 + xy + yz,

q = z2 + xy

has geometric Picard number 1 and infinitely many rational points.
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Theorem The quartic surface S in P3(x, y, z, w) given by

wf = 3pq − 2zg

with [. . .] has geometric Picard number 1 and infinitely many
rational points.

There are infinitely many rational points in the intersection C of
S with the plane Hw given by w = 0. This does not contradict
Faltings’ Theorem because the plane Hw is tangent to S at two
points, namely [1 : 0 : 0 : 0] and [0 : 1 : 0 : 0]. Therefore, the
intersection C has geometric genus at most 1 instead of 3, and it
turns out that C is an elliptic curve with infinitely many rational
points.

This was not just lucky as the construction yields rank 2 gener-
ically.
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Bounding the Picard number from above

Let X be a (smooth, projective, geometrically integral) surface

over Q and let X be an integral model of X with good reduction

at the prime p.

From étale cohomology we get injections

NS(XQ)⊗Ql ↪→ NS(XFp
)⊗Ql ↪→ H2

ét(XFp
, Ql)(1).

The second injection respects Frobenius.

Corollary The rank ρ(XQ) is bounded from above by the num-

ber of eigenvalues λ of Frobenius acting on H2
ét(XFp

, Ql)(1) for

which λ is a root of unity.
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NS(XQ)⊗Ql ↪→ NS(XFp
)⊗Ql ↪→ H2

ét(XFp
, Ql)(1).

The geometric Frobenius ϕ acting on H2
ét(XFp

, Ql) (without the

Tate twist) has exactly the same eigenvalues, except multiplied

by p. This is exactly the Frobenius that comes up in the Weil

conjectures and the Lefschetz formula.

We can compute the characteristic polynomial of ϕ by computing

traces of powers of ϕ through the Lefschetz formula

#X (Fpn) =
4∑

i=0

(−1)i Tr(n-th power of Frobenius on Hi
ét(XFp

, Ql)).
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#X (Fpn) =
4∑

i=0

(−1)i Tr(n-th power of Frobenius on Hi
ét(XFp

, Ql)).

Knowing traces, the characteristic polynomial follows:

Lemma V a vector space, dimV = n, and T acts linearly on
V . Let ti = Tr T i. Then characteristic polynomial of T is

fT (x) = det(x · Id−T ) = xn + c1xn−1 + c2xn−2 + . . . + cn,

with the ci given recursively by

c1 = −t1 and − kck = tk +
k−1∑
i=1

citk−i.

Scaling x 7→ px gives characteristic polynomial on Hi
ét(XFp

, Ql)(1).
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Problem!

Lemma Let f be a polynomial with real coefficients and even

degree, such that all its roots have complex absolute value 1.

Then the number of roots of f that are roots of unity is even.

Proof. All the real roots of f are roots of unity. The remaining

roots come in conjugate pairs, either both being a root of unity

or both not being a root of unity.
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Problem!

Lemma Let f be a polynomial with real coefficients and even

degree, such that all its roots have complex absolute value 1.

Then the number of roots of f that are roots of unity is even.

Proof. All the real roots of f are roots of unity. The remaining

roots come in conjugate pairs, either both being a root of unity

or both not being a root of unity.

Because Tate’s conjecture says that the Néron-Severi rank of

the reduction is actually equal to this upper bound, it will not

be good enough to just look at the reduction modulo a prime of

good reduction if we want to get upper bound 1.
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An idea from elliptic curves

Let E be an elliptic curve over Q. Let Ẽp be the reduction of an

integral model of E at a prime p of good reduction. Then the

torsion subgroup of E(Q) injects into the torsion of Ẽp(Fp).

Therefore, #E(Q)tors is a divisor of Np = #Ẽp(Fp). This could

help to find the torsion subgroup of E(Q), but sometimes Np is

a multiple of 4 for every p even though #E(Q)tors is not.

We can get more information by looking at the group structure

of the reduction for various primes. By looking at the 2-part of

Ẽp(Fp) one might find that for some p it is isomorphic to Z/4Z
and for other p to (Z/2Z)2. Then #E(Q)tors ≤ 2.
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Where were we going?

Theorem The quartic surface S in P3
Z(x, y, z, w) given by

wf = 3pq − 2zg

with f ∈ Z[x, y, z, w] and g, p, q ∈ Z[x, y, z] equal to

f =x3 − x2y − x2z + x2w − xy2 − xyz + 2xyw + xz2 + 2xzw + y3

+ y2z − y2w + yz2 + yzw − yw2 + z2w + zw2 + 2w3,

g =xy2 + xyz − xz2 − yz2 + z3,

p = z2 + xy + yz,

q = z2 + xy

has geometric Picard number 1 and infinitely many rational points.
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Similar to the elliptic curves, we will prove that our S has ge-

ometric Picard number 1 by reducing it modulo the primes of

good reduction 2 and 3 and combining the local information.
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A little more theory

A lattice is a free Z-module Λ of finite rank, together with a
symmetric nondegenerate bilinear pairing Λ×Λ → Q. A sublattice
of Λ is a submodule Λ′ of Λ such that the induced bilinear pairing
on Λ′ is nondegenerate.

The discriminant of a lattice Λ is the determinant of the Gram
matrix (w.r.t. any basis) that gives the inner product on Λ.

Lemma If Λ′ is a sublattice of finite index of Λ, then we have

discΛ′ = [Λ : Λ′]2 discΛ.

This implies that discΛ and discΛ′ have the same image in
Q∗/(Q∗)2.
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The intersection pairing gives the Néron-Severi group the struc-

ture of a lattice.

The injection

NS(XQ)⊗Ql ↪→ NS(XFp
)⊗Ql

of Ql-vector spaces respects the inner product.
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Sketch of proof

The main argument will be that we can find finite index sub-

lattices M2 and M3 of the Néron-Severi groups over F2 and F3

respectively. Both will have rank 2, which already shows that

the rank of NS(SQ) is at most 2. We get the following diagram

NS(SQ) ⊂ NS(SF2
) ⊃ M2

||
NS(SQ) ⊂ NS(SF3

) ⊃ M3

The images of discM2 and discM3 in Q∗/(Q∗)2 will be different,

so NS(SQ) has rank at most 1.
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The example

wf = 3pq − 2zg

was constructed in such a way that modulo 2 and 3 we can a
priori account for a rank 2 part of the Néron-Severi lattice.

After reduction modulo 3, the surface S3 is given by wf = zg,
for some cubic forms f and g. The surface S3 therefore contains
a line L given by w = z = 0. By the adjunction formula

L · (L + KS3
) = 2g(L)− 2 = −2,

where KS3
= 0 is a canonical divisor on S3, we find L2 = −2.

Let M3 be the lattice generated by the hyperplane section H and
L. With respect to {H, L} the inner product on M3 is given by(

4 1
1 −2

)
.
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With respect to {H, L} the inner product on M3 is given by(
4 1
1 −2

)
.

We get discM3 = −9. By counting points as described before

we find that the characteristic polynomial of Frobenius acting on

H2
ét(SF3

, Ql)(1) factors over Q as

(x− 1)2(x20 + 1
3
x19 − x18 + 1

3
x17 + 2x16 − 2x14 + 1

3
x13

+ 2x12 − 1
3
x11 − 7

3
x10 − 1

3
x9 + 2x8 + 1

3
x7 − 2x6

+ 2x4 + 1
3
x3 − x2 + 1

3
x + 1).

As the second factor is not integral, we find that exactly 2 of its

roots are roots of unity. We conclude that M3 has finite index

in NS(SF3
).
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The example is still

wf = 3pq − 2zg.

After reduction modulo 2, the surface S2 is given by wf = pq, for

some quadratic forms p and q. The surface S2 therefore contains

a conic C given by w = p = 0. By the adjunction formula

C · (C + KS2
) = 2g(C)− 2 = −2,

we find C2 = −2. Let M2 be the lattice generated by the hyper-

plane section H and C. With respect to {H, C} the inner product

on M3 is given by (
4 2
2 −2

)
.
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With respect to {H, C} the inner product on M2 is given by(
4 2
2 −2

)
.

We get discM2 = −12. By counting points as described before

we find that the characteristic polynomial of Frobenius acting on

H2
ét(SF2

, Ql)(1) factors over Q as

(x− 1)2(x20 + 1
2
x19 − 1

2
x18 + 1

2
x16 + 1

2
x14 + 1

2
x11 + x10

+ 1
2
x9 + 1

2
x6 + 1

2
x4 − 1

2
x2 + 1

2
x + 1).

The last factor is not integral, so M2 has finite index in NS(SF2
).

As discM3 = −9 and discM2 = −12 do not have the same image

in Q∗/(Q∗)2, we have proven that NS(SQ) has rank 1. By the

adjunction formula the lattice is even, so it is generated by H.
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A slight variation of the argument (working over F4 instead of

F2) shows

Theorem The nonsingular quartic K3 surface in P3 given by

w(x3+y3+z3+x2z+xw2) = 3x2y2−4x2yz+x2z2+xy2z+xyz2−y2z2

has geometric Picard number 1. The hyperplane section given

by w = 0 can be parametrized by(
y

x
,
z

x

)
=

(
−

2(t + 2)

t2 − t− 3
,−

2(t + 2)

t2 + t− 1

)
.
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Problem with this method to find Picard numbers:

One needs to know generators of a finite index subgroup of the

Néron-Severi group modulo two different primes p to compute

the discriminant up to squares.
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Problem with this method to find Picard numbers:

One needs to know generators of a finite index subgroup of the

Néron-Severi group modulo two different primes p to compute

the discriminant up to squares.

Solution [R. Kloosterman]

For elliptic K3 surfaces the Brauer group has square order. The

Artin-Tate conjectures then allow us to compute

discNS(S) mod Q∗2

from the characteristic polynomial of Frobenius.
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Theorem [R. Kloosterman] The minimal nonsingular model of

the surface given by

y2 = x3 + 2(t8 + 14t4 + 1)x + 4t2(t8 + 6t4 + 1)

is an elliptic K3 surface of Néron-Severi rank 17. The Mordell-

Weil rank of the generic fiber equals 15, the only missing value

in a list of Kuwata.
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Questure:

Let X be a K3 surface over a number field k with rank NS(Xk) =

1. Is there a finite field extension l, a constant C, and an open

subset U ⊂ X, such that U contains no curve of genus 1 over l

and

#{x ∈ U(l) : H(x) ≤ B} ≈ C logB?
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