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Abstract

Rational points on K3 surfaces

by

Ronald Martinus van Luijk
Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Hendrik Lenstra, Chair

In this thesis I consider several problems of a Diophantine nature that relate to algebraic
surfaces.

Frits Beukers has asked whether there is an integral matrix




0 a b
a 0 c
b c 0




with all its eigenvalues integral and not in {0,±a,±b,±c}. Using the theory of elliptic
surfaces, I show that up to scaling infinitely many such matrices exist.

A Heron triangle is a triangle with integral sides and integral area. There are
pairs of nonsimilar Heron triangles with the same area and the same perimeter. The
problem of finding three such triangles, brought to my attention by Richard Guy, can
again be solved with the use of elliptic surfaces. I show that for each positive integer N
there is in fact an infinite parametrized family of N such triangles.

In both cases, the solution involves showing that the set of rational points on a
certain K3 surface is Zariski dense. I also compute the geometric Picard number of these
surfaces. This important geometric invariant equals the rank of the Néron-Severi group
of the surface over an algebraic closure of its base field. This group, consisting of divisor
classes modulo algebraic equivalence, has rank at most 22 for K3 surfaces.

In general, little is known about the arithmetic of K3 surfaces, especially for
those with geometric Picard number 1. I prove that in the moduli space of polarized K3
surfaces of degree 4, the set of surfaces defined over Q with geometric Picard number
1 and infinitely many rational points is dense in both the Zariski topology and the
real analytic topology. This answers a question posed by Sir Peter Swinnerton-Dyer
and Bjorn Poonen. Its effective proof, citing explicit examples, also disposes of an old
challenge attributed to David Mumford.

For the convenience of the reader, I provide proofs of several theorems involv-
ing constructions of elliptic surfaces and the behavior of the Néron-Severi group under
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reduction. Some of these results are well known to experts, but a substantial search in
the literature failed to reveal complete proofs. I also give a scheme-theoretic summary
of the theory of elliptic surfaces, including a new proof of the classification of singular
fibers.

Professor Hendrik Lenstra
Dissertation Committee Chair
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Chapter 1

Introduction

For millennia, mathematicians have been fascinated by what we now call Dio-
phantine equations. These are systems of polynomial equations with integral coefficients
for which we seek integral or rational solutions. A typical example of a result is the
existence of infinitely many Pythagorean triples of coprime integers (a, b, c), which sat-
isfy a2 + b2 = c2. The solutions to this equation correspond to rational points on an
algebraic curve. Some Diophantine problems however, ask for the existence of rational
points on varieties of higher dimension. The geometry of these varieties governs their
arithmetic, but how exactly is not clear at all. This is one of the main problems of
higher-dimensional arithmetic geometry. Many fundamental questions about the distri-
bution of rational points on algebraic surfaces are still wide open. With the arithmetic
of curves being understood as well as it is, the third millennium is ripe for these higher-
dimensional questions.

This thesis focuses on the case of so called K3 surfaces, which are the 2-
dimensional analogues of elliptic curves in the sense that their canonical sheaf is trivial.
Smooth quartic surfaces in P3 are examples of K3 surfaces. Little is known about the
arithmetic of these surfaces. It is for instance not known whether there exists a K3 sur-
face over the rational numbers (or any number field) on which the set of rational points
is neither empty nor dense.

As rational points on surfaces tend to accumulate on low genus curves, the
study of divisors on surfaces is an important tool. The group of divisor classes modulo
algebraic equivalence on a surface X is called the Néron-Severi group of X. For a K3
surface the Néron-Severi group is a finitely generated free abelian group. Together with
the intersection pairing it carries a lot of combinatorial information. Its rank is called the
Picard number of X, denoted ρ(X). Bogomolov and Tschinkel proved in [BT] that if X
is a K3 surface over a number field K with ρ(XK) ≥ 2, then in most cases the rational
points are potentially dense. This means that there is a finite extension L of K such that
the set X(L) of L-rational points on X is Zariski dense in X. Nothing is known about
potential density of rational points on K3 surfaces X with ρ(XK) = 1. In fact, until
recently it was an old challenge, attributed to Mumford, to find even just one explicit
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example of a K3 surface X over a number field K with ρ(XK) = 1. This challenge will
be disposed of in Chapter 5, where we will see explicit examples of such surfaces with
K = Q that also contain infinitely many rational points. Moreover, we will prove that
the set of such surfaces is dense in the moduli space of polarized K3 surfaces of degree
4, in both the Zariski topology and the real analytic topology.

For the convenience of the reader, Chapter 2 describes all the prerequisites with
a proof or a reference. Most importantly this chapter contains a treatment of Shioda’s
theory of elliptic surfaces in a scheme-theoretic language, a new proof of the classification
of singular fibers, some constructions of elliptic fibrations, and the behavior of the Néron-
Severi group under good reduction. For these last results no complete proof appears to
be available in the literature.

Chapters 3 and 4 both solve an explicit 2-dimensional Diophantine problem.
The solutions make use of elliptic K3 surfaces. In each case we find the full Néron-Severi
group of the surface involved and use this for a deeper study of the geometry of the
surface.
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Chapter 2

Lattices and surfaces

2.1 Lattices

In this section we will define lattices and finite quadratic forms and we will state some
results with proof or reference for later use.

For any abelian groups A and G, a symmetric bilinear map A×A → G is called
nondegenerate if the induced homomorphism A → Hom(A, G) is injective. We will not
require a lattice to be definite, only nondegenerate.

Definition 2.1.1 A lattice is a free Z-module L of finite rank, endowed with a symmet-
ric, bilinear, nondegenerate map 〈 , 〉 : L × L → Q, called the pairing of the lattice.
An integral lattice is a lattice whose pairing is Z-valued. A lattice L is called even if
〈x, x〉 ∈ 2Z for every x ∈ L. A sublattice of L is a submodule L′ of L, such that the
induced bilinear map on L′ is nondegenerate. A sublattice L′ of L is called primitive
if L/L′ is torsion-free. The positive or negative definiteness or signature of a lattice is
defined to be that of the vector space LQ together with the induced pairing.

Remark 2.1.2 From the identity 2〈x, y〉 = 〈x + y, x + y〉− 〈x, x〉− 〈y, y〉 it follows that
every even lattice is integral.

Remark 2.1.3 If L is a lattice, then its pairing induces an inner product on the vector
space LQ, i.e., a nondegenerate symmetric bilinear map LQ × LQ → Q.

Definition 2.1.4 If L is a subgroup of a lattice Λ, then the orthogonal complement L⊥

of L in Λ is

L⊥ = {x ∈ Λ | 〈x, y〉 = 0 for all y ∈ L}.

Lemma 2.1.5 If L is a sublattice of a lattice Λ, then its orthogonal complement L⊥ is
a primitive sublattice of rank equal to rk Λ − rkL. We have (L⊥)⊥ = LQ ∩ Λ.
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Proof. To prove that L⊥ is a sublattice (i.e., the induced pairing on L⊥ is nondegen-
erate) of the right rank, we may tensor with Q and prove a similar statement for the
corresponding inner product spaces. This is an easy exercise, see for instance [La], Prop.
XV.1.2. The most important hypothesis is that the induced inner product on LQ is non-
degenerate. The fact that L⊥ is primitive follows immediately from the definition of L⊥

and the fact that the pairing is bilinear. From the relation between the ranks we find
that (L⊥)⊥ is a sublattice of Λ, containing the primitive sublattice L′ = LQ ∩ Λ, with
the same rank as L′. This implies (L⊥)⊥ = L′. ¤

Definition 2.1.6 For a lattice L with pairing 〈 , 〉, we denote by L(n) the lattice with
the same underlying module as L and the pairing n · 〈 , 〉.

Definition 2.1.7 Let M be a module over a commutative ring R with a map 〈 , 〉 : M×
M → R. Then the Gram matrix with respect to a sequence x = (x1, . . . , xr) of elements
in M is Ix = (〈xi, xj〉)i,j.

Definition 2.1.8 The discriminant of a lattice L is defined by disc L = det Ix, where Ix

is the Gram matrix with respect to any Z-basis x of L. A lattice L is called unimodular
if it is integral and discL = ±1.

Lemma 2.1.9 Let L′ be a sublattice of finite index in a lattice L. Then we have disc L′ =
[L : L′]2 disc L.

Proof. This is a well known fact, see also [Shi3], section 6. ¤

Definition 2.1.10 Let V be a finite dimensional inner product space over a field k. Then
the discriminant discV of V is defined to be the image in k∗/(k∗)2 of the determinant
of the Gram matrix associated to any basis of V .

Remark 2.1.11 The discriminant of an inner product space V of dimension n is well
defined because the determinants of the Gram matrices associated to two different bases
differ by a square factor. For k = Q this discriminant is equal to the image in Q∗/Q∗2 of
the discriminant of any lattice in V of dimension n. This fact will be used in chapter 5.

Definition 2.1.12 Let L be a lattice. We define the dual lattice L∗ by

{x ∈ LQ | 〈x, y〉 ∈ Z for all y ∈ L}.

Lemma 2.1.13 Let L be an integral lattice. Then |disc L| = [L∗ : L].

Proof. There is an isomorphism L∗ ∼= Hom(L,Z). If x is a basis for L, then the dual basis
x′ of Hom(LQ,Q) generates Hom(L,Z) as a Z-module. Hence, for the Gram matrices
Ix and Ix′ we find Ix′ = I−1

x . Thus, discL∗ = 1/(disc L). By Lemma 2.1.9 we have
disc L = [L∗ : L]2 disc L∗, from which the equality follows. ¤
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Lemma 2.1.14 Let Λ be an integral lattice with sublattice L and set L′ = LQ∩Λ inside
ΛQ. Then the orthogonal projection π : Λ → LQ is contained in L′∗. If L is unimodular
then the image is exactly L and Λ is the orthogonal direct sum of L and L⊥.

Proof. Take x ∈ Λ, then for every z ∈ L′ we have 〈π(x), z〉 = 〈x, z〉 ∈ Z, so we find
π(x) ∈ L′∗. If L is unimodular, then we have L∗ = L′∗ = L′ = L, so we get π(Λ) ⊂ L.
As we obviously have L ⊂ π(Λ), we conclude π(Λ) = L. The kernel of π being L⊥, we
get a short exact sequence 0 → L⊥ → Λ → L → 0. The final statement follows from the
fact that the inclusion L ⊂ Λ is a section whose image is orthogonal to L⊥. ¤

Lemma 2.1.15 Let Λ be a lattice with sublattice L. Then we have

disc(L⊥ ⊕ L) = (disc L⊥)(disc L) and

disc L⊥ = disc Λ · [Λ : L⊥ ⊕ L]2/ disc L.

Proof. By taking bases for L and L⊥ and using the union as a basis for L⊥ ⊕ L, we
easily verify the first equation. By Lemma 2.1.5 the lattice L⊥ ⊕L has finite index in Λ.
By Lemma 2.1.9 we find disc(L⊥ ⊕ L) = [Λ : L⊥ ⊕ L]2 disc Λ. Combining this with the
first equation, we find the second equation. ¤

We will now define discriminant forms as defined by Nikulin [Ni], § 1.3.

Definition 2.1.16 Let A be a finite abelian group. A finite symmetric bilinear form on
A is a symmetric bilinear map b : A × A → Q/Z.

A finite quadratic form on A is a map q : A → Q/2Z, such that for all n ∈ Z
and a ∈ A we have q(na) = n2q(a) and such that the unique map b : A × A → Q/Z
determined by q(a + a′) − q(a) − q(a′) ≡ 2b(a, a′)mod 2Z for all a, a′ ∈ A is a finite
symmetric bilinear form on A. The form b is called the bilinear form of q.

Lemma 2.1.17 Let L be an even lattice and set AL = L∗/L. Then we have #AL =
|disc L| and the map

qL : AL → Q/2Z : x 7→ 〈x, x〉 + 2Z
is a finite quadratic form on AL.

Proof. The first statement is a reformulation of Lemma 2.1.13. The map qL is well
defined, as for x ∈ L∗ and λ ∈ L, we have 〈x + λ, x + λ〉 − 〈x, x〉 = 2〈x, λ〉+ 〈λ, λ〉 ∈ 2Z.
The unique map b : AL×AL → Q/Z as in Definition 2.1.16 is given by (a, a′) 7→ 〈a, a′〉+Z,
which is clearly a finite symmetric bilinear form. Thus, qL is a finite quadratic form. ¤

Definition 2.1.18 If L is an even lattice, then the map qL as in Lemma 2.1.17 is called
the discriminant-quadratic form associated to L.
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Lemma 2.1.19 Let L be a primitive sublattice of an even unimodular lattice Λ. Let
L⊥ denote the orthogonal complement of L in Λ. Then qL

∼= −qL⊥, i.e., there is an
isomorphism AL → AL⊥ making the following diagram commutative.

AL

∼=

qL

AL⊥

q
L⊥Q/2Z [−1] Q/2Z

Proof. See [Ni], Prop. 1.6.1. ¤

Lemma 2.1.20 Let Λ be a integral lattice with sublattice T and set T ′ = TQ ∩ Λ and
L = T⊥ and A = Λ/T . Let m > 0 be an integer satisfying mT ′∗ ⊂ T ′. Then the
orthogonal projection Λ → TQ induces a homomorphism A → T ′∗/T whose kernel M
has finite index in A. The orthogonal projection Λ → LQ induces a homomorphism
γ : A → 1

mL∩L∗ with kernel Ators
∼= T ′/T . The homomorphism γ maps M isomorphically

to L.

Proof. Let πL and πT denote the orthogonal projections Λ → LQ and Λ → TQ re-
spectively. It follows from Lemma 2.1.14 that the images of πL and πT are contained
in L∗ and T ′∗ respectively. To show that the image of πL is also contained in 1

mL, take
x ∈ Λ and set y = πT (x) ∈ T ′∗ and z = πL(x) ∈ L∗. Then x = y + z, and as we
have my ∈ mT ′∗ ⊂ T ′ ⊂ Λ, we get mz = mx − my ∈ Λ, so mz ∈ Λ ∩ L∗ = L. The
kernel of πL is L⊥ = T ′, see Lemma 2.1.5. This implies that πL induces a homomorphism
γ : A = Λ/T → 1

mL ∩ L∗ with kernel T ′/T , which is exactly Ators.
The map πT induces a homomorphism Λ → T ′∗/T with kernel L+T . Thus this

homomorphism induces a map δ : A → T ′∗/T with kernel M = (L + T )/T . Because the
cokernel of δ is finite, M has finite index in A. As we have L ∩ T = (0), the quotient
map Λ → A restricts to an injection ι : L →֒ A whose image is M . Since the composition
γ ◦ ι = πL|L is the identity on L, we find that γ sends M isomorphically to L. ¤

Let Λ be an integral lattice with sublattice T and set T ′ = TQ ∩ Λ. Applying
Lemma 2.1.20 to the sublattice T ′ of Λ, we find that Λ/T ′ injects into 1

mL with L = T⊥,
so Λ/T ′ also has the structure of a lattice. Its discriminant is related to those of Λ and
T by the following lemma.

Lemma 2.1.21 Let T be a sublattice of a lattice Λ and set T ′ = TQ ∩ Λ. Then Λ/T ′ is
a lattice and we have

disc Λ =
(disc T )(disc Λ/T ′)

|(Λ/T )tors|2
.

Proof. By Lemma 2.1.9 the right-hand side does not change if we replace T by T ′. In
that case Λ/T ′ is a lattice by Lemma 2.1.20. It has no torsion, so the equality follows
from the short exact sequence 0 → T ′ → Λ → Λ/T ′ → 0 of lattices. ¤
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The following lemma will be used later to understand the intersection pairing
on the free abelian group generated by the irreducible components of a fiber of an elliptic
fibration.

Lemma 2.1.22 Let S be a nonempty finite set, let G be the free abelian group on the
elements of S, and let F =

∑
Θ∈S nΘΘ be an element of G. Let G × G → Z be a

symmetric bilinear map, denoted by (g, h) 7→ g · h. Consider the following statements.

(i) For all Θ, Φ ∈ S with Θ 6= Φ we have Θ · Φ ≥ 0 (effectivity hypothesis).

(ii) We have nΘ > 0 for all Θ ∈ S and F · y = 0 for all y ∈ G (fiber hypothesis).

(ii)′ We have F 6= 0 and nΘ ≥ 0 for all Θ ∈ S and F · y = 0 for all y ∈ G (alternative
fiber hypothesis).

(iii) For all Θ, Φ ∈ S with Θ 6= Φ there is a sequence of elements Θ = Ψ0, Ψ1, . . . ,Ψt =
Φ such that Ψl−1 · Ψl > 0 for 1 ≤ l ≤ t (connectedness hypothesis).

(iv) The greatest common divisor of the nΘ in (ii) is 1 (simplicity hypothesis).

(a) We have y2 ≤ 0 for all y ∈ G.

(b) We have y2 = 0 if and only if ay = bF for some a, b ∈ Z with a 6= 0.

(c) The group G/〈F 〉 inherits the structure of a negative definite lattice.

Then (i), (ii)′, and (iii) together imply (ii), while (i) and (ii) together imply (a), the
statements (i)–(iii) together imply (b), and the statements (i)–(iv) together imply (c).

Proof. For the first implication, suppose that there exists Θ ∈ S with nΘ = 0. Then
from F · Θ = 0 and (i) and the fact nΦ ≥ 0 for all Φ ∈ S we find nΦ = 0 for all Φ ∈ S
with Φ ·Θ > 0. Using the same argument, by induction we find nΦ = 0 for all Φ ∈ S for
which there exists a sequence Θ = Ψ0, Ψ1, . . . ,Ψt = Φ as in (iii). By (iii) such a sequence
exists for all Φ ∈ S, so we find nΦ = 0 for all Φ, which contradicts (ii)′.

For the remaining implications we will follow the proof of Bombieri and Mum-
ford, see [BM], p. 28. For a similar proof, see [Si2], Prop. III.8.2. Assume (i) and (ii),
write y =

∑
aΘΘ with Θ ∈ S and aΘ ∈ Z and set xΘ = aΘ/nΘ. As we have nΘ > 0 and

Θ · Φ ≥ 0 for Θ, Φ ∈ S with Θ 6= Φ, the inequality xΘxΦ ≤ 1
2(x2

Θ + x2
Φ) implies

y2 =
∑

Θ,Φ∈S

xΘxΦnΘnΦΘ · Φ

≤
∑

Θ

x2
Θn2

ΘΘ · Θ +
∑

Θ 6=Φ

1

2
x2

ΘnΘnΦΘ · Φ +
∑

Θ 6=Φ

1

2
x2

ΦnΘnΦΘ · Φ

=
∑

Θ

x2
Θn2

ΘΘ · Θ +
∑

Θ 6=Φ

x2
ΘnΘnΦΘ · Φ =

∑

Θ

x2
ΘnΘΘ · F = 0.

Now assume also (iii). For (b), if we have equality y2 = 0, then for all Θ, Φ with Θ ·Φ 6= 0
we have xΘ = xΦ. Hence for a sequence as in (iii) we find xΘ = xΨ0 = . . . = xΨt = xΦ.
Thus, we have ay = bF for any a, b ∈ Z with b

a = xΘ for any Θ. Finally, if we assume
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(iv), then G/〈F 〉 is torsion free, and thus free. As F · y = 0 for all y ∈ G, the map
G×G → Z induces a symmetric bilinear map G/〈F 〉 ×G/〈F 〉 → Z. It is nondegenerate
by (b) and negative definite by (a). ¤

Remark 2.1.23 Table 2.1 gives some examples of groups G with a map G × G → Z
denoted by (g, h) 7→ g · h that satisfy all assumptions and statements (i)–(iv) of Lemma
2.1.22. The first column contains the names (also called the type) of the examples for
future reference. The second column states the rank of G. The third column shows a graph
describing the map G×G → Z. The graph contains r = rkG vertices. The group G is the
free abelian group on these vertices. For any two vertices Θ 6= Φ the number Θ ·Φ equals
the number of edges between Θ and Φ. The integers at the vertices are the coefficients
nΘ for the element F =

∑
nΘΘ as in Lemma 2.1.22. The self-intersection numbers Θ2

can be computed from F · Θ = 0. The map G × G → Z is then uniquely determined
by bilinear extension. The lattice G/〈F 〉 is isomorphic to the opposite of a standard
root lattice, stated in the fourth column (see Definition 2.1.6). For a description of the
notation An, Dn, and En, see [CS], § 4.6–8, or [Bo], § VI.4. For more on the occurrence
of root lattices, see Remark 2.1.25. The fifth column contains the number n(1) of vertices
Θ with nΘ = 1. This number is equal to the absolute value of the discriminant of the
lattice G/〈F 〉, see [CS], Table 4.1.

The following proposition says that the examples of table 2.1 yield in fact
all possible examples satisfying certain extra hypotheses. The proof is a combinatorial
exercise. This Proposition is used to classify the singular fibers of elliptic surfaces. Several
proofs are available, see for instance [Ko1], Thm. 6.2, or [Si2], Thm. IV.9.4, or [Ne], or
[Ta3]. Some of these proofs use additional geometric hypotheses. All proofs distinguish a
fair number of cases. We have included a proof different from all the above that is clean
and efficient, distinguishing only a small number of cases.

Proposition 2.1.24 Let G be the free abelian group on a nonempty finite set S with an
element F =

∑
nΘΘ and a map G × G → Z satisfying all assumptions and statements

(i)–(iv) of Lemma 2.1.22. Assume moreover that for all Θ ∈ S we have Θ2 ≥ −2 and
Θ2 is even. Then the triple consisting of the group G, the element F , and the pairing
G×G → Z is isomorphic to one of the examples given in Table 2.1. If we have #S > 1,
then Θ2 = −2 for all Θ ∈ S.

Proof. Let ∆ be the graph on S with Θ ·Φ edges between Θ and Φ if Θ 6= Φ. By a path
in ∆ we mean a sequence Ψ1, . . . ,Ψr such that Ψj · Ψj+1 6= 0 for j = 1, . . . , r − 1 and
such that Ψi 6= Ψj for i 6= j. We will first deal with a few exceptional cases. If we have
#S = 1, say S = {Θ}, then the fiber hypothesis and the simplicity hypothesis together
give F = Θ, so G is of type I1. For #S > 1, suppose that there are Θ 6= Φ such that
Θ · Φ ≥ 2. Then since we have Θ2 ≥ −2, the equation 0 = F · Θ =

∑
nΨΨ · Θ gives

2nΘ ≥ −nΘΘ2 =
∑

Ψ 6=Θ

nΨΨ · Θ ≥ nΦΦ · Θ ≥ 2nΦ.
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Type r = rkG Configuration G/〈F 〉 n(1)

I1 1 1 0 1

I2 2 11 A1(−1) 2

In (n ≥ 3) n 1 1

1

1 1

An−1(−1) n

I∗0 5 2 11

1

1

D4(−1) 4

I∗n (n ≥ 1) n + 5
1

1

1

1

2 2 22 Dn+4(−1) 4

IV ∗ 7
2

21 3
2

1

1

E6(−1) 3

III∗ 8 3 2 14321
2

E7(−1) 2

II∗ 9
6542 31 3

4

2

E8(−1) 1

Table 2.1: groups satisfying the hypotheses of Lemma 2.1.22
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By symmetry we find nΘ = nΦ and from equality we find Θ2 = Φ2 = −2 and Θ · Φ = 2,
and Ψ · Θ = Ψ · Φ = 0 for all Ψ 6= Θ, Φ. From the connectedness hypothesis we find
#S = 2, so G is of type I2.

From now on, we will assume #S ≥ 2 and for all Θ, Φ ∈ S with Θ 6= Φ we have
Θ · Φ ∈ {0, 1}. For Φ ∈ S let C(Φ) denote the set of Θ ∈ S with Θ · Φ = 1. We will first
prove the following statements.

(A) For all Φ ∈ S we have Φ2 = −2.

(B) For all Φ ∈ S we have 2nΦ =
∑

Ψ∈C(Φ) nΨ.

(C) For all Φ ∈ S and Θ ∈ C(Φ) we have nΦ ≥ 1
2nΘ with equality if and only if

C(Φ) = {Θ}.

(D) For all Φ ∈ S and Θ ∈ C(Φ) with nΦ = nΘ we have either C(Φ) = {Θ, Ψ} for some
Ψ with nΨ = nΦ or C(Φ) = {Θ, Ψ1, Ψ2} for some Ψ1, Ψ2 with nΨ1 = nΨ2 = 1

2nΦ.
In the latter case we have C(Ψi) = {Φ} for i = 1, 2.

(E) For all Φ ∈ S and Θ ∈ C(Φ) with nΦ < nΘ < 2nΦ we have C(Φ) = {Θ, Ψ} for
some Ψ 6= Θ with nΨ = 2nΦ − nΘ.

(F) For all Φ ∈ S and Θ ∈ C(Φ) with nΦ < nΘ the integer m = nΘ − nΦ divides nΘ

and there is a sequence Ψ1 = Θ, Ψ2 = Φ, Ψ3, . . . ,Ψr of r = nΘ/m elements of S,
such that C(Ψj) = {Ψj−1, Ψj+1} for j = 2, . . . , r − 1 and C(Ψr) = {Ψr−1}, and
nΨj

= (r + 1 − j)m for j = 1, . . . , r.

rm 3m 2m m

Ψ3 Ψr−2 Ψr−1 ΨrΨ1 = Θ

(r − 2)m(r − 1)m

Ψ2 = Φ

To prove (A), note that by Lemma 2.1.22 we have Φ2 ≤ 0 with equality if and
only if aΦ = bF for some a, b ∈ Z with a 6= 0. From #S ≥ 2 and the inequality nΨ > 0
for all Ψ ∈ S, we conclude that equality does not hold, so Φ2 < 0. As we have Φ2 ≥ −2
and Φ2 is even, we get Φ2 = −2. From F ·Φ = 0 we find −nΦΦ2 =

∑
Ψ 6=Φ nΨΨ ·Φ, which

implies the equality in (B). The statement (C) follows from (B) as all the nΨ are positive.
For (D) and (E), suppose that we have Φ ∈ S and Θ ∈ C(Φ) with nΦ ≤ nΘ < 2nΦ. Then
we find

2nΦ = nΘ +
∑

Ψ∈C(Φ)

Ψ 6=Θ

nΨ ≥ nΦ +
∑

Ψ∈C(Φ)

Ψ 6=Θ

nΨ.

As we have nΨ ≥ 1
2nΦ > 0 for all Ψ ∈ C(Φ), there is room for at most two terms in this

summation, so #C(Φ) ≤ 3. If we have strict inequality nΦ < nΘ, then there is in fact
only room for one term, which proves (E). If there is equality, then we find the two cases
described in (D). The last part of (D) follows from (C).
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For (F), suppose we have Φ ∈ S and Θ ∈ C(Φ) with nΦ < nΘ. Set m =
nΘ − nΦ > 0 and set Ψ1 = Θ and Ψ2 = Φ. For notational convenience, we will write
nj = nΨj

for any j, so we have n1 = nΘ and n2 = nΦ. By (C) we have n1 ≤ 2n2 with
equality if and only if m = n2. If we have strict inequality, then by (E) there exists
Ψ3 ∈ S such that C(Ψ2) = {Ψ1, Ψ3} and n3 = 2n2 − n1 = n2 − m < n2. Repeating this
argument we find that either m = n3, or there exists Ψ4 ∈ S such that C(Ψ3) = {Ψ2, Ψ4}
and n4 = 2n3 − n2 = n3 − m < n3. As the nΨ are positive, this argument can be
repeated only a finite number of times and we find a sequence Ψ1, . . . ,Ψr such that
C(Ψj) = {Ψj−1, Ψj+1} for j = 2, . . . , r − 1, and nj = nj−1 − m for j = 2, . . . , r and
nr = m. It follows that m = nr = n1 − (r − 1)m, so n1 = rm and nj = (r + 1 − j)m.
From the equality nr−1 = 2m = 2nr we find C(Ψr) = {Ψr−1} by (C), which proves (F).

We now continue our proof using statements (A)–(F). Set N = maxΘ∈S nΘ

and T = {Θ ∈ S | nΘ = N}. Let Γ denote the full subgraph of ∆ on T . Suppose we
have Θ, Φ ∈ T . As ∆ is connected by the connectedness hypothesis, there is a path
Θ = Ψ1, . . . ,Ψt = Φ in ∆. Again we will write nj = nΨj

. Suppose that for some i
with 1 ≤ i < t we have ni 6= ni+1. By reversing the path if necessary, we may assume
ni > ni+1. Then by (F) we find that for j = i + 2, . . . , t the element Ψj is the unique
element in C(Ψj−1) \ {Ψj−2} and that we have ni > ni+1 > ni+2 > . . . > nt, which
contradicts the maximality of nt = nΦ = N . We conclude ni = nt = N for all i, so
Ψi ∈ T for all i and thus Γ is connected. From (B) it follows that the valency of any
vertex in Γ is at most 2. This implies that Γ is either a cycle, or Γ is a linear graph,
i.e., we can write T = {Ψ1, . . . ,Ψn} such that Ψi · Ψj = 1 if and only if |i − j| = 1 for
i, j ∈ {1, . . . , n}. If Θ ∈ T has valency 2 in Γ, then by (B) the valency of Θ in ∆ is also
2. Because ∆ is connected, this implies that if Γ is a cycle, then ∆ is a cycle as well and
by the simplicity hypothesis, G is of type In for n = #S. If Γ is a linear graph consisting
of n > 1 vertices, then only its two endpoints can be connected to elements of S \ T .
Applying (D) to these endpoints we find that G is of type I∗n−1.

It remains to consider the case that Γ consists of one vertex, say Θ. Then for
every Φ ∈ C(Θ) we find from (F) that mΦ = nΘ − nΦ > 0 is a divisor of nΘ. Set
rΦ = nΘ/mΦ ∈ Z≥2 for all Φ ∈ C(Θ). Then we get nΦ/nΘ = 1 − (rΦ)−1 and (B) yields
2 =

∑
Φ∈C(Θ)(1 − r−1

Φ ). The only solutions to this equation with rΦ ∈ Z≥2 are

(rΦ)Φ ∈ {(2, 3, 6), (2, 4, 4), (3, 3, 3), (2, 2, 2, 2)}.

Suppose we have (rΦ)Φ = (2, 3, 6). Then by (F) there are three paths starting at Θ of
length 2, 3, and 6 respectively. Furthermore, it follows that no vertex outside these paths
is connected by an edge in ∆ to a vertex in these paths, except perhaps to Θ. As C(Θ)
is contained in these paths and ∆ is connected, we find that there are no vertices in ∆
outside these paths. From the simplicity hypothesis we find that G is uniquely determined
and of type II∗. The other three solutions yield type III∗, IV ∗, and I∗0 respectively. ¤

Remark 2.1.25 Let G be the free abelian group on a finite set S with a map G×G → Z
satisfying all assumptions and statements (i)–(iv) of Lemma 2.1.22. Let F ∈ G be the
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element as described in statement (ii) of that lemma. Then by Lemma 2.1.22 the group
G/〈F 〉 inherits the structure of a negative definite lattice. Assume moreover that for all
Θ ∈ S we have Θ2 ≥ −2 and Θ2 is even. Then by Proposition 2.1.24 the lattice G/〈F 〉
is either 0 or all Θ ∈ S satisfy Θ2 = −2. Suppose the latter case holds. Then for every
Θ ∈ S the reflection x 7→ x − 2x·Θ

Θ2 Θ of GQ in the hyperplane orthogonal to Θ takes G
to G. It induces an automorphism of G/〈F 〉 and thus Θ is a root of G/〈F 〉. Therefore,
G/〈F 〉 is generated by roots and so is its opposite lattice (see Definition 2.1.6), which is
positive definite. By definition this means that this opposite lattice is a root lattice, so
it is not a coincidence that all lattices in the fourth column of Table 2.1 are opposites
of root lattices. The fact that these lattices are root lattices also explains the relation
between the graphs in the third column of Table 2.1 and extended Dynkin diagrams. Root
lattices and (extended) Dynkin diagrams have been classified and studied extensively,
see for instance [CS], § 4.2 and 21.3, and [Bo], Chapter VI. For more about the relation
between these groups G as in Lemma 2.1.22 and root lattices and extended Dynkin
diagrams, see [Mir], § I.6.

2.2 Algebraic geometry prerequisites

In this section we will recall the definitions of the divisor group, the Picard group, and
the Néron-Severi group of an algebraic variety. We will state a few results that will be
of use later.

Definition 2.2.1 For any scheme X, the Picard group PicX is the group of isomor-
phism classes of line bundles on X.

As in [Ha2], Section II.6, denote the following condition by (*).

(*) X is a noetherian integral separated scheme which is regular in codimension one.

Definition 2.2.2 Let X satisfy (*) and let K(X) denote the function field of X. Then
as in [Ha2], Section II.6, the divisor group Div X is the free abelian group generated by
prime Weil divisors. The group of principal Weil divisors on X is the image of the map
K(X)∗ → Div X sending a function f to the divisor (f) =

∑
Y vY (f)Y , where the sum is

over all prime Weil divisors Y and vY (f) is the valuation of f in the discrete valuation
ring associated to the generic point of Y . The cokernel Cl X ∼= Div X/(im K(X)∗) is
the divisor class group of X. Also as in [Ha2], Section II.6, the Cartier divisor group
DivCa X is the group H0(X,K∗

X/O∗
X), where KX is the constant sheaf associated to

K(X). The group of principal Cartier divisors on X is the image of the map H0(X,K∗) →
H0(X,K∗

X/O∗
X). The cokernel is denoted ClCa X and called the Cartier divisor class

group of X.

Proposition 2.2.3 If X satisfies (*) and X is also locally factorial, then there are
natural isomorphisms Div X ∼= DivCa X and Cl X ∼= ClCa X ∼= PicX.
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Proof. See [Ha2], Prop. II.6.11 and II.6.15 and Cor. II.6.16. ¤

Remark 2.2.4 Note that any regular scheme is locally factorial, so Proposition 2.2.3
applies in particular to regular noetherian integral separated schemes. In this case, we
will just talk about divisors without specifying ’Weil’ or ’Cartier’. In general, if we leave
out this specification, a divisor will mean a Weil divisor.

For more details about the Picard group and the divisor class groups, see [Ha2],
Section II.6. We will now focus on the case that X is a variety. Note that we don’t require
a variety to be irreducible or reduced.

Definition 2.2.5 Let k be a field. A variety over k is a separated scheme X that is of
finite type over Spec k. We say that X is smooth if the morphism X → Spec k is smooth.
A variety has pure dimension d if all its irreducible components have dimension d. A
curve or a surface is a variety of pure dimension 1 or 2 respectively.

Remark 2.2.6 Note that this definition is different from the definition in [Ha2], p. 105,
where varieties are also assumed to be integral.

The following definition, proposition and corollary are copied from Bjorn Poo-
nen’s notes on rational points on varieties. For equivalent definitions, see [FJ], § 9.2.

Definition 2.2.7 A field extension L of k is separable if the ring L⊗k k′ is reduced for
all field extensions k′ of k. A field extension L of k is primary if the largest separable
algebraic extension of k contained in L is k itself.

Proposition 2.2.8 Let X be a variety over k with function field K(X). Then the fol-
lowing statements hold.

(i) The variety X is geometrically irreducible if and only if X is irreducible and the
field extension K(X) of k is primary.

(ii) The variety X is geometrically reduced if and only if X is reduced and for each
irreducible component Z of X, the field extension K(Z) of k is separable.

Proof. For (i), see [EGA IV(2)], Prop. 4.5.9. For (ii), see [EGA IV(2)], Prop. 4.6.1. ¤

Corollary 2.2.9 Let X be an integral variety over a field k and let k′ denote the maximal
algebraic extension of k inside K(X). Then the following conditions hold.

(i) If X is geometrically integral, then k′ = k.

(ii) If X is proper, then OX(X) ⊂ k′.

(iii) If X is regular, then k′ ⊂ OX(X).
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Proof. Assume X is geometrically integral. By Proposition 2.2.8, part (i), the extension
K(X) of k is primary. Therefore, so is the subextension k′ of k. By part (ii) of the same
proposition, the extension k′ of k is also separable. Any primary separable algebraic
extension of a field is trivial, which proves (i). Suppose X is proper. Then every element
f ∈ OX(X) is algebraic over k, see [Ha2], Thm. I.3.4. This proves (ii). Suppose X is
regular. As any regular local ring is integrally closed, we find that OX(X) =

⋂
x∈X OX,x

(see [Ha2], Prop. II.6.3A) is integrally closed as well. As we have k ⊂ OX(X), we also
have k′ ⊂ OX(X). ¤

Corollary 2.2.10 Let X be a projective, geometrically integral, regular variety over a
field k with function field K(X). Then we have an exact sequence

0 → k∗ → K(X)∗ → Div X → PicX → 0.

Proof. By Proposition 2.2.3, all that needs to be checked is exactness at K(X)∗. Let k′

denote the algebraic closure of k within K(X). For any f ∈ K(X)∗, the divisor (f) is 0
if and only if we have f ∈ O∗

X,x for all generic points x ∈ X associated to prime divisors.
Hence, we find f ∈ ⋂

x∈X O∗
X,x = OX(X)∗, see [Ha2], Prop. II.6.3A. From Corollary

2.2.9 we find OX(X) = k. ¤

For the remainder of this section, let X be a smooth, projective, geometrically
integral variety over a field k.

Definition 2.2.11 The group Div0 X is the subgroup of Div X generated by all divisors
that become algebraically equivalent to 0 after a base change to the algebraic closure k.
The image of Div0 X in PicX is denoted by Pic0 X. The Néron-Severi group NS(X) of
X is the quotient PicX/ Pic0 X.

For a precise definition of algebraic equivalence, see [Ha2], exc. V.1.7, which is
stated only for smooth surfaces, but holds in any dimension, see [SGA 6], Exp. XIII, p.
644, 4.4. We will write D ∼ D′ and D ≈ D′ to indicate that two divisors D and D′ are
linearly and algebraically equivalent respectively.

Proposition 2.2.12 The Néron-Severi group NS(X) of X is a finitely generated abelian
group.

Proof. See [Ha2], exc. V.1.7–8, or [Mi2], Thm. V.3.25 for surfaces, or [SGA 6], Exp.
XIII, Thm. 5.1 in general. ¤

Definition 2.2.13 The rank ρ = rkNS(X) = dimQNS(X) ⊗ Q is called the Picard
number of X. The rank of NS(Xk) is called the geometric Picard number of X.

Remark 2.2.14 For a smooth, projective, geometrically integral curve Y the group
Pic0(Y ) coincides with the group of divisor classes of degree 0, so then NS(Y ) ∼= Z.
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Remark 2.2.15 Let f : Z → Y be a morphism between varieties over a field k. Then
there is an induced homomorphism PicY → PicZ. Suppose that f is dominant and
that Z and Y are geometrically integral. Let KZ and KY denote the constant sheaves
associated to the function fields K(Z) and K(Y ) on Z and Y respectively. Then we have
an injection of function fields K(Y ) →֒ K(Z), which induces another homomorphism
DivCa Y = H0(Y,K∗

Y /O∗
Y ) → H0(Z,K∗

Z/O∗
Z) = DivCa Z. Suppose finally that Z and Y

are smooth and projective as well. Then by Remark 2.2.4 this last homomorphism yields
a homomorphism Div Y → Div Z. It restricts to a homomorphism Div0 Y → Div0 Z. It
also sends effective divisors to effective divisors. All these homomorphisms are compatible
with each other and thus we also obtain homomorphisms Pic0 Y → Pic0 Z and NS(Y ) →
NS(Z). By abuse of notation, all these homomorphisms are denoted by f∗.

For the next definition, see also [SGA 6], Exp. XIII, p. 644, 4.4.

Definition 2.2.16 Let Picn X denote the subgroup of all divisor classes numerically
equivalent to 0, i.e., represented by a divisor D with D · C = 0 for all irreducible curves
on X. Also set

Pict X = {z ∈ Pic X : mz ∈ Pic0 X for some m ∈ Z>0}.

Proposition 2.2.17 Algebraic equivalence implies numerical equivalence. We have

Pic0 X ⊂ Pict X = Picn X.

The group Pic X/ Picn X of divisor classes modulo numerical equivalence is a finitely
generated free abelian group, isomorphic to NS(X)/ NS(X)tors.

Proof. For the first statement, see [SGA 6], Exp. X, p. 537, Déf. 2.4.1, and p. 546, Cor.
4.5.3. Hence we get a series of inclusions Pic0 X ⊂ Pict X ⊂ Picn X. For the fact that
the second inclusion is an equality, see [Ha1], Prop. 3.1, and [Mu], Thm. 4. The last
statement now follows from Proposition 2.2.12. ¤

Now assume k = C. Then we can consider the complex analytic space Xh asso-
ciated to X. Its topological space has underlying set X(C). Together with its structure
sheaf OXh

it forms a ringed space. The exponential function gives an exact sequence

0 → Z→ OXh
→ O∗

Xh
→ 0

of sheaves. Serre (see [GAGA]) showed that there are isomorphisms H i(Xh,OXh
) ∼=

H i(X,OX) for all i and similar isomorphisms for O∗
X . As we have an isomorphism

H1(X,O∗
X) ∼= PicX, the long exact sequence yields

0 → H1(Xh,Z) → H1(X,OX) → PicX → H2(Xh,Z) → H2(X,OX) → · · · . (2.1)

The image of H1(X,OX) in PicX is exactly Pic0 X, see [Ha2], App. B, p. 447. The
elements of Pic0 X ∼= H1(X,OX)/H1(Xh,Z) correspond to the C-points on the Picard
variety of X, which is an abelian variety.
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Proposition 2.2.18 The Néron-Severi group NS(X) is isomorphic to a subgroup of
H2(Xh,Z) and the second Betti number b2 = dimQH2(Xh,Z) ⊗ Q = dimH2(Xh,C) is
an upper bound for the Picard number of X.

Proof. This follows directly from (2.1) and the fact that Pic0 X is the image of the map
H1(X,OX) → Pic X. ¤

Remark 2.2.19 For smooth projective varieties in characteristic p there is a result
similar to Proposition 2.2.18, where we use étale cohomology instead, see section 2.6.

The next proposition gives a sharper upper bound for the Picard number of X,
still defined over C. Note that we have the Hodge decomposition

H2(Xh,C) ∼=
⊕

p+q=2

Hq(Xh,

p∧
ΩXh

),

where complex conjugation induces an isomorphism Hq(Xh,
∧p ΩXh

) ∼= Hp(Xh,
∧q ΩXh

),
see [BPV], Cor. I.13.3, for surfaces and [GH], p. 116, for any dimension.

Proposition 2.2.20 The homomorphism Pic X → H2(Xh,Z) in (2.1) induces a natural
homomorphism ϕ : NS(X) → H2(Xh,C). The kernel of ϕ is finite and the image of ϕ is
contained in H1(Xh, ΩXh

).

Proof. The map ϕ is the composition of the injection NS(X) →֒ H2(Xh,Z) and the
homomorphism H2(Xh,Z) → H2(Xh,C), which has kernel H2(Xh,Z)tors. As H2(Xh,Z)
is finitely generated, its torsion subgroup is finite and hence ϕ has finite kernel. From
the long exact sequence (2.1) we find that the image of PicX in H2(Xh,Z) is the kernel
of the homomorphism H2(Xh,Z) → H2(X,OX). This map factors as

H2(Xh,Z) → H2(Xh,C) → H2(Xh,
0∧

ΩXh
) ∼= H2(X,OX),

where the second map is the natural projection coming from the Hodge decomposition.
It follows that the image of PicX in H2(Xh,C), i.e., the image of ϕ, is contained in
H2(Xh,

∧2 ΩXh
) ⊕ H1(Xh, ΩXh

). As the image of ϕ is invariant under complex conju-
gation acting on the coefficients C in H2(Xh,C), we find that the image of ϕ is in fact
contained in H1(Xh, ΩXh

). ¤

Corollary 2.2.21 The Picard number of X is at most dimH1(Xh, ΩXh
).

Proof. As the kernel of ϕ in Proposition 2.2.20 is finite, we find

dimQNS(X) ⊗ Q = dimQ im (ϕ) ⊗ Q = dimC im (ϕ) ⊗ C.

By Proposition 2.2.20 this dimension is at most dimH1(Xh, ΩXh
). ¤
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We will no longer assume k = C and restrict our attention to surfaces. Let
X be a smooth, projective, geometrically integral surface. In that case we can define
the intersection number D · D′ of two divisors D and D′, see [Ha2], Thm. V.1.1. It
gives a symmetric bilinear map PicX ×PicX → Z. As any two algebraically equivalent
divisors are also numerically equivalent, this pairing induces a symmetric bilinear map
NS(X) × NS(X) → Z. If X is defined over C, then this map commutes with the cup-
product H2(Xh,Z) × H2(Xh,Z) → Z.

Definition 2.2.22 A K3 surface is a smooth, projective, geometrically integral surface
X with irregularity q = dim H1(X,OX) = 0 on which the canonical sheaf is trivial.

Remark 2.2.23 Note that by our definition all surfaces, in particular K3 surfaces, are
algebraic.

Remark 2.2.24 As the second Betti number b2 of a K3 surface X equals b2 = 22 (see
[BPV], Prop. VIII.3.2 for characteristic 0 and [BM], Thm. 5, for characteristic p > 0), we
find from Proposition 2.2.18 and Remark 2.2.19 that the Picard number ρ = rkNS(X)
of a K3 surface is at most 22. In characteristic 0, we even have ρ ≤ dimH1(Xh, Ω) = 20
by Corollary 2.2.21. If this maximum 20 is met, we call X a singular K3 surface.

Definition 2.2.25 We define the K3 lattice LK3 to be the even unimodular lattice LK3 =
E8(−1)⊕E8(−1)⊕U ⊕U ⊕U , where E8(−1) is the opposite of the standard root lattice
E8 (see Definition 2.1.6 and [CS], § 4.8.1, or [Bo], § VI.4), and U is the 2-dimensional
lattice with Gram matrix

(
0 1
1 0

)
.

Lemma 2.2.26 Let X be a K3 surface over C. Then the group H2(Xh,Z) together
with the cup-product H2(Xh,Z) × H2(Xh,Z) → Z has the structure of an even lattice
isomorphic to LK3. The embedding NS(X) →֒ H2(Xh,Z) makes NS(X) into a primitive
sublattice of H2(Xh,Z).

Proof. For the fact that H2(Xh,Z) is torsion-free and isomorphic to LK3, see [BPV],
Prop. VIII.3.2. Because H2(Xh,Z) is torsion-free, the map H2(Xh,Z) → H2(Xh,C) is
injective and the Néron-Severi group NS(X) is isomorphic to its image in H2(Xh,C). This
image is equal to H1(Xh, Ω) ∩ H2(Xh,Z), where the intersection is taken in H2(Xh,C),
see [BPV], p. 120. Hence, NS(X) is a primitive sublattice of H2(Xh,Z). ¤

Remark 2.2.27 Let X be a K3 surface over C. By lemma 2.2.26 the group H2(Xh,Z)
is torsion-free and thus, so is the Néron-Severi group NS(X). By Proposition 2.2.17 this
implies that algebraic equivalence is the same as numerical equivalence. As we have
dimH1(X,OX) = 0, we also find that Pic0 X is trivial. Therefore, there is an isomor-
phism PicX ∼= NS(X) and algebraic and numerical equivalence are in fact the same as
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linear equivalence on complex K3 surfaces. The same holds for K3 surfaces in positive
characteristic, see [BM], Thm. 5.
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2.3 Definition of elliptic surfaces

Before going into the theory of elliptic surfaces in the next section, we will elaborate on
the definition. In this section, we will also state a few preliminary results and a theorem
that gives equivalent conditions for an elliptic fibration to be relatively minimal.

Throughout this section, k will denote an algebraically closed field. All varieties,
unless stated otherwise, are k-varieties.

Definition 2.3.1 A fibration of a variety Y over a regular integral curve Z over k is a
dominant morphism g : Y → Z.

Remark 2.3.2 If Y is integral in the definition above, then g is flat, see [Ha2], Prop.
III.9.7. If also the characteristic of k equals 0 and the singular locus of Y is contained in
finitely many fibers, then almost all fibers are nonsingular, see [Ha2], Thm. III.10.7. If
Y is projective, then g is surjective, as projective morphisms are closed.

Lemma 2.3.3 Let g : Y → Z be a fibration of a proper surface Y over a regular, proper,
integral curve Z. Let D be a prime divisor of Y . Then the induced morphism g|D : D → Z
is either constant or surjective.

Proof. Since Y and Z are proper over k, the morphism g is proper, and therefore g a
closed map. As D is an irreducible closed subscheme of Y , this means that g(D) is an
irreducible closed subset of Z. Since Z is a curve, this implies that g(D) is equal to just
a closed point or to Z. ¤

Definition 2.3.4 Let g : Y → Z be as in Lemma 2.3.3. Then a divisor D on Y is called
fibral or vertical if for all its irreducible components D′ the restriction g|D′ is constant. If
g|D′ is surjective for all irreducible components D′ of D, then D is called horizontal. The
subgroup of Div Y generated by vertical (resp. horizontal) divisors is denoted Divvert S
(resp. Divhor S).

Remark 2.3.5 It follows from Lemma 2.3.3 that Div S is the direct sum of Divvert S
and Divhor S.

Definition 2.3.6 Let Z be a smooth, projective, irreducible curve. A fibration of a
smooth, projective, irreducible surface Y over Z is called relatively minimal if for ev-
ery fibration of a smooth, projective, irreducible surface Y ′ over Z, every Z-birational
morphism Y → Y ′ is necessarily an isomorphism.

Theorem 2.3.7 Let Y be a smooth, projective, irreducible surface, Z a smooth, projec-
tive, irreducible curve, and let g : Y → Z be a fibration such that no fiber contains an
exceptional prime divisor E, i.e., a prime divisor with self-intersection number E2 = −1
and H1(E,OE) = 0. Then g is a relatively minimal fibration.
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Proof. This is a direct corollary of the Castelnuovo Criterion ([Ch], Thm. 3.1) and the
Minimal Models Theorem ([Ch], Thm. 1.2). See also Lichtenbaum [Lic] and Shafarevich
[Sha]. ¤

Lemma 2.3.8 Let g : X → Y be a projective morphism of noetherian schemes. Assume
that X is integral and that g has a section. Then there is an isomorphism g∗OX

∼= OY

if and only if for every y ∈ Y the fiber Xy is connected.

Proof. Set Y ′ = Spec g∗OX . By Stein factorization (see [Ha2], Cor. III.11.5) the mor-
phism g factors naturally as g = h ◦ f , where f : X → Y ′ is projective with connected
fibers and h : Y ′ → Y is finite. If we have g∗OX

∼= OY , then h is an isomorphism, so g
has connected fibers. Conversely, suppose g has connected fibers. As f is projective, it is
closed. If f were not surjective, then there would be a nonempty open affine V ⊂ Y ′ with
f−1(V ) = ∅. This implies (f∗OX)(V ) = 0, contradicting the equality f∗OX = OY ′ . We
conclude that f is surjective, so h also has connected fibers. As h is finite, its fibers are
also totally disconnected (see [Ha2], exc. II.3.5), so h is injective on topological spaces.
Let ϕ : Y → X be a section of g. Then ψ = f ◦ϕ is a section of h. Every injective contin-
uous map between topological spaces that has a continuous section is a homeomorphism,
so h is a homeomorphism. Therefore, to prove that h is an isomorphism, it suffices to
show this locally, so we may assume Y ′ = SpecB and Y = Spec A. The composition
ψ# ◦ h# : A → B → A is the identity, so ψ# is surjective. As X is integral, so is Y ′.
Hence, the ideal (0) ⊂ B is prime. Since ψ is surjective, there is a prime ideal p ⊂ A
such that (0) = ψ(p) = (ψ#)−1p, so ψ# is injective. We find that ψ# is an isomorphism.
Hence, so are ψ and h, so there is an isomorphism g∗OX

∼= OY . ¤

Definition 2.3.9 A fibration is called elliptic if all but finitely many fibers are smooth,
geometrically irreducible curves of genus 1.

Theorem 2.3.10 Let C be a smooth, irreducible, projective curve of genus g(C) over
an algebraically closed field k. Let S be a smooth, irreducible, projective surface over k
with Euler characteristic χ = χ(OS) and let g : S → C be an elliptic fibration that has a
section. Then the following are equivalent.

(i) The morphism g is a relatively minimal fibration,

(ii) There is a divisor L on C of degree χ, such that any canonical divisor KS on S is
linearly equivalent to g∗(KC + L), where KC is a canonical divisor on C.

(iii) Any canonical divisor KS on S is algebraically equivalent to (2g(C) − 2 + χ)F ,
where F is any fiber of g,

(iv) We have K2
S = 0.

Proof. (i) ⇒ (ii). Almost all fibers are irreducible and thus connected. By Remark 2.3.2
the morphism g is flat, so by the principle of connectedness, all fibers are connected, see
[Ha2], exc. III.11.4. From Lemma 2.3.8 we find that g∗OS

∼= OC . Under that assumption,
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an explicit expression for KS can be given, see [Ko1], § 12, for base fields of characteristic
0, and [BM], § 1, for characteristic p > 0. Since g has a section, say O, every fiber of
g will have intersection multiplicity 1 with the horizontal divisor O(C), so there are no
multiple fibers. In that case, the expression mentioned above implies that KS is linearly
equivalent to g∗(KC + L) for some divisor L on C of degree χ.

(ii) ⇒ (iii). The divisor KC + L has degree 2g(C)− 2 + χ, so it is algebraically
equivalent to (2g(C) − 2 + χ)P for any point P on C. Hence, the divisor g∗(KC + L) is
algebraically equivalent to (2g(C) − 2 + χ)F for any fiber F .

(iii) ⇒ (iv). Since F is algebraically equivalent to any other fiber F ′, it is also
numerically equivalent to any other fiber F ′. Thus we get F 2 = F · F ′ = 0, so K2

S = 0.

(iv) ⇒ (i). Suppose g were not relatively minimal. Then the Minimal Models
Theorem (see [Ch], Thm. 1.2) tells us that there would be a relatively minimal fibration
g′ : S′ → C of a smooth, irreducible, projective surface S′ and a C-morphism γ : S → S′

which consists of a nonempty sequence of blow-ups of points. Then g′ is an elliptic
fibration as well. The composition γ ◦ O is a section of g′. By the proven implication (i)
⇒ (iii), we find that K2

S′ = 0. This implies K2
S < 0, because for any blow-up Z → Z ′

of a nonsingular projective surface Z ′ in a point P , we have K2
Z = K2

Z′ − 1, see [Ha2],
Prop. V.3.3. From this contradiction, we conclude that g is relatively minimal. ¤

The following definition states that if the fibration g as described in Theorem
2.3.10 is not smooth, then we call the quadruple (S, C, g,O) an elliptic surface. Recall
that throughout this section k is assumed to be algebraically closed.

Definition 2.3.11 Let C be a smooth, irreducible, projective curve over k. An elliptic
surface over C is a smooth, irreducible, projective surface S over k together with a rela-
tively minimal elliptic fibration g : S → C that is not smooth, and a section O : C → S
of g.

Remark 2.3.12 In order to rephrase what it means for g not to be smooth, note that
by [EGA IV(2)], Déf. 6.8.1, a morphism of schemes g : X → Y is smooth if and only if g
is flat, g is locally of finite presentation, and for all y ∈ Y the fiber Xy = X ×Y Spec k(y)
over the residue field k(y) is geometrically regular. See also [Ha2], Thm. III.10.2.

In the case that g is a fibration of an integral variety X over a smooth, irre-
ducible, projective curve over an algebraically closed field k, it follows from Remark 2.3.2
that g is flat. As X is noetherian and of finite type over k, it also follows that g is locally
of finite presentation. Hence g not being smooth is then equivalent to the existence of a
singular fiber.

For the rest of this section, let S be an elliptic surface over a smooth, irreducible,
projective curve C over k, fibered by g : S → C with a section O. Let K = k(C) denote
the function field of C and let η : Spec K → C be its generic point. Then the generic
fiber E = S ×C Spec K of g is a curve over K of genus 1. The curve E/K is smooth
because g is flat and projective, see [Ha2], exercise III.10.2. The curve E/K is projective
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because being projective is stable under base extension, see [Ha2], exercise II.4.9. Let ξ
denote the natural map E → S.

E
ξ

S

g

Spec K η C

(2.2)

Lemma 2.3.13 Both maps ξ∗ and η∗ in

E(K) = HomK(Spec K, E)
ξ∗−→ HomC(Spec K, S)

η∗

←− HomC(C, S) = S(C)

are bijective.

Proof. By the universal property of fibered products, we find that every morphism
σ : SpecK → S with g◦σ = η comes from a unique section of the morphism E → Spec K.
Hence, the map ξ∗ is bijective. As C is a smooth curve and S is projective, any morphism
from a dense open subset of C to S extends uniquely to a morphism from C, see [Ha2],
Prop. I.6.8. As SpecK is dense in C, the map η∗ is bijective as well. ¤

Whenever we implicitly identify the two sets E(K) and S(C), it will be done
using the bijection ξ−1

∗ ◦ η∗ of Lemma 2.3.13. The section O of g corresponds to a point
on E, which we will also denote by O. It gives E the structure of an elliptic curve. This
endows E(K) with a group structure, which carries over to S(C), see [Si1], Prop. III.3.4.

For any P ∈ E(K) ∼= S(C), let (P )E and (P )S denote the prime divisor corre-
sponding to the image of P on E and S respectively. We will leave out the indices E and
S if it is clear from the context which is meant. We will now deduce some useful inter-
section multiplicities on S. By definition any two fibers F and F ′ of g are algebraically
equivalent. Hence, if F is any fiber and Θ is any irreducible component of a fiber, then
we have F · Θ = 0, as we may replace F by any fiber F ′ that is disjoint from Θ. Let
P ∈ S(C) be any section of g. As the divisor (P ) = (P )S meets all fibers of g only once,
we find (P ) · F = 1 for any fiber F . For any irreducible component Θ of a fiber we have
(P ) ·Θ = 1 or 0 depending on whether (P ) does or does not intersect Θ. If D is a divisor
on C of degree d, then we have g∗(D) · (P ) = d, as every point on C pulls back under g∗

to a whole fiber on S. If g(C) denotes the genus of C ∼= P (C) and χ = χ(OS) denotes
the Euler characteristic of S, then according to Theorem 2.3.10, the adjunction formula
(see [Ha2], Prop. V.1.5) gives

2g(C) − 2 = (P ) · ((P ) + K) = (P )2 + (2g(C) − 2 + χ)(P ) · F = (P )2 + 2g(C) − 2 + χ,

so we find (P )2 = −χ. The following proposition tells us that this number (P )2 is
negative.

Proposition 2.3.14 The Euler characteristic χ = χ(OS) of an elliptic surface is posi-
tive.
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Proof. See [Og]. ¤

2.4 Shioda’s theory of elliptic surfaces

We will phrase Shioda’s theory of elliptic surfaces [Shi3] in a scheme-theoretic language.
We will show that the Néron-Severi group of an elliptic surface is a free abelian group that
can be given the structure of a lattice by the intersection pairing. We will then prove the
following main theorem which implies that the Mordell-Weil group of the generic fiber
of an elliptic surface is finitely generated.

As in the previous section, let S denote an elliptic surface over a smooth,
irreducible, projective curve C over an algebraically closed field k, fibered by g : S → C
with a section O. Let K = k(C) denote the function field of C and let η : Spec K → C
be its generic point. Let E = S ×C Spec K be the generic fiber of g and let ξ : E → S
denote the natural projection.

One of our main goals is to prove the following theorem.

Theorem 2.4.1 The intersection pairing gives the Néron-Severi group NS(S) the struc-
ture of a lattice. The subgroup T generated by the vertical divisors and the section (O)
is a sublattice of NS(S) that fits in a natural short exact sequence

0 → T → NS(S) → E(K) → 0.

There are two main differences between Shioda’s setup and ours. First of all, we
will define our homomorphisms between various groups in a functorial way. This allows
us to prove various statements using for instance the snake lemma instead of explicit
formulas. Second, Shioda works with the generic fiber E of an elliptic surface S as if it
is a curve on the surface just like the special fibers, i.e., fibers above closed points of
the base curve C. Even though E is technically not a curve on S, Shioda thinks of the
restriction of a divisor D on S to E as “intersecting” D and E. This gives a map from
Div S to Div E, which induces a homomorphism from PicS to PicE. We will introduce
this map as coming from the contravariant functor Pic. Even though Shioda’s way of
working with the generic fiber is justified by Weil [We], our way avoids the danger of using
results about the generic fiber that only hold for special fibers. Whenever a statement is
due to Shioda, we will mention this in its proof.

To better understand the structure of the Néron-Severi group of an elliptic
surface, we first focus on the part that comes from the vertical divisors. Recall (Def-
inition 2.3.4) that Divvert S denotes the free abelian group generated by the vertical
prime divisors. For any closed point v ∈ C let Λ(v) denote the free abelian group gen-
erated by the irreducible components of the fiber g−1(v). Then we have an isomorphism
Divvert S =

⊕
v∈C Λ(v). Because g is dominant, by Remark 2.2.15 there is a homomor-

phism g∗ : Div C → Div S, whose image is obviously contained in Divvert S. For v ∈ C,
let Fv denote the fiber g∗(v) =

∑
nΘΘ where the sum is taken over the irreducible com-

ponents Θ of g−1(v) and we have nΘ = ordΘ(uv ◦ g) for a uniformizer uv of the local
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ring at v ∈ C. Then we have Fv ∈ Λ(v) and as Fv is algebraically equivalent to Fv′ for
any other v′ ∈ C, we have Fv · Θ = Fv′ · Θ = 0 for all Θ ∈ Λ(v). This implies that the
intersection pairing is well-defined on the quotient Λ1(v) = Λ(v)/〈Fv〉.

Let Θv,0 denote the irreducible component of Fv that intersects the section (O).
Since O is a section, it intersects Fv only once, so we find 1 = Fv ·(O) =

∑
Θ nΘΘ ·(O) =

nΘv,0Θv,0 · (O). Thus we have nΘv,0 = 1. The map Z→ Λ(v) sending 1 to Fv is a section
of the homomorphism Λ(v) → Z that sends D to D ·(O). Hence the short exact sequence

0 → Z→ Λ(v) → Λ1(v) → 0

splits. The induced section of Λ(v) → Λ1(v) sends D mod Fv to D − (D · (O))Fv, which
is the unique element D′ in Λ(v) such that D′−D is a multiple of Fv and the coefficient
of Θv,0 in D′ is zero. This shows that Λ1(v) is isomorphic to the free abelian group
generated by all irreducible components of g−1(v) except Θv,0.

Remark 2.4.2 Let ζv denote the composition of the injection Λ(v) → Divvert S with the
described section Λ1(v) → Λ(v) sending D mod Fv to D−(D ·(O))Fv. Then σv identifies
Λ1(v) with the free subgroup of Divvert S generated by those irreducible components
of g−1(v) that do not intersect (O). Whenever we identify Λ1(v) with a subgroup of
Divvert S in this section, it will be through ζv.

Lemma 2.4.3 The group Λ(v) together with the intersection pairing and the element
Fv =

∑
Θ nΘΘ satisfies all conditions and statements (i)–(iv) of Lemma 2.1.22. Further-

more, for any irreducible component Θ of g−1(v) we have Θ2 ≥ −2 and Θ2 is even.

Proof. The number of components of g−1(v) is finite and nonzero and the intersection
pairing (D, D′) 7→ D ·D′ is symmetric and bilinear. For any two irreducible components
Θ, Φ we have Θ · Φ ≥ 0 because Θ and Φ are effective. The element F in statement (ii)′

is the whole fiber Fv. By Remark 2.3.2 the morphism g is flat, so by the principle of
connectedness, all fibers are connected, see [Ha2], exc. III.11.4. This gives statement (iii).
As (i), (ii)′, and (iii) together imply (ii), we also have (ii). Statement (iv) follows from the
fact that we have nΘv,0 = 1. Since the canonical divisor KS is numerically equivalent to
a multiple of Fv (Theorem 2.3.10) and we have Fv ·y = 0 for all y ∈ Λ(v), the adjunction
formula gives 2g(Θ) − 2 = Θ · (Θ + KS) = Θ2 for any irreducible component of g−1(v),
where g(Θ) is the genus of Θ. Hence we find Θ ≥ −2 and Θ2 is even. ¤

Let mv denote the number of irreducible components of g−1(v) and let m
(1)
v

denote the number of irreducible components Θ of multiplicity nΘ = 1. Note that we

have nΘv,0 = 1, so we get m
(1)
v ≥ 1.

Proposition 2.4.4 For any v ∈ C the group Λ(v) together with the intersection pairing
is isomorphic to one of the groups described in Table 2.1. The intersection pairing makes

Λ1(v) into a negative definite lattice of rank mv − 1 and discriminant (−1)mv−1m
(1)
v .
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Proof. By Lemma 2.4.3 the group Λ(v) together with the intersection pairing satisfies
all hypotheses of Proposition 2.1.24, so Λ(v) is isomorphic to one of the examples in
Table 2.1. Therefore Λ1(v) is isomorphic to one of the negative definite lattices in the
fourth column of that table. The rank of Λ1(v) follows from the fact that Λ(v) is free
of rank mv and we have rkΛ1(v) = rk Λ(v) − 1. The discriminant follows from Remark
2.1.23 and the fact that Λ1(v) is negative definite. ¤

Proposition 2.4.4 tells us what the group structure of Λ(v) together with the
intersection pairing can be. This does not tell us everything about the geometric structure
of the fiber above any v ∈ C, as for instance the irreducible components may or may
not be singular, or three components may intersect in one point. Table 2.2 shows several
possible fibers with a more detailed description given in Table 2.3. Table 2.2 is almost
exactly copied from [Si2], Fig. 4.4. The first two columns of Table 2.2 and 2.3 contain the
name or type of the singular fiber and the number of irreducible components. Note that
many of the names in Table 2.2 and 2.3 were also used in Table 2.1, where they denoted
certain groups together with a symmetric pairing. The names in Table 2.1 were chosen
such that for every type N in Table 2.1, if g−1(v) is a singular fiber of type N as in
Table 2.2, then Λ(v) together with the intersection pairing is isomorphic to the example
in Table 2.1 of type N . For a singular fiber at v of type I0(j) or I∗0 (j), the group Λ(v)
is of type I0 or I∗0 respectively. The types I0, II, III, and IV in Table 2.2 and 2.3 do
not occur in Table 2.1. If g−1(v) is a singular fiber of one of these types, then Λ(v) is of
type I1, I1, I2, or I3 respectively.

The third column of Table 2.2 contains a picture. Each (possibly curved) line
segment corresponds to an irreducible component of the singular fiber. The number of
intersection points of two line segments equals the number of intersection points of the
corresponding irreducible components. All these intersections are transversal, except for
type III, where two nonsingular rational curves intersect in one point with multiplicity
2. A short description in words is provided in the third column of Table 2.3. The fibers of
type I0(j) and I∗0 (j) come with an extra parameter j in the moduli space of four distinct
points on the projective line. For type I0(j) the fiber is an elliptic curve, and thus a
double cover of P1 with four ramification points. The parameter j corresponds to these
four points. As the ground field is algebraically closed, this parameter j can be identified
with the j-invariant of the fiber. For singular fibers of type I∗0 (j) the parameter j describes
the four intersection points of the component of multiplicity 2 with the other components.
We will see in Remark 2.4.18 that over any ground field (also not algebraically closed)
at least one of these intersection points is rational, so that the component of multiplicity
2 is indeed isomorphic with the projective line. We will see in the same remark why this
parameter is also called j. The fourth column of Table 2.2 gives the opposite of a standard

root lattice that Λ1(v) is isomorphic to, see also Table 2.1. The fifth column states m
(1)
v ,

which also equals the absolute value of the discriminant of Λ1(v), see Proposition 2.4.4.

We will see that after reducing, any two fibers X and Y of an elliptic fibration
that are of the same type, are in fact isomorphic. In Proposition 2.4.10 we will prove
something stronger by assuming only that X and Y satisfy the description of the same
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Type mv Configuration Λ1(v) m
(1)
v

I0(j) 1
1

0 1

I1 1 1 0 1

In(n ≥ 2) n
11

1 1
An−1(−1) n

II 1
1

0 1

III 2
1

1
A1(−1) 2

IV 3 1

1

1
A2(−1) 3

I∗0 (j) 5
1 1 1 1

2

D4(−1) 4

I∗n(n ≥ 1) n + 5
11

2

2 2

2

1 1
Dn+4(−1) 4

IV ∗ 7

3

1 1 1
2 22 E6(−1) 3

III∗ 8 3
4

2 2

3
1

2

1
E7(−1) 2

II∗ 9

6

3
4

2
5

4
3

2

1 E8(−1) 1

Table 2.2: fibers of elliptic surfaces
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type mv description (all fibers are projective)

I0(j) 1 nonsingular curve of genus 1 with j-invariant j

I1 1 singular rational curve with one node

I2 2 two nonsingular rational curves intersecting in two different
points

In(n ≥ 3) n n nonsingular rational curves intersecting in a cycle, i.e.,
Θi · Θj = 1 if i − j ≡ ±1 mod n, Θi · Θj = 0 otherwise

II 1 singular rational curve with one cusp

III 2 two nonsingular rational curves intersecting in one point
with multiplicity 2

IV 3 three nonsingular rational curves intersecting in one point
P with dimk m/m2 = 2, where m is the maximal ideal of the
local ring at P

I∗0 (j) 5 nonsingular rational curves with only transversal intersec-
tions, no three components intersect in one point, the in-
tersection numbers are as suggested by Table 2.2, and the
parameter j is the element in the moduli space of four points
on P1 corresponding to the four intersection points.

I∗n(n ≥ 1) n + 5 



nonsingular rational curves with only transversal inter-
sections, no three components intersect in one point, and
the intersection numbers are as suggested by Table 2.2.

IV ∗ 7
III∗ 8
II∗ 9

Table 2.3: description of fibers
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type of fiber, not that they are actually fibers of an elliptic fibration. This requires that
we generalize the notion of intersection number of two curves on a smooth surface to the
case of two components of an abstract curve. For curves on a smooth surface we have
the following definition, see [Ha2], p. 360.

Definition 2.4.5 Let X be a smooth surface over a field k and let C and D be two
geometrically integral curves on X intersecting at the point P . Let p and q denote the
prime ideals in the local ring OX,P corresponding to C and D respectively. Then the
intersection number (C · D)P of C and D at P equals dimk OX,P /(p + q).

Remark 2.4.6 Suppose X, C, D, P, p, and q are as in Definition 2.4.5. Let Z denote the
scheme-theoretic union Z = C ∪ D, i.e., the ideal sheaf of Z in X is the intersection of
the ideal sheaves of C and D in X. Let OZ,P denote the local ring of P in Z. Then we
have an isomorphism OZ,P

∼= OX,P /(p ∩ q). Let p and q also denote the image in OZ,P

of p and q respectively. Then we have dimk OZ,P /(p + q) = dimk OX,P /(p + q).

According to Remark 2.4.6, the following definition is a generalization of the
notion of intersection number of two curves on a smooth surface.

Definition 2.4.7 Let Z be a geometrically reduced curve over a field k and let P ∈ Z
be a closed point of degree 1 where two different irreducible components C and D of Z
intersect. Let p and q denote the prime ideals in the local ring OZ,P corresponding to
C and D respectively. Then the intersection number (C · D)P of C and D at P equals
dimk OZ,P /(p + q). We say that C and D meet transversally if we have (C · D)P = 1.

Lemma 2.4.8 Let Z, C, D, P, p, and q be as in Definition 2.4.7, and let m denote the
maximal ideal of the local ring OZ,P . Then for r = (C · D)P we have mr ⊂ p + q.

Proof. Let n be the maximal ideal of the artinian ring OZ,P /(p + q) and let t be the
smallest integer such that nt/nt+1 = 0. Then by Nakayama’s lemma we have nt = 0, so
mt ⊂ p + q. We also have r = dimk R/(p + q) ≥ t, so mr ⊂ mt ⊂ p + q. ¤

Lemma 2.4.9 Let the notation be as in Lemma 2.4.8. Then C and D intersect transver-
sally at P if and only if we have p + q = m.

Proof. Suppose C and D intersect transversally, so r = 1. Then we find m ⊂ p + q

from Lemma 2.4.8. Since we also have p + q ⊂ m, we get m = p + q. Conversely,
suppose m = p + q. Then we have an isomorphism OZ,P /(p + q) ∼= OZ,P /m ∼= k, so
(C · D)P = dimk k = 1. ¤

Proposition 2.4.10 Let N be a type of fiber described in Tables 2.2 and 2.3. Let X and
Y be curves over the algebraically closed field k, both fitting the description of N . Then
Xred and Yred are isomorphic to each other.
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To prove Proposition 2.4.10 we will use the following lemmas.

Lemma 2.4.11 Let k be any field and let R and S be commutative local k-algebras
with maximal ideals m and n respectively. Assume that k → S/n is an isomorphism.
Assume also that R contains ideals p1, . . . , pr ⊂ m with r ≥ 2 and with p1 ∩ . . . ∩ pr =
(0) and that there exists a positive integer t with mt ⊂ pi + pj for i 6= j. Suppose
that there are local homomorphisms of k-algebras ϕi : S → R/pi such that the induced
homomorphism n/nt(r−1) → ⊕r

i=1 m/(mt(r−1) + pi) has image contained in the image of
the natural homomorphism m/mt(r−1) → ⊕r

i=1 m/(mt(r−1) + pi). Then there is a unique
local homomorphism of k-algebras ψ : S → R such that ϕi is the composition of ψ and
the homomorphism R → R/pi for all i.

S
ψ

ϕ1 ϕ2

ϕr

R

R/p1 R/p2 · · · R/pr

Proof. We show that for each x ∈ S there is a unique y ∈ R such that ϕi(x) ≡ y mod pi

for all i. First we show existence. For x ∈ k ⊂ S this is obvious, as ϕi is a homomorphism
of k-algebras. Suppose x ∈ n. Then by the last hypothesis, there exists z ∈ m such that
for all i we have z ≡ ϕi(x)mod (mt(r−1) + pi). Hence for all i there are ai ∈ mt(r−1) and
bi ∈ pi such that ϕi(x) − z = ai + bi. From the inclusions

mt(r−1) = (mt)r−1 ⊂(p1 + pi) · · · (pi−1 + pi)(pi+1 + pi) · · · (pr + pi)

⊂(p1 · · · pi−1pi+1 · · · pr) + pi

we deduce that we can write ai = ci + di with ci ∈ p1 · · · pi−1pi+1 · · · pr and di ∈ pi. Set
y = z +

∑r
j=1 cj . Then we have y ≡ z + ci = ϕi(x)− bi − di ≡ ϕi(x)mod pi for all i, just

as was needed. For general x ∈ S, we write x as x = x1 + x2 with x1 ∈ k and x2 ∈ n to
obtain y1 and y2 such that yl ≡ ϕi(xl)mod pi for all i and l = 1, 2. Then y = y1 + y2

satisfies ϕi(x) ≡ y mod pi for all i. To show that y is unique, suppose that there are y and
y′ with y ≡ ϕi(x) ≡ y′ mod pi. Then we have y−y′ ∈ p1∩ . . .∩pr = (0), so y = y′. Define
ψ : S → R by sending x ∈ S to the unique element y ∈ R that satisfies ϕi(x) ≡ y mod pi

for all i. Then ϕi is the composition of ψ and the homomorphism R → R/pi for all
i. This implies that the homomorphism

∏
ϕi : S → ∏

R/pi is the composition of ψ
and the natural homomorphism R → ∏

R/pi. As we have p1 ∩ . . . ∩ pr = (0), this last
homomorphism is injective, so ψ is a homomorphism as well. As ψ is the identity on k
and sends n to m, we conclude that ψ is a local homomorphism of k-algebras. ¤

Remark 2.4.12 As one can see in the proof, the exponent t(r−1) in the last hypothesis
of Lemma 2.4.11 can be replaced by any integer q with nq ⊂ pi+(p1∩. . .∩pi−1∩pi+1∩. . .∩
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pr) for all i. Also, R and S may be assumed to be just local rings instead of k-algebras, as
long as the last hypothesis is replaced by the assumption that for q as above, the image
of S/nq → ⊕r

i=1 R/(mq + pi) is contained in the image of R/mq → ⊕r
i=1 R/(mq + pi).

Lemma 2.4.13 Let V and W be vector spaces over a field k and let X1, . . . , Xn and
Y1, . . . , Yn be vector spaces over k of dimension 1. Suppose that there are nonsurjective
homomorphisms ϕ : V → ⊕n

i=1 Xi and ψ : W → ⊕n
i=1 Yi such that for each j the induced

homomorphisms V → ⊕
i6=j Xi and W → ⊕

i6=j Yi are surjective. Assume that α1 : X1 →
Y1 is an isomorphism. Then there are isomorphisms αi : Xi → Yi for i = 2, . . . , n such
that the isomorphism α = (αi)i :

⊕n
i=1 Xi →

⊕n
i=1 Yi induces an isomorphism between

the images of ϕ and ψ.

Proof. Suppose 1 ≤ j ≤ n and let πj :
⊕n

i=1 Xi →
⊕

i6=j Xi be the natural projection.
Since πj ◦ϕ is surjective, the homomorphism Xj = ker πj → cokerϕ is surjective as well.
Since Xj has dimension 1 and cokerϕ is nontrivial, we find that this homomorphism
is an isomorphism for all j. Similarly we get an isomorphism Yj → cokerψ for all j.
Thus the isomorphism α1 induces an isomorphism γ : cokerϕ → cokerψ, which induces
isomorphisms αi : Xi → Yi such that the diagram

⊕n
i=1 Xi

(αi)i

cokerϕ

∼=γ

⊕n
i=1 Yi cokerψ

commutes. This induces an isomorphism between the kernels of the horizontal arrows.
These kernels are the images of ϕ and ψ. ¤

Lemma 2.4.14 Let k be any field. Let X and Y be geometrically reduced curves over k
with closed points Q and R of degree 1 on X and Y respectively. Suppose that X and Y
both consist of n ≥ 2 irreducible components, say X1, . . . , Xn and Y1, . . . , Yn, such that
for all i 6= j the components Xi and Xj intersect only at Q and Yi and Yj intersect only
at R. Suppose also that the Xi and Yi are regular and that for i = 1, . . . , n there is an
isomorphism ϕi : Xi → Yi that sends Q to R. Let m and n denote the maximal ideals of
the local rings OX,Q and OY,R respectively. Then the following statements hold.

(i) Suppose we have n = 2, the components X1 and X2 intersect transversally at Q,
and Y1 and Y2 intersect transversally at R. Then there is an isomorphism X → Y
that restrict to ϕi on Xi for i = 1, 2.

(ii) Suppose we have n = 2, the components X1 and X2 intersect each other with
multiplicity 2, the same holds for Y1 and Y2, one of the components has genus 0,
and X and Y are projective. Then there exists an isomorphism X → Y .

(iii) Suppose we have n = 3, the Xi intersect each other pairwise transversally, so do
the Yi, and X and Y are projective. Suppose also that two of the Xi have genus
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0 and we have dimk m/m2 = dimk n/n2 = 2. Then there exists an isomorphism
X → Y .

Proof. For (i), define the open subsets Ui = Xi − {Q}. Then the isomorphisms ϕi|Ui

glue to a morphism ρ : X −{Q} → Y . Let p1 and p2 denote the only two minimal primes
of OX,Q, corresponding to the components X1 and X2 respectively. Since X is reduced,
they satisfy p1∩p2 = (0). As the intersection at Q is transversal, we find m ⊂ p1+p2 from
Lemma 2.4.8. Applying Lemma 2.4.11 to the local rings OX,Q and OY,R, we find that the
local homomorphisms OY,R → OX,Q/pi corresponding to ϕi come from a unique local
homomorphism OY,R → OX,Q. This means that we can extend ρ uniquely to a morphism
ψ : X → Y . By symmetry we also have a unique morphism ψ′ : Y → X that restricts
to ϕ−1

i on Yi. By uniqueness, the composition ψ′ ◦ ψ is equal to the identity, so ψ is an
isomorphism.

For (ii), say that X2 has genus 0. As X2 contains the k-point Q, we find that X2

is isomorphic to P1
k and hence, so is Y2. Let ϕ#

i denote the local homomorphism OYi,R →
OXi,Q induced by ϕi between the local rings at R and Q on Yi and Xi respectively. As
X2 and Y2 are isomorphic to P1, there are isomorphisms OX2,Q

∼= k[s](s) and OY2,R
∼=

k[t](t). Then we get the following diagram and we want to know if there exists a local
isomorphism σ : OY,R → OX,Q that makes the diagram commutative.

OY1,R

∼= ϕ#
1

OY,R

∃? σ

OY2,R
∼=

∼= ϕ#
2

k[t](t)

OX1,Q OX,Q OX2,Q ∼=
k[s](s)

(2.3)

The problem is that such σ may not exist. We will replace ϕ#
2 by another isomorphism

for which such a σ does exist. For i = 1, 2, let mi and ni denote the maximal ideals
of OXi,Q and OYi,R respectively. Then the ϕ#

i induce an isomorphism n1/n2
1 ⊕ n2/n2

2
∼=

m1/m2
1 ⊕ m2/m2

2. In order for σ to exist, this isomorphism has to identify the image of
the map β : n/n2 → n1/n2

1 ⊕ n2/n2
2 with the image of α : m/m2 → m1/m2

1 ⊕ m2/m2
2.

n/n2

∃?

β
n1/n2

1 ⊕ n2/n2
2

∼=

m/m2
α m1/m2

1 ⊕ m2/m2
2

For any λ ∈ k∗ consider the composition δλ of local isomorphisms of k-algebras

OY2,R ∼=

δλ

k[t](t)
t7→λs

∼= k[s](s) ∼=
OX2,Q.

When λ runs through k∗, the homomorphism n2/n2
2 → m2/m2

2 induced by δλ runs through
all isomorphisms between n2/n2

2 and m2/m2
2 as both are 1-dimensional. We will see that
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there is a λ ∈ k∗ such that if we replace ϕ#
2 by δλ in diagram (2.3), then there does exist

an isomorphism σ as mentioned above.

Note that we have mi/m2
i = m/(m2 + pi), where pi is the prime in OX,Q corre-

sponding to Xi. Hence the maps m/m2 → mi/m2
i are surjective for i = 1, 2. Similarly, we

find that the maps n/n2 → ni/n2
i are surjective. We will show that α is not surjective.

Note that for i = 1, 2 there is a short exact sequence

0 → m2 + p1 + p2

m2 + pi
→ m

m2 + pi
→ m

m2 + p1 + p2
→ 0 (2.4)

of vector spaces over k. As the intersection number X1 ·X2 equals 2, we have m2 ⊂ p1+p2

by Lemma 2.4.8. This implies m2 + p1 + p2 = p1 + p2. As X1 and X2 do not intersect
transversally, we have p1 + p2 ( m by Lemma 2.4.9, so the dimension of the right-
most vector space in (2.4) is at least 1. As the Xi are regular, the vector space in the
middle has dimension 1. Together this implies that the left-most vector space is 0, so
we have m2 + pi = m2 + p1 + p2 = p1 + p2. This implies that α is the natural map
α : m/m2 →

(
m/(p1 + p2)

)2
, which is obviously not surjective. A similar argument shows

that β is not surjective. By Lemma 2.4.13 there is an isomorphism η : n2/n2
2 → m2/m2

2

such that ϕ#
1 and η induce an isomorphism n1/n2

1 ⊕ n2/n2
2 → m1/m2

1 ⊕ m2/m2
2 that

identifies the images of α and β. This map η is induced by δλ for some λ ∈ k∗. As we
have m2 ⊂ p1 + p2, we find from Lemma 2.4.11 that there is a unique homomorphism
σ : OY,R → OX,Q making the following diagram commutative.

OY1,R

∼= ϕ#
1

OY,R

σ

OY2,R

∼= δλ

OX1,Q OX,Q OX2,Q

By symmetry there is also a unique homomorphism σ′ : OX,Q → OY,R that is compatible

with the inverses of ϕ#
1 and δλ. By uniqueness, the compositions σ′ ◦ σ and σ ◦ σ′ are

the identity, so σ is an isomorphism. This implies that there are open neighborhoods U
and V of Q and R in X and Y respectively, such that σ induces an isomorphism from
U to V . Since X and Y are projective and regular outside Q and R, this isomorphism
extends to an isomorphism X → Y , see [Ha2], Prop. I.6.8.

For (iii) we proceed similarly. Assume X1 and X2 have genus 0. Then for i = 1, 2
there are isomorphisms OXi,Q

∼= k[si](si) and OYi,R
∼= k[ti](ti). We get the following
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diagram.
OY1,R

∼=

ϕ#
1

OY,R

σ∃?

OY2,R

∼=

ϕ#
2

k[t1](t1) OY3,R

ϕ#
3

∼=

k[t2](t2)

k[s1](s1) OX3,Q k[s2](s2)

OX1,Q

∼=

OX,Q OX2,Q

∼=

(2.5)

We will again replace ϕ#
i by another isomorphism for i = 1, 2, such that there exists

an isomorphism σ : OY,R → OX,Q making the diagram commutative. For i = 1, 2, 3,

let mi and ni denote the maximal ideals of OXi,Q and OYi,R respectively. Then the ϕ#
i

induce an isomorphism
⊕3

i=1 ni/n2
i
∼=

⊕3
i=1 mi/m2

i . Consider α : m/m2 → ⊕3
i=1 mi/m2

i

and β : n/n2 → ⊕3
i=1 ni/n2

i . Because we have dimk m/m2 = dim n/n2 = 2, we find that
α and β are not surjective. Suppose we have i, j ∈ {1, 2, 3} with i 6= j. Since Xi and Xj

intersect transversally, we have pi +pj = m, where pl denotes the minimal prime in OX,Q

corresponding to Xl. Hence, for every x, y ∈ m there are a, b ∈ pi and c, d ∈ pj such that
x = a + c and y = b + d. Then for z = b + c we have z ≡ xmod pi and z ≡ y mod pj .
This implies that the homomorphism m/m2 → mi/m2

i ⊕ mj/m2
j is surjective. Similarly,

the homomorphism n/n2 → ni/n2
i ⊕ nj/n2

j is surjective. By Lemma 2.4.13 this implies

that there are isomorphisms ηi : ni/n2
i → mi/m2

i for i = 1, 2 such that these ηi together

with ϕ#
3 induce an isomorphism

⊕3
i=1 ni/n2

i → ⊕3
i=1 mi/m2

i that identifies the image of
β with the image of α. As in the proof of (ii), there are λi ∈ k∗ for i = 1, 2 such that ηi

is induced by δi, where δi is the composition

OYi,R ∼=

δi

k[ti](ti) ti 7→λisi

∼= k[si](si) ∼=
OXi,Q

of isomorphisms of local k-algebras. As we have m ⊂ pi + pj for i 6= j by transversality,
we find from Lemma 2.4.11 that there is a unique σ : OY,R → OX,Q such that σ makes

diagram (2.5) commute if we replace ϕ#
i by δi for i = 1, 2. As in the proof of (ii), it

follows from symmetry and uniqueness of σ that σ is an isomorphism. Therefore, there
is an isomorphism of open neighborhoods of Q and R in X and Y respectively, which
extends to an isomorphism from X to Y . ¤

Remark 2.4.15 Note that statements (ii) and (iii) of Lemma 2.4.14 are false without
the assumption on the genus of some of the components. Suppose for instance that
C1, C2 ⊂ Spec k[x, y] are regular curves without nontrivial automorphisms, given by
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f1(x, y), f2(x, y) ∈ k[x, y] and assume that both curves go through the origin and have
the y-axis as tangent line at the origin. Let C ′

2 be the curve given by f2(x, 2y) = 0. Set
X = C1 ∪ C2 and Y = C1 ∪ C ′

2. Then the components of X and Y are isomorphic, but
by considering the maps on tangent spaces, one can show that locally around the origin
X and Y are not isomorphic.

Proof of Proposition 2.4.10. If both X and Y satisfy the description of type I0(j) for
some j then they are isomorphic because over an algebraically closed field two elliptic
curves are isomorphic if and only if they have the same j-invariant. If they were of
type I1 or II, it follows from the fact that any two rational curves with one node are
isomorphic, and the same holds for rational curves with one cusp. In all other cases
the irreducible components are nonsingular rational curves, and thus isomorphic to P1.
Suppose that in X and Y each of these irreducible components intersects at most three
other components, all intersections are transversal, and there are no points where more
than two components intersect. Since any curve of genus 0 with at most three different
fixed points is isomorphic to any other curve of genus 0 with as many fixed points (over
an algebraically closed field), there is an isomorphism from the open subset of smooth
points on X to the open subset of smooth points on Y . As the irreducible components
of X and Y are smooth and projective, this isomorphism extends to an isomorphism
between components. Applying Lemma 2.4.14, statement (i), to any two intersecting
components, we find that it extends to an isomorphism between X and Y . Similarly,
the proposition follows for type I∗0 (j) as any two curves of genus 0 with four points
corresponding to the same element j in the moduli space of four points on the projective
line are by definition isomorphic. This leaves types III, IV . These two cases follow from
Lemma 2.4.14, statements (ii) and (iii) respectively. ¤

Remark 2.4.16 Without the extra parameter for types I0(j) and I∗0 (j) the conclusion
of Proposition 2.4.10 would be wrong. However, this extra parameter appears not to be
used anywhere in the literature in the context of the singular fibers of type I∗0 (j).

Question 1 Proposition 2.4.10 is no longer true if we replace Xred and Yred by X and
Y respectively. Suppose we add the assumption that X and Y are both fibers of an elliptic
surface. Is it then possible to divide some of the types of singular fibers into additional
continuous families such that Proposition 2.4.10 is still true if we replace Xred and Yred

by X and Y respectively?

The next theorem tells us that the types of fibers in table 2.2 are all possible
types of fibers of elliptic surfaces. Note that the ground field k is still assumed to be
algebraically closed.

Theorem 2.4.17 Let F = Fv = g∗(v) be the fiber of g above a point v ∈ C. Let A be
the set of irreducible components of g−1(v). Then we can write F =

∑
Θ∈A nΘΘ with

nΘ > 0 and the fiber F is of one of the types described in Table 2.3 and 2.2.
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Proof. The fiber is a closed subscheme of the smooth surface S, so at any point P in the
fiber, the local ring OF,P is a quotient of the local ring OS,P in S. Since S is regular of
dimension 2, we have dimm/m2 = 2, where m is the maximal ideal of OS,P . This implies
dim n/n2 ≤ 2 for the maximal ideal n of OF,P with equality if and only if P is a singular
point of F . See also [Ha2], Prop. II.8.12.

By Lemma 2.4.3 the group Λ(v) together with the intersection pairing satisfies
all hypotheses of Proposition 2.1.24, so Λ(v) is isomorphic to one of the examples in
Table 2.1. Set r = #A. Suppose r = 1 and write Θ = Θ1. Then F = nΘΘ, so Θ2 = 0.
As the canonical divisor KS is numerically equivalent to a multiple of any fiber, we
have KS · Ψ = 0 for any vertical divisor Ψ. Therefore, the adjunction formula gives
2pa(Θ) − 2 = Θ · (Θ + KS) = Θ2 = 0, so the arithmetic genus pa(Θ) of Θ equals 1. If
Θ is nonsingular, then the fiber is of type I0(j) for some j. It is a general fact that a
geometrically integral curve with arithmetic genus 1 has at most one singular point, and
if it does have one, then it is a double point, see [Ha2], Cor. V.3.7. Thus, if Θ is singular,
then F = Θ is of type I1 or II. Now suppose r ≥ 2. Then by Proposition 2.1.24 we have
Θ2

i = −2 for all i. By the adjunction formula this implies that the arithmetic genus of
Θi equals 0, which implies that Θi is a nonsingular rational curve.

If there are Θi and Θj with Θi · Θj ≥ 2, then according to Proposition 2.1.24
the fiber F contains only two components with intersection number 2. They intersect
in either one or two points and F is thus of type III or I2 respectively. If there are
three components that intersect in one point, then by Proposition 2.1.24 these are all
components, so F is of type IV .

We may now assume that all intersections are transversal, no three components
intersect in one point, and any two components intersect at most once. These cases
are classified according to the isomorphism class of Λ(v) together with the intersection
pairing. Their isomorphism classes have been classified in Proposition 2.1.24. The elliptic
fibers Fv for which Λ(v) is of type I∗0 contain a component that intersects four other
components. These fibers are separated into a continuous family of types I∗0 (j), where
the parameter j describes the isomorphism class of the four intersection points on the
projective line. ¤

Remark 2.4.18 Tate’s algorithm (see [Ta3] and [Si2], IV.9) gives an easy way to decide
which type of singular fiber lies above a point v ∈ C. It is based on the valuation at v
of both the j-invariant of the generic fiber E/K and the discriminant of a Weierstrass
model of E. From the proof of Tate’s algorithm (see [Si2], p. 373) one can also deduce
the parameter j if the fiber is of type I∗0 (j) as follows. Let R be a discrete valuation ring
with uniformizer π, fraction field K, and algebraically closed residue field k. Let E be
a minimal, smooth, integral model over R of an elliptic curve E over K. Suppose that
the special fiber of E over the residue field k of R has type I∗0 (j0) for some j0 ∈ k. Then
according to [Si2], p. 373, the characteristic of k is not equal to 2, and there exists a
Weierstrass model of E given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6
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with ai ∈ R and π|a1, a2, π2|a3, a4, and π3|a6, such that the polynomial P (T ) = T 3 +
a2,1T

2 + a4,2T + a6,3 ∈ R[T ] with ai,j ≡ π−jai has distinct roots modulo (π). The
parameter j0 corresponds to the isomorphism class of the projective line with these
three roots in R/(π) = k and the point at infinity.

A way to interpret this is as follows. Over an algebraically closed field, the
moduli space of four distinct points on the projective line is exactly the j-line, where
four points P1, P2, P3, P4 on P1 correspond to the j-invariant of an elliptic curve for
which the x-coordinate gives a map to P1 that ramifies above the Pi. Let j ∈ K be the
j-invariant of our elliptic curve E/K. By [Si2], p. 373, we have j ∈ R. Set u = π−1x and
v = π−2y. Then E/K can be given by

π(v2 + a1,1uv + a3,2v) = u3 + a2,1u
2 + a4,2u + a6,3.

The coordinate u determines a map E → P1
K and j corresponds to P1

K with the four
ramification points of u. By the quadratic formula these are the three points given by

π(a1,1u + a3,2)
2 + 4(u3 + a2,1u

2 + a4,2u + a6,3) = 0

and the point at infinity. The reduction of these points modulo π are exactly the roots of
P (T ) mod (π) and the point at infinity. These four points on P1

k correspond to j0, so the
image of j ∈ R in the residue field k is exactly j0. Considering for instance the elliptic
surface Sλ over P1(t) given by

y2 = x(x − t)(x − λt),

with λ ∈ k \ {0, 1}, we get a singular fiber of type I∗0 (j0) at t = 0, where j0 is the
j-invariant of the elliptic curve given by y2 = x(x − 1)(x − λ).

Recall that we still have a fixed elliptic surface S over a curve C with function
field K = k(C). The generic fiber is denoted E, which is an elliptic curve over K, whose
function field K(E) is isomorphic to the function field k(S) of S.

Lemma 2.4.19 The homomorphism Divvert S ∼=
⊕

v∈C Λ(v) → ZF ⊕⊕
v∈C Λ1(v) send-

ing D to
(
(D · (O))F, D

)
has kernel g∗ Div0 C and induces a split short exact sequence

0 Div0 C
g∗

Divvert S ZF ⊕ ⊕
v∈C Λ1(v) 0. (2.6)

Proof. Let ϕ denote the homomorphism in question. The composition of ϕ with the
projection to

⊕
v∈C Λ1(v) is clearly surjective. As any fiber maps to F ⊕ 0, we find that

ϕ itself is also surjective. The inclusion g∗ Div0(C) ⊂ ker ϕ is clear from the fact that
deg D′ = (g∗D′) · (O) for any divisor D′ ∈ Div C. Conversely, any divisor D ∈ kerϕ
consists of whole fibers and is therefore of the form D = g∗(D′) for some divisor D′ ∈
Div C. From the equality deg D′ = (g∗D′) · (O) = D · (O) = (coefficient of F ) = 0 we
find D′ ∈ Div0 C. The sequence splits because it is a sequence of free abelian groups. ¤

Let T1 denote the group ZF ⊕ ⊕
v∈C Λ1(v) from Lemma 2.4.19.
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Remark 2.4.20 An explicit splitting of the sequence (2.6) can be given by choosing
a point v0 ∈ C and setting F0 = g∗(v0) (in fact, it is enough for v0 to be a divisor of
degree 1). The map ZF → Divvert S sending F to F0 and the maps ζv from Remark 2.4.2
together induce a homomorphism ζ : T1 → Divvert S that sends F to F0 and D mod 〈Fv〉 ∈
Λ1(v) to D − (D · (O))Fv. This gives a section for (2.6). The associated homomorphism
Divvert S → Div0 C sends D ∈ Λ(v) to (D · (O))((v) − (v0)). Note that this splitting
depends on both O and the choice of v0. Whenever we implicitly embed T1 in Divvert S
in this section, it will be through ζ.

Remark 2.4.21 Because the divisors in g∗ Div0 C are algebraically equivalent to 0, the
map Divvert S → NS(S) factors through T1, so we get a natural map T1 → NS(S), which
depends on the choice of the section O. We will see in Proposition 2.4.29 that this map
is injective. We can also think of this as map as the composition of ζ from Remark 2.4.20
with the map Divvert S → NS(S). This composition does not depend anymore on the
choice of v0. The intersection pairing gives a well defined map T1 × NS(S) → Z, which
also depends on O. This can be given explicitly through the section ζ of Divvert S → T1

given in Remark 2.4.20. Note that for any v ∈ C and any D ∈ Λ1(v) ⊂ T1 we have
(R) · D = (O) · D = F · D = 0 for every section R ∈ S(C) for which the divisor
(R) intersects every fiber in the same irreducible component as (O). It follows from
Proposition 2.4.4 that the intersection pairing on

⊕
v∈C Λ1(v) ⊂ T1 (which does not

depends on O) is negative definite, so we already see that the map
⊕

v∈C Λ1(v) → NS(S)
is injective.

We will now state and prove a proposition that is a slight generalization of a
theorem by Shioda ([Shi3], Theorem 3.1). Our proof is practically the same as Shioda’s.
By phrasing a generalization, we will also be able to deduce another theorem, for which
Shioda gives a more complicated proof.

Proposition 2.4.22 On an elliptic surface S, fibered by g over a curve C, the following
conditions on a divisor D of S are equivalent.

(i) The divisor D is linearly equivalent to a divisor in the image of g∗ : Div0 C →
Div0 S.

(ii) The divisor D is algebraically equivalent to 0.

(iii) For some integer n > 0 the divisor nD is algebraically equivalent to 0.

(iv) The divisor D is numerically equivalent to 0.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are obvious. Shioda proves only the
equivalence of (ii), (iii), and (iv), see [Shi3], Thm. 3.1. To prove the implication (iv) ⇒
(i) we will follow closely Shioda’s proof of the implication (iv) ⇒ (ii). Shioda credits
the idea to Inoue. Let D be a divisor on S that is numerically equivalent to 0. Let KS

denote a canonical divisor on S. According to Proposition 2.3.14 the Euler characteristic
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χ = χ(OS) of S is positive, so the Riemann-Roch theorem for surfaces (see [Ha2], Thm.
V.1.6) gives

h0(S,O(D))−h1(S,O(D)) + h0(S,O(KS − D)) =

1

2
D · (D − KS) + χ = χ > 0.

Hence, we have h0(S,O(D)) > 0 or h0(S,O(KS − D)) > 0, which implies that either D
or KS −D is linearly equivalent to an effective divisor D′. In the first case (D′ ∼ D) we
are done. Indeed, in this case we find D′ = 0, because if D′ were nonzero and effective,
then there would exist some curve Γ on S with D′ · Γ > 0 (take any prime divisor C in
the support of D′, take any point P on C, and take Γ to be any curve through P that
is not C).

In the second case we find D′ · Θ = KS · Θ − D · Θ = 0 for any vertical divisor
Θ. This follows from the fact that KS is numerically equivalent to a multiple of any fiber
(see Theorem 2.3.10), so we find KS ·Θ = 0 for any vertical divisor Θ. As D′ is effective,
this implies that D′ contains no horizontal components. By Lemma 2.4.19 this implies
that D′ can be written as

D′ = g∗(∆) + nF + D′′

for some divisor ∆ on C of degree 0, some integer n, any fiber F , and some D′′ ∈⊕
v∈C Λ1(v). Note that here we view T1 = ZF ⊕⊕

v∈C Λ1(v) as a subgroup of Divvert S
through ζ, see Remark 2.4.20. The equation D′ · Θ = 0 implies D′′ · Θ = 0 for any ver-
tical divisor Θ. By Proposition 2.4.4 the intersection pairing on

⊕
v∈C Λ1(v) is negative

definite, so we find D′′ = 0 and thus D ∼ KS − D′ = KS − g∗(∆) − nF . By Theorem
2.3.10 this implies that D is linearly equivalent to g∗(Γ) for some divisor Γ on C. From
the equality deg Γ = g∗(Γ) · (O) = D · (O) = 0, we conclude Γ ∈ Div0 C. ¤

Proposition 2.4.23 The group NS(S) is finitely generated and free. The intersection
pairing induces a symmetric, nondegenerate, bilinear pairing on NS(S), making it into
a lattice of signature (1, ρ− 1). If the Euler characteristic χ = χ(OS) of S is even, then
NS(S) is an even lattice.

Proof. The group NS(S) is finitely generated by Proposition 2.2.12. The fact that NS(S)
is free follows immediately from Proposition 2.4.22 and the fact that the Néron-Severi
group modulo numerical equivalence is free, see Proposition 2.2.17. It also follows im-
mediately that the bilinear intersection pairing is nondegenerate on NS(S), see [Shi3],
Thm. 2.1 or [Ha2], example V.1.9.1. The signature is given by the Hodge Index The-
orem ([Ha2], Thm. V.1.9). From the adjunction formula ([Ha2], Prop. V.1.5) we find
2g(D)−2 = D · (D+(2g(C)−2+χ)F ) = D2 +(2g(C)−2+χ)(D ·F ) for any irreducible
curve D on S with genus g(D). Therefore, if χ is even, we find that D2 is even for all
prime divisors D. As these divisors generate NS(S), the lattice NS(S) is even. ¤

Theorem 2.4.24 The map g∗ : Pic0 C → Pic0 S is an isomorphism.
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Proof. This is Theorem 4.1 in [Shi3]. Instead of the relatively involved proof given there,
we will deduce this from Proposition 2.4.22. The homomorphism g∗ is injective, because
it is a section of O∗ : Pic0 S → Pic0 C. The surjectivity of g∗ follows immediately from
the implication (ii) ⇒ (i) of Proposition 2.4.22. ¤

Remark 2.4.25 The Jacobian of P1 is zero, so if the base curve C is isomorphic to P1,
then Pic0(S) = 0 and the Néron-Severi group NS(S) is isomorphic to the Picard group
Pic(S). In general any elliptic fibration S → C ′ with section and at least one singular
fiber has a base curve of genus g(C ′) = dim Jac(C) = dim Pic0(S). Over C, this number
equals the irregularity q = q(S) = dim H1(S,OS). If S is for instance a complex K3
surface, the irregularity satisfies q = 0, so then we get g(C ′) = 0.

The morphism ξ : E → S induces homomorphisms ξ∗ on the level of Pic,
Pic0 and hence also on the level of NS. Because ξ is dominant, it induces an injec-
tion ξ∗ : k(S) → k(E) of function fields, too. This injection is an isomorphism because it
comes from the fibered product with the function field k(C) of C over k(C) itself. Since
ξ is dominant, by Remark 2.2.15 there is an induced homomorphism ξ∗ : Div S → Div E
as well. All these homomorphisms denoted by ξ∗ are compatible with each other. Shioda
describes ξ∗(D) as “the intersection of the horizontal part of the divisor D with the
generic fiber E” and denotes it D · E.

Remark 2.4.26 There are a few other ways to think about this homomorphism. Sup-
pose D is an effective divisor of S and Y is its associated closed subscheme of S (see
[Ha2], p. 145). Then the closed subscheme Z associated to the divisor ξ∗(D) on E is
Z = Y ×C Spec K, where K = k(C) is the function field of C. In particular this implies
that if P ∈ S(C) is a section of g, then ξ∗ sends the divisor P (C) on S to the divi-
sor P (C) ×C Spec K on E, which gives a section in E(K). By the universal property
of fibered products, this yields exactly the correspondence between S(C) and E(K) as
described in Lemma 2.3.13. If D has no vertical components, then Y is the closure of
ξ(Z) in S.

Lemma 2.4.27 The homomorphism ξ∗ induces a short exact sequence

0 → Divvert(S) → Div S
ξ∗−→ Div E → 0,

where Divvert(S) is the subgroup of Div S generated by vertical divisors. Furthermore, we
have an equality deg(ξ∗D) = D · F for any fiber F .

Proof. Clearly, we have a containment Divvert(S) ⊂ ker ξ∗. As Div S is isomorphic to
Divvert(S) ⊕ Divhor(S) (see Remark 2.3.5), it suffices to show that ξ∗ : Divhor(S) →
Div E is an isomorphism. This follows from last statement of Remark 2.4.26, but we will
use a different argument that will also be useful for the last equality of this Lemma.
The horizontal prime divisors of S correspond with the discrete valuation rings of k(S)
containing g∗k(C) ∼= K. As k(S) is isomorphic to K(E), these are the discrete valuation
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rings of K(E) containing K, which correspond exactly with the K-rational points of E.
The last equality follows from the fact that for a horizontal prime divisor D, both sides
equal the degree of the residue field of its local ring over K. For vertical divisors, both
sides equal 0. ¤

Lemma 2.4.28 The homomorphism g∗ : Div0 C → Div0 S is injective and the cokernel
is naturally isomorphic to K(E)∗/K∗.

Proof. We consider the short exact sequences 0 → k(C)∗/k∗ → Div0 C → Pic0 C → 0
and 0 → k(S)∗/k∗ → Div0 S → Pic0 S → 0 and apply the snake lemma to the map g∗

from the former to the latter exact sequence. The kernels are trivial because g∗ is a section
of O∗. The cokernels on the outside are k(S)∗/k(C)∗ and 0 (by Theorem 2.4.24), so the
snake lemma tells us that the cokernel in the middle is also isomorphic to k(S)∗/k(C)∗,
which is isomorphic to K(E)∗/K∗.

0 0 0

0 k(C)∗/k∗

g∗

Div0 C

g∗

Pic0 C

g∗

0

0 k(S)∗/k∗
Div0 S Pic0 S 0

0 k(S)∗/k(C)∗ K(E)∗/K∗ 0

0 0

¤

Recall that T1 denotes the group ZF ⊕ ⊕
v∈C Λ1(v) from Lemma 2.4.19.

Proposition 2.4.29 There is a natural short exact sequence

0 → T1 → NS(S)
ϕ−→ Pic E → 0,

where the first map is induced by the natural map from Divvert S to NS(S) and the map
ϕ is induced by the composition of the maps ξ∗ : Div S → Div E and Div E → PicE.
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Proof. We have a commutative diagram

0 Div0 C
g∗

g∗

Divvert S

0 Div0 S Div S

which induces a homomorphism between the cokernels of the horizontal maps, i.e., a
homomorphism T1 → NS(S). Now we apply the snake lemma. The left vertical map
is injective and has cokernel K(E)∗/K∗ by Lemma 2.4.28. The second vertical map is
injective and has cokernel Div E by Lemma 2.4.27. Tracing arrows we find that the ho-
momorphism K(E)∗/K∗ → Div E between these two cokernels is exactly the well known
map that sends a rational function to the principal divisor associated to it. Thus, this
map is injective with cokernel PicE. The snake lemma gives us the following commuta-
tive diagram in which all horizontal and vertical sequences are exact.

0 0 0

0 Div0 C
g∗

g∗

Divvert S T1 0

0 Div0 S Div S NS(S)

ϕ

0

0 K(E)∗/K∗ Div E Pic E 0

0 0 0

¤

The two 3×3 diagrams from the proofs of Lemma 2.4.28 and Proposition 2.4.29
fit together in the following big commutative cube.
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Pic0 C
g∗

g∗

Picvert S T1

Div0 C
g∗

g∗

Divvert S T1

k(C)∗/k∗ k(C)∗/k∗ 0

Pic0 S PicS

ξ∗

NS(S)

ϕ

Div0 S Div S

ξ∗

NS(S)

ϕ

k(S)∗/k∗ k(S)∗/k∗

ξ∗

0

0 Pic E Pic E

K(E)∗/K∗ Div E PicE

k(S)∗/k(C)∗ K(E)∗/K∗ 0

Proposition 2.4.30 All sequences in the cube above are short exact sequences (with the
zeros left out).

Proof. The two 3× 3 diagrams from the proofs of Lemma 2.4.28 and Proposition 2.4.29
make up the left face and the plane between the front and back face respectively. Consider
the 3× 3 diagram between the left and the right face. Its bottom two rows are exact by
definition. Exactness of the front vertical sequence in this subdiagram follows from the
isomorphism K(E) ∼= k(S) and the equality K = k(C). Exactness of the second vertical
sequence is exactly Lemma 2.4.27. From the snake lemma it then follows that the kernel
of ξ∗ : PicS → PicE is equal to the image of Divvert S in PicS, i.e., ker ξ∗ = Picvert S.
Now consider the top face of the cube. We already know the left two sequences are exact.
The snake lemma then shows that the cokernel of g∗ : Pic0 C → Picvert S is isomorphic to
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the cokernel of g∗ : Div0 C → Divvert S, i.e., to T1. The exactness of all other sequences
is now obvious. ¤

Remark 2.4.31 The homomorphism ϕ : NS(S) → PicE can also be constructed as
follows. By (2.2) the composition g ◦ ξ : E → S → C factors through SpecK, so the
homomorphism ξ∗ ◦ g∗ : PicC → Pic S → Pic E factors through Pic(SpecK) = 0. Hence
we get an inclusion g∗ Pic0 C ⊂ g∗ Pic C ⊂ ker ξ∗, so ξ∗ factors through PicS/g∗(Pic0 C),
which is isomorphic to NS(S) by Theorem 2.4.24.

Let Σ denote the homomorphism Pic E → E(K) that sends the prime divisor
(P ) to P for any P ∈ E(K). Let ψ : NS(S) → E(K) be the composition of ϕ and Σ
and set T = ker ψ. Let ρ and r denote the rank of NS(S) and E(K) respectively. Let
U ⊂ NS(S) be the group generated by divisor classes of any fiber F and the section (O).

Pic S
ξ∗

Pic E

Σ

0 T NS(S)
ψ

ϕ

E(K)

Theorem 2.4.32 The homomorphism ψ is surjective and maps (P ) to P . The kernel T
is a sublattice of NS(S) of signature (1, rkT−1). It is generated by (O) and the irreducible
components of the singular fibers of g, and it is isomorphic to the orthogonal direct sum of
the unimodular lattice U and

⊕
v∈C Λ1(v). The rank of T equals rkT = 2+

∑
v(mv −1).

We have ρ = r + 2 +
∑

v(mv − 1).

Proof. Most of this is in [Shi3], Thm. 1.3. Let P ∈ E(K) be any K-point on E. By
Lemma 2.3.13 it corresponds to a section in S(C). By Remark 2.4.26 the homomorphism
ξ∗ : PicS → Pic E sends the associated divisor (P )S on S to the associated divisor (P )E

on E, which gets mapped to P by Σ. This proves the first statement.

The homomorphism deg : PicE → Z sending a divisor class D to its degree
yields a split short exact sequence

0 → Pic0 E → PicE → Z→ 0.

A section Z → PicE of the map deg is given by sending 1 to (O). The associated
homomorphism π : PicE → Pic0 E maps D to D − (deg D)(O). The map Σ: PicE →
E(K) factors as the composition of π and the usual isomorphism Pic0 E → E(K) sending
(P ) − (O) to P (see [Si1], Prop. III.3.4). Thus T is also the kernel of the composition
σ = π ◦ ϕ.
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Pic S
ξ∗

Pic E

π
Σ

0 T NS(S)
σ

ψ

ϕ

Pic0 E
∼=

E(K)

Now we apply the snake lemma to the following diagram.

0

0 Z
0 T1 NS(S)

ϕ
PicE

π

0

0 T NS(S) σ Pic0 E 0

0 0

The snake lemma implies that the map T1 → T is injective with cokernel Z. Hence we
get a short exact sequence

0 → T1 → T → Z→ 0.

A simple tracing of arrows shows that a section of the cokernel map T → Z can be given
by sending 1 to (O) ∈ T . Hence we find an isomorphism

T ∼= Z(O) ⊕ T1
∼= Z(O) ⊕ ZF ⊕

⊕

v∈C

Λ1(v) ∼= U ⊕
⊕

v∈C

Λ1(v).

From Remark 2.4.21 we find that the lattice U is orthogonal to
⊕

v∈C Λ1(v). From the
intersection numbers F 2 = 0, (O)2 = −χ, and F · (O) = 1, we find that U is unimodular
with Gram matrix associated to the basis {(O), F} equal to

(
−χ 1
1 0

)
.

The signature of T follows from the fact that
⊕

v∈C Λ1(v) is negative definite (see
Proposition 2.4.4) and U has signature (1, 1). From Proposition 2.4.4 we also conclude
rkT1 = 1 +

∑
v∈C(mv − 1). The rank of T ∼= T1 ⊕Z follows immediately. From the short

exact sequence
0 → T → NS(S) → E(K) → 0 (2.7)
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we conclude ρ = rkNS(S) = rkT + rkE(K) = 2 +
∑

v∈C(mv − 1) + r. ¤

Proof of Theorem 2.4.1. This follows immediately from Theorem 2.4.32. ¤

We will now take a closer look at the lattice structure of the Néron-Severi group
NS(S) and deduce that we can give the group E(K)/E(K)tors the structure of a positive
definite lattice. Set W = U⊥ and L = T⊥, where the orthogonal complements are taken
in NS(S).

Lemma 2.4.33 The lattice W is an even, negative definite lattice. The Néron-Severi
group NS(S) is the orthogonal direct sum of U and W . The sublattice L is the orthogonal
complement of

⊕
v∈C Λ1(v) in W . We have the following ranks and discriminants.

lattice rank discriminant

W ρ − 2 −disc NS(S)⊕
v∈C Λ1(v)

∑
v∈C(mv − 1) (−1)

P
(mv−1)

∏
v∈C m

(1)
v

T 2 +
∑

v∈C(mv − 1) (−1)rk T−1
∏

v∈C m
(1)
v

L r disc NS(S)[NS(S) : L ⊕ T ]2/ disc T =

±disc W [W : L ⊕ ⊕
v∈C Λ1(v)]2/

∏
v∈C m

(1)
v

Proof. See [Shi3], § 7. Since U has signature (1, 1) and NS(S) has signature (1, ρ − 1),
we find that W is negative definite. To prove that W is even we follow Shioda’s proof,
see [Shi3], Thm. 7.4. Let D be an effective divisor with equivalence class in W . Then in
particular we have D · F = 0, so by Theorem 2.3.10 we have D · KS = 0, where KS is a
canonical divisor on S. Hence from the adjunction formula 2pa(D)−2 = D ·(D+KS), we
find that D2 is even. Here pa(D) denotes the arithmetic genus of the closed subscheme
associated to D. As W is generated by divisor classes of effective divisors, we conclude
that W is even. Since U is unimodular, the second statement follows from Lemma 2.1.14.
Then the formulas for the rank and discriminant of W follow from the fact that we have
rkU = 2 and discU = −1.

Let T0 denote the lattice
⊕

v∈C Λ1(v). Theorem 2.4.32 tells us that T is iso-
morphic to the orthogonal direct sum of T0 and U . Hence the orthogonal complement
L = T⊥ of T = T0⊕U in NS(S) = W ⊕U is equal to the orthogonal complement of T0 in
W . Proposition 2.4.4 gives the rank and discriminant of T0, from which we find those of
T . Since L is the orthogonal complement of T in NS(S), we find rkL = rk NS(S)− rkT ,
which equals r by Theorem 2.4.32. The formula for the discriminant of L follows from
Lemma 2.1.15 by considering L as the orthogonal complement either of T in NS(S) or
of T0 in W . ¤

Set
m = lcm{m(1)

v | v ∈ C} (2.8)

and write
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E(K)0 =

{
P ∈ E(K)

(P ) intersects all fibers in the same
irreducible component as (O)

}
.

Theorem 2.4.34 Let m be as in (2.8). The projection NS(S) → LQ induces a homo-
morphism γ : E(K) ∼= NS(S)/T → 1

mL ∩ L∗ with kernel E(K)tors. The set E(K)0 is a
torsion-free subgroup of E(K) of finite index. The map γ sends E(K)0 isomorphically
to L.

Proof. This is slightly stronger than [Shi3], Thm. 8.9. First we will show mT ′∗ ⊂ T ′. As
NS(S) is integral, we have a series of inclusions T ∗ ⊂ T ′∗ ⊂ T ′ ⊂ T , so it suffices to show
mT ∗ ⊂ T . By Theorem 2.4.32 it is enough to show mU∗ ⊂ U and mΛ1(v)∗ ⊂ Λ1(v)
for all v ∈ C. For U this follows from the fact that U is unimodular, so U∗ = U . By

Lemma 2.1.13 and Proposition 2.4.4 we have [Λ1(v)∗ : Λ1(v)] = m
(1)
v |m, so m annihilates

Λ1(v)∗/Λ1(v). This shows that we can apply Lemma 2.1.20. For Λ and T in Lemma
2.1.20 take NS(S) and T respectively. Then the lattice denoted by L in Lemma 2.1.20
corresponds to our L, and the group A in Lemma 2.1.20 corresponds to E(K). As in
Lemma 2.1.20, let M denote the kernel of the homomorphism E(K) ∼= NS(S)/T → T ′∗/T
induced by the projection NS(S) → TQ. Everything follows from Lemma 2.1.20 if we show
M = E(K)0. Shioda’s proof of the inclusion M ⊂ E(K)0 is fairly imprecise.

Take P ∈ E(K)0 ⊂ NS(S)/T . By Theorem 2.4.32 the element P is represented
by the divisor (P ) ∈ NS(S). By Remark 2.4.21 we find (P ) ·D = 0 for every D ∈ Λ1(v).
As Λ1(v) is negative definite, the projection of (P ) to Λ1(v) vanishes and we find that
under the projection NS(S) → TQ ∼= UQ ⊕ (

⊕
v∈C Λ1(v))Q the divisor (P ) maps to

U∗ = U ⊂ T , so we get P ∈ M . Conversely, take P ∈ M . Again P is represented by
the divisor (P ). Take any v ∈ C. By definition of M , the orthogonal projection of (P )
to TQ is contained in T , so in particular the projection Γ of (P ) to (U ⊕ Λ1(v))Q ⊂ TQ is
contained in U ⊕Λ1(v) ∼= Z(O)⊕Λ(v). We have Γ ·z = (P ) ·z for every z ∈ Z(O)⊕Λ(v).
From (P ) · F = 1 we can compute the coefficient of (O) and we find that we can write
Γ = (O) + Γv with Γv ∈ Λ(v). Let ΘO and ΘP denote the irreducible components of Fv

that intersect (O) and (P ) respectively. Suppose ΘO 6= ΘP . Then for every irreducible
component Θ of g−1(v) we get

Γv · Θ = Γ · Θ − (O) · Θ = ((P ) − (O)) · Θ =





1 if Θ = ΘP ,
−1 if Θ = ΘO,

0 otherwise.

However, from the classification of singular fibers in Theorem 2.4.17 we easily verify that
such a Γv does not exist. We conclude ΘP = ΘO, and thus P ∈ E(K)0. ¤

By considering L(−1) instead, i.e., the lattice L but with the opposite of its
pairing, we can embed E(K)/E(K)tors in a positive definite lattice, as stated in the
following corollary.
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Corollary 2.4.35 Let m be as in (2.8). The homomorphism γ induces a natural homo-
morphism γ : E(K) → 1

mL(−1) ∩ L(−1)∗ inducing the following commutative diagram.

E(K)/E(K)tors
γ 1

mL(−1) ∩ L(−1)∗

E(K)0 ∼=
γ

L(−1)

This induces a symmetric bilinear pairing on E(K) and it induces the structure of a posi-
tive definite lattice on E(K)/E(K)tors with an even sublattice E(K)0. The corresponding
pairing is equal to the canonical height pairing (P, Q) 7→ h(P + Q)−h(P )−h(Q), where
h is height associated to the ample divisor (O).

Proof. The diagram follows immediately from Theorem 2.4.34. Since L is negative defi-
nite, L(−1) is positive definite. By Lemma 2.4.33 the lattice L ⊂ W is even. For the last
statement, see [Si2], Theorem III.9.3. ¤

Remark 2.4.36 The lattice E(K)/E(K)tors together with the positive definite pairing
described in Corollary 2.4.35 is called the Mordell-Weil lattice. The pairing itself is called
the height pairing. By tracing down the maps that define it, Shioda ([Shi3], Thm 8.6)
gives an explicit formula for the height pairing of two sections P and Q. It is based only
on the intersection numbers (P ) · (Q), (P ) · (O), (Q) · (O), and ((P ) − (O)) · Θ for any
irreducible component Θ of a singular fiber.

Lemma 2.4.37 The discriminant of the Néron-Severi group and the Mordell-Weil lat-
tice E(K)/E(K)tors are related by the equation

disc NS(S) =
disc

(
E(K)/E(K)tors

)
· ∏v mv(1)

|E(K)tors|2
.

Proof. This follows immediately from Lemma 2.1.21 and 2.4.33. See also [Shi1], Cor.
1.7. ¤

Proposition 2.4.38 Let m be as in (2.8). The values of the height pairing are contained
in 1

mZ.

Proof. Let M denote the intersection 1
mL(−1)∩L∗(−1). Then the height pairing factors

through the pairing M × M → Q by Corollary 2.4.35. For x, y ∈ M we get m〈x, y〉 =
〈mx, y〉 ∈ Z as we have mx ∈ L(−1) and y ∈ L(−1)∗. ¤
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2.5 Two constructions of elliptic surfaces

In this section we will prove that under mild conditions a fan of hyperplane sections of
a degree 3 surface in P3 gives rise to an elliptic surface. This statement is well known,
at least for nonsingular surfaces in characteristic 0, but details such as the existence of
singular fibers are often overlooked. Also under mild conditions a base extension of an
elliptic surface gives rise again to an elliptic surface. Both statements appear to lack
proofs in the literature, so we include them here.

Definition 2.5.1 A surface X over an algebraically closed field k has a rational sin-
gularity at a point x if there exist a surface Y and a projective, birational morphism
f : Y → X that is an isomorphism from f−1(X −{x}) to X −{x} and such that we have
R1f∗OY = 0 and f−1(U) is smooth over k for some open neighborhood U of x.

Remark 2.5.2 Let f : Y → X be a resolution of a singularity at x on X with exceptional
curve (possibly reducible) E. Then x is a rational singularity if and only if for every
positive divisor Z on Y with support in E the arithmetic genus pa(Z) satisfies pa(Z) ≤ 0,
see [Ar], Prop. 1.

Proposition 2.5.3 Let k be any field of characteristic not equal to 2 or 3, contained
in an algebraically closed field k′. Let X be a projective, irreducible surface in P3

k of
degree 3, such that Xk′ is regular outside a finite number of rational singularities. Let
L be a line that intersects X in three different nonsingular points M1, M2, and M3.
Identify P1 with the family of hyperplanes in P3 through L and let f : X 99K P1 be the
rational map that sends every point of X to the hyperplane it lies in. Let π : X̃ → X
be a minimal desingularization of the blow-up of X at the Mi. For i = 1, 2, 3, let M̃i

denote the exceptional curve above Mi on X̃. Then f ◦ π extends to a morphism f̃ . It
maps the M̃i isomorphically to P1, yielding at least three sections. Together with any of
its sections, f̃ makes X̃k′ into a rational elliptic surface over P1

k′.

Remark 2.5.4 O’Sullivan ([O’Su], Prop. VI.1.1) shows that any normal cubic surface
in P3 that is not a cone has only rational double points. He excludes characteristics 2, 3,
and 5, but describes how his results could be extended to any characteristic using results
from Lipman [Lip]. For a published reference, see [BW] (characteristic 0).

The proof of Proposition 2.5.3 consists of several steps. For clarity, we will prove
them in separate lemmas. Let k, k′, L, X, X̃, π, Mi, M̃i, f, and f̃ be as in Proposition
2.5.3. First we will show that X̃ is rational, smooth, and irreducible. Then we show that
f̃ is a morphism that has a section. We proceed by showing that almost all fibers are
nonsingular of genus 1. After that, we see that f̃ is not smooth and finally, we will show
that f̃ is a relatively minimal fibration. Note that if L is defined over k, then so is f . If
Mi is a k-point, then the section O corresponding to M̃i is defined over k as well. All
other statements are geometric, so without loss of generality we will assume that k = k′.
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Lemma 2.5.5 Under the assumptions of Proposition 2.5.3 the surface X̃ is rational,
smooth, and irreducible.

Proof. By construction, X̃ is smooth. It is irreducible because X is, and π : X̃ → X is
birational. Obviously, to show that X̃ is rational, it suffices to show that X is rational.
It is a classical result that nonsingular cubics are obtained by blowing up 6 points in
general position in P2, whence they are rational. For this statement, see [Ha2], § V.4, in
particular Rem. V.4.7.1. Proofs are given in [Man], § 24 or [Na], I, Thm. 8, p. 366.

For the singular case, note that X is not a cone. Indeed, the exceptional curve
E of the desingularization of a cone over a plane cubic is isomorphic to that cubic, see
[Ha2], exc. II.5.7. Hence, it would satisfy p(E) = 1, which contradicts Remark 2.5.2. As
X is not a cone, projection from any singular point x will give a dominant rational map
from X to P2. It is birational because every line through x that is not contained in X
intersects X by Bézout’s Theorem in only one more point. ¤

Lemma 2.5.6 The rational map f̃ extends to a morphism, mapping M̃i isomorphically
to P1.

Proof. The rational map f is defined everywhere, except at the Mi, whence the compo-
sition f ◦π is well-defined outside the M̃i. Any point P on M̃i corresponds to a direction
at Mi on X. Since L intersects X in three different points and the total intersection L ·X
has degree 3 by Bézout’s Theorem, it follows that L is not tangent to X, so these direc-
tions at Mi are cut out by the planes through L. The map f ◦ π extends to a morphism
f̃ by sending P ∈ M̃i to the plane that cuts out the direction at Mi that P corresponds
to. Thus, it induces an isomorphism from the M̃i to P1. ¤

Note that if a hyperplane H does not contain any singular points of X, then
the fiber of f̃ above H is isomorphic to H ∩X. Here the missing points Mi in f−1(H) =

(H ∩ X) \ {M1, M2, M3} are filled in by the appropriate points on M̃i. To prove that
almost all fibers are nonsingular curves of genus 1 we will use Proposition 2.5.8. Its proof
was suggested by B. Poonen.

Lemma 2.5.7 Any connected, regular variety is integral.

Proof. Let Z be such a variety. Then Z is reduced, so it suffices to show that Z is
irreducible. The minimal primes of the local ring of a point on Z correspond to the
components it lies on. As a regular local ring has only one minimal prime ideal, we
conclude that every point of Z lies on exactly one component. As Z is connected, Z is
irreducible. ¤

Proposition 2.5.8 Let Y be a geometrically connected, regular variety over a field l.
If Y contains a closed point of which the residue field is separable over l, then Y is
geometrically integral.
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Proof. Let lsep denote a separable closure of l. As separable extensions preserve regu-
larity (see [EGA IV(2)], Prop. 6.7.4), we find that Ylsep is regular. As it is connected as
well, Ylsep is integral by Lemma 2.5.7, whence irreducible. Over a separably closed field,
irreducibility implies geometric irreducibility, see Proposition 2.2.8, part (i). Therefore
Yl is irreducible.

Let c be the closed point mentioned. Then the local ring OY,c is regular, with
residue field separable over l. From [EGA IV(1)], Thm. 19.6.4, we find that the ring OY,c

is formally smooth over l. By [EGA IV(2)], Thm. 6.8.6, this implies that Y is smooth
(over l) at c. As smoothness is an open condition (see [EGA IV(2)], Cor. 6.8.7), there is
a nonempty open subset U ⊂ Y such that Y is smooth at all x ∈ U . As smoothness is a
local condition, U is smooth, whence geometrically regular.

As Yl is irreducible, the subset Ul is dense and also irreducible, whence con-
nected. It is also regular, so it is integral by Lemma 2.5.7. Therefore, U is geometrically
integral, which for an integral scheme over l is equivalent to the fact that its function
field is a primary and separable field extension of l, see [EGA IV(2)], Cor. 4.6.3. As Y is
integral and the function field k(Y ) of Y is isomorphic to the function field k(U) of U ,
it follows that Y is geometrically integral as well. ¤

Lemma 2.5.9 Under the assumptions of Proposition 2.5.3 almost all fibers are nonsin-
gular curves of genus 1.

Proof. It follows from Remark 2.3.2 that almost all fibers are nonsingular if char k = 0.
Suppose char k = p > 3. We will first show that the generic fiber E = X̃ ×P1 Spec k(t)
above the generic point η : Spec k(t) → P1 of P1 is regular. Then we will show E is
geometrically integral of genus 1 and finally we will conclude it is smooth over Spec k(t).

Take a point P ∈ E and let x ∈ X̃ be the image of P under the projection
ϕ : E → X̃. On every open U = SpecA ⊂ P1, the map η is given by the localization map
ψ : A →֒ k(t). As fibered products of affine spaces come from tensor products, which
commute with localization, the map ϕ# : O eX,x

→ OE,P on local A-algebras is induced

by ψ. The maximal ideal of O eX,x
pulls back under f̃#|A : A → O eX,x

to the prime ideal

of A corresponding to f̃(x) = im η, i.e., to (0). Hence, all nonzero elements of A are
already invertible in O eX,x

, so the map O eX,x
→ OE,P is in fact an isomorphism. Since X̃

is regular by Lemma 2.5.5, we conclude that O eX,x
∼= OE,P is a regular local ring, so E

is regular.

Also, for any extension field F of k(t) the scheme E ×k(t) F is a cubic in P2
F ,

so it is connected. Thus, E is geometrically connected. As in Lemma 2.3.13, the sections
M̃i determine k(t)-points on E. From Proposition 2.5.8 we find that E is geometrically
integral. As E is a regular, geometrically integral, plane cubic curve, it has genus g(E) =
1. Here we define the genus g(C) of a regular (but possibly not smooth), projective, and
geometrically integral curve C by the common value of its arithmetic genus pa(C) and
its geometric genus pg(C) = dimH0(C, ω◦

C), where ω◦
C is the dualizing sheaf of C, see

[Ha2], III.7.
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Now, if E were not smooth over k(t), then there would be a finite extension
F/k(t) such that EF = E ×k(t) F is not regular. Any nonregular plane cubic has genus
0, so g(EF ) = 0. Let K/k(t) be the subfield of F such that K/k(t) is separable and F/K
is purely inseparable. Then by [EGA IV(2)], Prop. 6.7.4, the curve EK = E ×k(t) K is
regular, so g(EK) = 1. By [Ta1], Cor. 1, the difference g(EK)− g(EF ) = 1 is an integral
multiple of (p − 1)/2, so we find p = 2 or p = 3. Since we have p > 0, we conclude that
E is smooth over η. As f̃ is flat and projective, by [Ha2], exc. III.10.2, there is a dense
open subset U ⊂ P1 on which f̃ : f̃−1(U) → U is smooth. By Remark 2.3.12 almost all
fibers are then nonsingular. As they are plane cubics, they have genus 1. ¤

Lemma 2.5.10 Under the assumptions of Proposition 2.5.3 the morphism f̃ is not
smooth.

Proof. By Remark 2.3.12, it suffices to prove that there exists a singular fiber. As there
are only finitely many singular points on X, for almost all planes H through L the fiber
X̃H is isomorphic to X ∩H. As any two projective curves in H ∼= P2 intersect, it follows
that X̃H is connected for all but finitely many H. Since f̃ is flat (see Remark 2.3.2), it
follows from the principle of connectedness (see [Ha2], exc. III.11.4) that the fiber X̃H is
connected for all H.

If X contains a singular point, then the fiber X̃H of f̃ above the plane H that
it lies in contains an exceptional curve, so it is reducible and connected. From Lemma
2.5.7 we conclude that X̃H is singular.

Hence, to prove the existence of a singular fiber we may assume that X is
nonsingular. After a linear transformation, we may assume that L ⊂ P3 is given by
w = z = 0 and X is given by F = 0 for some homogeneous polynomial F ∈ k[x, y, z, w]
of degree 3. Let P ∈ X ⊂ P3 be a point where both ∂F/∂x and ∂F/∂y vanish (the
existence of P follows from the Projective Dimension Theorem, see [Ha2], Thm. I.7.2).
Set t0 = (∂F/∂z)(P ) and t1 = (∂F/∂w)(P ). Then t0 and t1 are not both zero because
P is nonsingular. The tangent plane TP to X at P is then given by t0z + t1w = 0, so it
contains L. The fiber TP ∩ X above TP is singular, as TP is tangent at P . ¤

Lemma 2.5.11 Under the assumptions of Proposition 2.5.3 the morphism f̃ is a rela-
tively minimal fibration.

Proof. By Lemmas 2.5.5, 2.5.6, and 2.5.9, the hypotheses of Theorem 2.3.10 are satisfied,
so it suffices to show that K2

eX = 0. Let ρ : X ′ → X be the blow-up of X at the three

points Mi, and let σ : X̃ → X ′ be the minimal desingularization of X ′.
For any projective variety Z, let K◦

Z denote the divisor associated to the dualiz-
ing sheaf ω◦

Z , see [Ha2], § III.7. If Z is nonsingular, then K◦
Z is linearly equivalent to the

canonical divisor KZ , see [Ha2], Cor. III.7.12. From [Ha2], Thm. III.7.11, we find that
ω◦

X
∼= OX(d − 4) with d = deg X = 3. Hence, if H is a hyperplane that does not meet

any of the Mi or the singular points of X, then K◦
X is linearly equivalent to −(H ∩ X).
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Let U be the maximal smooth open subset of X, and set V = ρ−1(U). As V is
isomorphic to U , blown up at three nonsingular points, we find by [Ha2], Prop. V.3.3,

that KV = ρ∗KU + M̃1 + M̃2 + M̃3. Since ρ is an isomorphism outside the Mi, we find
that K◦

X′ = ρ∗K◦
X + M̃1 + M̃2 + M̃3. As K◦

X does not meet the Mi, and M̃2
i = −1 (see

[Ha2], Prop. V.3.2) we get

(K◦
X′)2 = (ρ∗K◦

X)2 + M̃2
1 + M̃2

2 + M̃2
3 = (K◦

X)2 − 3 = (H ∩ X)2 − 3 = deg X − 3 = 0.

Du Val [Du] proves that rational singularities do not affect adjunction, i.e., there is
an isomorphism ω◦

eX
∼= σ∗ω◦

X′ , see also [Pi], § 15, Prop. 2, and § 17. Hence, we get

K eX ∼ K◦
eX ∼ σ∗K◦

X′ . As σ is an isomorphism on σ−1(V ), we get K2
eX = (σ∗K◦

X′)2 =

(K◦
X′)2 = 0. ¤

Proof of Proposition 2.5.3. This follows immediately from Lemmas 2.5.5, 2.5.6, 2.5.9,
2.5.10, and 2.5.11. ¤

Remark 2.5.12 If L intersects X in one of its singular points, then one could still define
a fibration X̃ → P1 in the same way as in Proposition 2.5.3. For almost all hyperplanes
H the fiber above H will be the normalization of the singular cubic curve H ∩X. Hence
this will not be an elliptic fibration.

Remark 2.5.13 In characteristic 3, all fibers might be singular, as is the case when X
is given by y2z + yz2 + wxy + wxz + xz2 + wy2 = 0 and L is given by x = w = 0.
The intersection of X with the plane Ht given by w = tx is singular at the point
[x : y : z : w] = [1 : t1/3 : t2/3 : t] on the twisted cubic curve in P3. The plane Ht is
tangent to X at that point. The only singular points of X are three ordinary double
points at [1 : 0 : 0 : 0], [0 : 0 : 0 : 1], and [1 : 1 : 1 : 1].

In characteristic 2, we can also get all fibers to be singular, as one easily checks
in case X is given by x3 + x2z + x2w + y3 + yzw = 0 and L is given by w = z = 0. The
only singular points on X are the ordinary double points [0 : 0 : 0 : 1] and [0 : 0 : 1 : 0].

In the proof of Proposition 2.5.3 the fact that the characteristic of k is not equal
to 2 or 3 is only used in Lemma 2.5.9. Hence the conclusion of the proposition is also
true in characteristic 2 and 3 if we add to the hypotheses that almost all planes through
L are not tangent to X. By Bertini’s Theorem, the set of planes that intersect X in a
nonsingular curve is open (see [Ha2], Thm. II.8.18), so it suffices to require that there is
at least one plane through L that is not tangent to X.

Remark 2.5.14 The singular points on X as in Proposition 2.5.3 can be used to find
sections of f̃ . If X has two singular points P and Q, then the line l through P and Q lies
on X, for if it did not, it would have intersection multiplicity at least 4 with X, but by
Bézout’s Theorem the intersection multiplicity should be 3. Therefore, either l intersects
L and thus l is contained in the fiber above the plane that L, P , and Q all lie in, or l
gives a section of f̃ .
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The next proposition describes how to construct an elliptic surface by base
extension of another elliptic surface. This construction will also be used in the proof of
Theorem 4.1.1.

Proposition 2.5.15 Let S be an elliptic surface over a smooth, irreducible, projective
curve C over an algebraically closed field k, with fibration g and section O of g. Let
γ : C ′ → C be a nonconstant map of curves from a smooth, irreducible, projective curve
C ′, which is unramified above those points in C where g has singular fibers. Put S′ =
S ×C C ′, let g′ be the projection S′ → C ′, and let O′ : C ′ → S′ denote the morphism
induced by the identity on C ′ and the composition O ◦ γ. Then O′ is a section of g′ and
they make S′ into an elliptic surface over C ′. The Euler characteristics χS = χ(OS) and
χS′ = χ(OS′) are related by χS′ = (deg γ)χS.

S′

g′

S

g

C ′

O′

γ C

O

Proof. Since projective morphisms are stable under base extension (see [Ha2], exc.
II.4.9), we find that S′ is projective over C ′, which is projective over Spec k, so S′ is
projective. The composition g′ ◦ O′ is by construction the identity on C ′, so O′ is a
section of g′.

As k is algebraically closed, the residue field k(x) of a closed point x ∈ C ′ is
isomorphic to the residue field k(γ(x)). Hence the fiber above x is isomorphic to the fiber
above γ(x), as we have

Spec k(x) ×C′ S′ ∼= Spec k(x) ×C′ C ′ ×C S ∼= Spec k(x) ×C S ∼= Spec k(γ(x)) ×C S.

Therefore, as for g, all fibers of g′ are connected. As g is elliptic, all but finitely many
fibers of g′ will be smooth curves of genus 1. Since g has a singular fiber, so does g′.
From Lemma 2.3.8 we find that g′∗OS′

∼= OC′ . As C ′ is irreducible and projective, this
implies dimH0(S′,OS′) = dim H0(C ′, g′∗OS′) = dimH0(C ′,O′

C) = 1. We conclude that
S′ is connected.

To prove that S′ is smooth and irreducible, set h = γ ◦ g′. By assumption there
are open U, V ⊂ C with U ∪ V = C, such that γ|γ−1(U) is unramified, whence smooth,
and g|g−1(V ) has no singular fibers, which implies it is smooth by Remark 2.3.12. As
smooth morphisms are stable under base extension and composition (see [Ha2], Prop.
II.10.1), we find first that h−1(U) = g−1(U) ×U γ−1(U) is smooth over g−1(U) ⊂ S. As
S is smooth over k and g−1(U) is open in S, we conclude that h−1(U) is smooth over k.
Similarly, h−1(V ) is smooth over k, whence so is their union S′. As S′ is also connected,
we find that S′ is irreducible from Lemma 2.5.7.
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To prove that g′ is relatively minimal, it suffices by Theorem 2.3.7 to show that
no fiber S′

x above x ∈ C ′ contains an exceptional prime divisor. Let D′ be an irreducible
component of the fiber S′

x, mapping isomorphically to the irreducible component D of
Sγ(x)

∼= S′
x under the induced morphism γ′ : S′ → S. Suppose that D′ is an exceptional

divisor, i.e., D′ ∼= P1 and D′2 = −1. If γ(x) is contained in V , then the fiber Sγ(x), and
hence S′

x, is smooth. As all fibers are connected, S′
x is then irreducible, so D′ = S′

x. Since
any fiber is numerically equivalent to any other, this implies D′2 = 0, contradiction.
Therefore, we may assume that γ(x) 6∈ V , so γ(x) ∈ U and D′ ⊂ h−1(U). As étale
morphisms are stable under base extension and γ|γ−1(U) is étale, we find that γ′|h−1(U)

is étale.
For any morphism of schemes ϕ : X → Y , let ΩX/Y denote the sheaf of relative

differentials of X over Y . If X is a nonsingular variety over k, then let TX denote the
tangent sheaf Hom(ΩX/k,OX). For any nonsingular subvariety Z ⊂ X, let NZ/X denote
the normal sheaf of Z in X, see [Ha2], § II.8.

We will show that the self-intersection number D′2 = degND′/S′ on S′ (see
[Ha2], example V.1.4.1) is equal to the self-intersection number D2 = degND/S . Since
D is not an exceptional curve, that implies that D′2 6= −1, which is a contradiction. As
γ′ induces an isomorphism from D′ to D, it suffices to show that ND′/S′ is isomorphic
to γ′∗ND/S .

There is an exact sequence

0 → TD′ → TS′ ⊗OD′ → ND′/S′ → 0 (2.9)

(see [Ha2], p. 182), and by applying the isomorphism (γ′|D′)∗ to the similar sequence for
D in S we also get the exact sequence

0 → γ′∗TD → γ′∗(TS ⊗OD) → γ′∗ND/S → 0. (2.10)

The natural morphisms TD′ → γ′∗TD and TS′ ⊗OD′ → γ′∗(TS ⊗OD) induce a morphism
between the short exact sequences (2.9) and (2.10). To prove that the last morphism
ND′/S′ → γ′∗ND/S is an isomorphism, it suffices by the snake lemma to prove that the
first two are. Clearly, TD′ → γ′∗TD is an isomorphism of sheaves on D′, as γ′|D′ is an
isomorphism. To show that

TS′ ⊗OD′ → γ′∗(TS ⊗OD) ∼= γ′∗TS ⊗ γ′∗OD
∼= γ′∗TS ⊗OD′

is an isomorphism, it suffices to show that TS′ → γ′∗TS is an isomorphism on the open
subset h−1(U) ⊂ S′ containing D′. This is true, as by [SGA 1], Exposé II, Cor. 4.6, a
morphism f : X → Y of smooth T -schemes is étale if and only if the morphism f∗ΩY/T →
ΩX/T is an isomorphism. Taking the dual gives what we need, if we choose T = Spec k,
and f = γ′|h−1(U).

For the last statement we will use that by [Ko1], Thm. 12.2, we have

12χS = µ + 6
∑

b≥0

ν(I∗b ) + 2ν(II) + 10ν(II∗) + 3ν(III)

+ 9ν(III∗) + 4ν(IV ) + 8ν(IV ∗),

(2.11)
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where ν(T ) is the number of singular fibers of g of type T and µ is the degree of the map
j(S/C) : C → P1, sending every element x ∈ C to the j-invariant of the fiber Sx.

As the morphism γ is unramified above the points of C where g has singular
fibers, it follows that the singular fibers of g′ come in n-tuples, with n = deg γ. Each
n-tuple consists of n copies of one of the singular fibers of g. Hence, if ν ′(T ) denotes the
number of singular fibers of g′ of type T , then we have ν ′(T ) = nν(T ). As j(S′/C ′) is the
composition of γ and j(S/C), we also get µ′ = nµ, where µ′ is the degree of j(S′/C ′).
From (2.11) and its analogue for S′ we conclude that χS′ = nχS . ¤

2.6 The Néron-Severi group under good reduction

In this section we will see how the Néron-Severi group of a surface behaves under good
reduction. Proposition 2.6.2 is known among specialists, but by lack of reference, we will
include a proof, as sketched by Bas Edixhoven. D. Harari proves a similar result about
Brauer groups, see [Hr2]. Arguments similar to the ones used in this section can also be
found in [Hr1] and [CR]. For all of this section, let A be a discrete valuation ring of a
number field K with maximal ideal m, whose residue field k has q = pr elements with
p prime. Let S be an integral scheme with a morphism S → SpecA that is projective
and smooth of relative dimension 2. Then the projective surfaces S = SQ and S̃ = Sk

are smooth over the algebraically closed fields Q and k respectively. We will assume that
S and S̃ are integral, i.e., they are irreducible, nonsingular, projective surfaces.

Let l 6= p be a prime number. For any scheme Z we set

H i(Zét,Ql) = Ql ⊗Zl

(
lim
←

H i(Zét,Z/lnZ)
)

.

Furthermore, for every integer m and every vector space H over Ql with the Galois
group G(Fq/Fq) acting on it, we define the twistings of H to be the G(Fq/Fq)-spaces
H(m) = H ⊗Ql

W⊗m, where
W = Ql ⊗Zl

(lim
←

µln)

is the one-dimensional l-adic vector space on which G(Fq/Fq) operates according to
its action on the group µln ⊂ Fq of ln-th roots of unity. Here we use W⊗0 = Ql and
W⊗m = Hom(W⊗−m,Ql) for m < 0.

For the rest of this section, all cohomology will be étale cohomology, so we will
often leave out the subscript ét.

Lemma 2.6.1 Let L denote the maximal subextension of Q/K that is unramified at m.
Let B denote the localization at some maximal ideal of the integral closure of A in L.
Then for all integers i, m the natural homomorphisms

H i(SB,Ql)(m) → H i(S̃,Ql)(m) and

H i(SB,Ql)(m) → H i(S,Ql)(m)

are isomorphisms.
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Proof. As tensoring with W is exact, it suffices to prove this for m = 0. The ring
B is a strictly Henselian ring, see [Mi2], p. 38 (for the definition, see [EGA IV(4)],
Déf. 18.8.2, or [Mi2], § I.4). The surface S̃ is the closed fiber of SB → Spec B. As B
is strictly Henselian, it follows from the proper base change theorem that the maps
H i(SB,Z/lnZ) → H i(S̃,Z/lnZ) are isomorphisms for all n ≥ 0, see [Mi2], Cor. VI.2.7,
and [SGA 41

2 ], p. 39, Thm. IV.1.2. Hence, also the map H i(SB,Ql) → H i(S̃,Ql) obtained
from taking the projective limit and tensoring with Ql is an isomorphism. The surface
S is the base change of SB from SpecB to its geometric point SpecQ. From the smooth
base change theorem ([Mi2], Thm. VI.4.1, and [SGA 41

2 ], p. 63, Thm. V.3.2) it follows
that H i(SB,Z/lnZ) → H i(S,Z/lnZ) is an isomorphism. For this exact statement, see
[SGA 41

2 ], p. 54–56: Lemme V.1.5, (1.6), and Variante (for their S take S = Spec B;
as B is a strictly Henselian local ring which is integrally closed in its fraction field L
already, we get that their S′ equals their S). These statements assume that the morphism
SB → Spec B is locally acyclic, which follows from the fact that it is smooth, see [SGA
41

2 ], p. 58, Thm. (2.1). Passing to the limit and tensoring with Ql, we find that also the
map H i(SB,Ql) → H i(S,Ql) is an isomorphism. ¤

Proposition 2.6.2 There are natural injective homomorphisms

NS(S) ⊗Z Ql →֒ NS(S̃) ⊗Z Ql →֒ H2(S̃,Ql)(1) (2.12)

of finite dimensional vector spaces over Ql. The second injection respects the Galois
action of G(k/k).

Proof. After replacing K and A by a finite extension if necessary, we may assume
without loss of generality that the natural map NS(SK) → NS(S) is surjective (take
generators for NS(S), lift them to Div S and let K be a field over which all these lifts are
defined). For any scheme Z, we have H1(Zét,Gm) ∼= Pic Z, see [SGA 41

2 ], p. 20, Prop.
2.3, or [Mi2], Prop. III.4.9. As long as l 6= char k(z) for any z ∈ Z, the Kummer sequence

0 → µln → Gm
[ln]−→ Gm → 0

is a short exact sequence of sheaves on Zét, see [SGA 41
2 ], p. 21, (2.5), or [Mi2], p. 66.

Hence, from the long exact sequence we get a δ-map

PicZ ∼= H1(Zét,Gm)
δ−→ H2(Zét, µln).

Taking the projective limit over n, we get a homomorphism

PicZ → lim
←

H2(Z, µln) ∼= lim
←

H2(Z,Z/lnZ) ⊗ µln → H2(Z,Ql)(1).

Let L and B be as in Lemma 2.6.1. Note that B is a discrete valuation ring. Because
SB is smooth and projective over SpecB, with geometrically integral fibers, it follows
that the map PicSB → PicSL is an isomorphism, see [Hr1], Lem. 3.1.1. From the above
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we get the diagram below, which commutes by functoriality. The maps H2(SB,Ql)(1) →
H2(S̃,Ql)(1) and H2(SB,Ql)(1) → H2(S,Ql)(1) in the bottom line of the diagram are
isomorphisms by Lemma 2.6.1.

PicS PicSL PicSB

∼=
Pic S̃

H2(S,Ql)(1) H2(SL,Ql)(1) H2(SB,Ql)(1)

∼=

∼=
H2(S̃,Ql)(1)

Recall that for any smooth, projective variety Z over an algebraically closed
field, the group Picn Z is the subgroup of PicZ of all divisor classes on Z that are
numerically equivalent to 0, see Definition 2.2.16. By Proposition 2.2.17 we have an
isomorphism NS(Z)/ NS(Z)tors ∼= PicZ/Picn Z. By [Ta2], p. 97–98, the kernel of PicZ →
H2(Z,Ql)(1) is Picn Z. From the diagram above, it then follows that the composition

γ : PicSL
∼= Pic SB → Pic S̃ → H2(S̃,Ql)(1)

factors as

γ : PicSL → NS(S̃)/ NS(S̃)tors →֒ H2(S̃,Ql)(1) and as

γ : PicSL → PicS → H2(S,Ql)(1) ∼= H2(SB,Ql)(1) ∼= H2(S̃,Ql)(1).
(2.13)

Set M = PicSL/ ker γ. From the first factorization of γ in (2.13) we find that there are
injections

M →֒ NS(S̃)/ NS(S̃)tors →֒ H2(S̃,Ql)(1). (2.14)

The second map in the second line of (2.13) has kernel Picn S, so γ also factors as

γ : PicSL → NS(S)/ NS(S)tors →֒ H2(S̃,Ql)(1). (2.15)

As the map NS(SL) → NS(S) is surjective, so is the first map of (2.15). We conclude
that M is isomorphic to NS(S)/ NS(S)tors. Combining this with (2.14) and tensoring
with Ql, we find the desired homomorphisms. ¤

Remark 2.6.3 Proposition 2.6.2 implies rk NS(S) ≤ rkNS(S̃). For a shorter proof of
this fact, note that without loss of generality, by enlarging A, we may assume that NS(S)
and NS(S̃) are defined over the quotient field K = Q(A) and the residue field k of A
respectively. Let K̂ denote the quotient field of the completion Â of A, and let K ′ be
the algebraic closure of K̂. Then by [Fu], Exm. 20.3.6, the intersection numbers do not
change under reduction, so we get rkNS(SK′) ≤ rkNS(S̃). Thus, we find

rkNS(S) = rk NS(SK) ≤ rkNS(SK′) ≤ rk NS(S̃).

However, this does not imply that there exists a well-defined homomorphism NS(S) ⊗ZQl →֒ NS(S̃) ⊗Z Ql, so Proposition 2.6.2 gives more information.
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For any variety X over k, let FX : X → X denote the absolute Frobenius of
X, which acts as the identity on points, and by f 7→ fp on the structure sheaf. Set
ϕ = F r

Sk
and let ϕ∗ denote the automorphism on H2(S̃,Ql) induced by ϕ × 1 acting on

Sk ×k k ∼= S̃.

Corollary 2.6.4 The ranks of NS(S̃) and NS(S) are bounded from above by the number
of eigenvalues λ of ϕ∗ for which λ/q is a root of unity, counted with multiplicity.

Proof. By Proposition 2.6.2, any upper bound for the rank of NS(S̃) is an upper bound
for the rank of NS(S). For any k-variety X, the absolute Frobenius FX acts as the identity
on the site Xét. Hence, if we set X = X ×k k, then FX = FX × Fk acts as the identity
on H i(X,Ql)(m) for any m, see [Ta2], § 3. Therefore, FX = FX × 1 and Fk = 1×Fk act
as each other’s inverses.

Let σ : x 7→ xq denote the canonical topological generator of G(k/k). Then
σ = F r

k
and as we have S̃ ∼= Sk ×k k, we find ϕ × σ = F r

Sk
× F r

k
= F r

eS . By the above

we find that the induced automorphisms ϕ∗(m) and σ∗(m) on H2(S̃,Ql)(m) act as each
other’s inverses for any m.

As every divisor on S̃ is defined over a finite field extension of k, some power of
σ∗(1) acts as the identity on NS(S̃) ⊂ H2(S̃,Ql)(1). It follows from Proposition 2.6.2 that
an upper bound for rkNS(S̃) is given by the number of eigenvalues (with multiplicity)
of σ∗(1) that are roots of unity. As σ∗ acts as multiplication by q on W , this equals the
number of eigenvalues ν of σ∗(0) for which νq is a root of unity. The corollary follows as
ϕ∗ = ϕ∗(0) acts as the inverse of σ∗(0). ¤

Remark 2.6.5 Tate’s conjecture states that the upper bound mentioned is actually
equal to the rank of NS(S̃), see [Ta2]. Tate’s conjecture has been proven for ordinary K3
surfaces over fields of characteristic ≥ 5, see [NO], Thm. 0.2.
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Chapter 3

A K3 surface associated to

integral matrices with integral

eigenvalues

3.1 Introduction

In the problem section of Nieuw Archief voor Wiskunde [NAW], F. Beukers posed the
question whether symmetric, integral 3 × 3 matrices

Ma,b,c =




0 a b
a 0 c
b c 0


 (3.1)

exist with integral eigenvalues and satisfying q(a, b, c) 6= 0, where q(a, b, c) is the polyno-
mial q(a, b, c) = abc(a2−b2)(b2−c2)(c2−a2). As it is easy to find such matrices satisfying
q(a, b, c) = 0, we will call those trivial. R. Vidunas and the author of this thesis indepen-
dently proved that the answer to this question is positive, see [BLV]. There are in fact
infinitely many nontrivial examples of such matrices. This follows immediately from the
fact that for every integer t, if we set

a = −(4t − 7)(t + 2)(t2 − 6t + 4),

b = (5t − 6)(5t2 − 10t − 4),

c = (3t2 − 4t + 4)(t2 − 4t + 6),

x = 2(3t2 − 4t + 4)(4t − 7),

y = (t2 − 6t + 4)(5t2 − 10t − 4),

z = −(t + 2)(5t − 6)(t2 − 4t + 6),

(3.2)

then the matrix Ma,b,c has eigenvalues x, y, and z. This matrix is trivial if and only if
we have t ∈ {−2,−1, 0, 1, 2, 4, 10}. For t = 3 we get a = 125, b = 99, and c = 57 with
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eigenvalues 190, −55, and −135. By a computer search, we find that this is the second
smallest example, when ordered by max(|a|, |b|, |c|). The smallest has a = 26, b = 51,
and c = 114. In this chapter we will show how to find such parametrizations. We will see
that there are infinitely many and that the one in (3.2) has the lowest possible degree.

If the eigenvalues of the matrix Ma,b,c are denoted by x, y, and z, then its
characteristic polynomial can be factorized as

λ3 − (a2 + b2 + c2)λ − 2abc = (λ − x)(λ − y)(λ − z).

Comparing coefficients, we get three homogeneous equations in x, y, z, a, b, and c. Hence,
geometrically we are looking for rational points on the 2-dimensional complete intersec-
tion X ⊂ P5Q, given by

x + y + z = 0,

xy + yz + zx = −a2 − b2 − c2,

xyz = 2abc.

(3.3)

The points on the curves on X defined by q(a, b, c) = 0 correspond to the trivial matrices.
Parametrizations as in (3.2) correspond to curves on X that are isomorphic over Q to P1.
We will see that X contains infinitely many of them, thereby proving the main theorem
of this chapter, which states the following.

Theorem 3.1.1 The rational points on X are Zariski dense.

In Section 3.2 we will prove Theorem 3.1.1 using an elliptic fibration of a blow-
up Y of X. We will see that Y is a so called elliptic K3 surface. The interaction between
the geometry and the arithmetic of K3 surfaces is of much interest. F. Bogomolov and
Y. Tschinkel have proved that on every elliptic K3 surface Z over a number field K the
rational points are potentially dense, i.e., there is a finite field extension L/K, such that
the L-points of Z are dense in Z, see [BT], Thm. 1.1. Key in their analysis of potential
density of rational points is the so called Picard number of a surface, an important geo-
metric invariant. F. Bogomolov and Y. Tschinkel have shown that if the Picard number
of a K3 surface is large enough, then the rational points are potentially dense. On the
other hand, it is not yet known if there exist K3 surfaces with Picard number 1 on which
the rational points are not potentially dense.

After proving the main theorem, we will investigate more deeply the geometry of
Y and show in Section 3.3 that its Picard number equals 20, which is maximal among K3
surfaces in characteristic 0. It is a fact that a K3 surface with maximal Picard number
is either a Kummer surface or a double cover of a Kummer surface. These Kummer
surfaces are K3 surfaces with a special geometric structure, described in Section 3.4. As
a consequence, their arithmetic can be described more easily. It is therefore natural to
ask if Y is a Kummer surface, in which case Y would have had a richer structure that
we could have utilized. In Section 3.4 we will show that this is not the case.

In Section 3.5 we will describe more of the geometry of X by showing that X
contains exactly 63 curves of degree smaller than 4. All points on these curves correspond
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to matrices that are either trivial or not defined over Q. As the degree of a parametrization
as in (3.2) corresponds to the degree of the curve that it parametrizes, this shows that
the one in (3.2) has the lowest possible degree among parametrizations of nontrivial
matrices.

The results of this chapter have been combined into a preprint, see [VL1].

3.2 Proof of the main theorem

Let G ⊂ Aut X be the group of automorphisms of X generated by permutations of x, y
and z, by permutations of a, b, and c and by switching the sign of two of the coordinates
a, b, and c. Then G is isomorphic to (V4 ⋊ S3) × S3 and has order 144. The surface X
has 12 singular points, on which G acts transitively. They are all ordinary double points
and their orbit under G is represented by [x : y : z : a : b : c] = [2 : −1 : −1 : 1 : 1 : 1].
Let π : Y → X be the blow-up of X in these 12 points.

Proposition 3.2.1 The surface Y is a smooth K3 surface. The exceptional curves above
the 12 singular points of X are all isomorphic to P1 and have self-intersection number
−2.

Proof. Ordinary double points are resolved after one blow-up, so Y is smooth. The
exceptional curves Ei are isomorphic to P1, see [Ha2], exc. I.5.7. Their self-intersection
number follows from [Ha2], example V.2.11.4. Since X is a complete intersection, it is
geometrically connected and H1(X,OX) = 0, so q(X) = 0, see [Ha2], exc. II.5.5. From its
connectedness it follows that Y is geometrically connected as well. As Y is also smooth,
it follows that Y is geometrically irreducible.

To compute the canonical sheaf on Y , note that on the nonsingular part U =
Xreg of X the canonical sheaf is given by OX(−5 − 1 + 3 + 2 + 1)|U = OU , see [Ha2],
Prop. II.8.20 and exc. II.8.4. Hence, the canonical sheaf on Y restricts to the structure
sheaf outside the exceptional curves. That implies that there are integers ai such that
K =

∑
i aiEi is a canonical divisor. Recall that E2

i = −2 and Ei · Ej = 0 for i 6= j.
Applying the adjunction formula 2gC − 2 = C · (C + K) (see [Ha2], Prop. V.1.5) to
C = Ei, we find that ai = 0 for all i, whence K = 0.

It remains to show that q(Y ) = q(X). It follows immediately from [Ar], Prop.
1, that ordinary double points are rational singularities, i.e., we have R1π∗OY = 0. Also,
as X is integral, the sheaf π∗OY is a sub-OX -algebra of the constant OX -algebra K(X),
where K(X) = K(Y ) is the function field of both X and Y . Since π is proper, π∗OY is
finitely generated as OX -module. As X is normal, i.e., OX is integrally closed, we get
π∗OY

∼= OX . Hence, the desired equality q(Y ) = q(X) follows from the following lemma,
applied to f = π and F = OY . ¤

Lemma 3.2.2 Let f : W → Z be a continuous map of topological spaces. Let F be a
sheaf of groups on W and assume that Rif∗(F) = 0 for all i = 1, . . . , t. Then for all
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i = 0, 1, . . . , t, there are isomorphisms

H i(W,F) ∼= H i(Z, f∗F).

Proof. This follows from the Leray spectral sequence. For a more elementary proof,
choose an injective resolution

0 → F → I0 → I1 → I2 → · · ·

of F . Because Rif∗(F) = 0 for i = 1, . . . , t, we conclude that the sequence

0 → f∗F → f∗I0 → f∗I1 → f∗I2 → · · · → f∗It+1 (3.4)

is exact as well. As injective sheaves are flasque (see [Ha2], Lemma III.2.4) and f∗ maps
flasque W -sheaves to flasque Z-sheaves, the exact sequence (3.4) can be extended to a
flasque resolution of f∗F . By [Ha2], Rem. III.2.5.1, we can use that flasque resolution to
compute the cohomology groups H i(Z, f∗F). Taking global sections we get the complex

0 → Γ(Z, f∗I0) → Γ(Z, f∗I1) → Γ(Z, f∗I2) → · · · → Γ(Z, f∗It+1) → . . . (3.5)

As Γ(Z, f∗In) ∼= Γ(W, In) for all n, we find that for i = 0, 1, . . . , t, the i-th cohomology
of (3.5) is isomorphic to both H i(Z, f∗F) and H i(W,F). ¤

We will now give Y the structure of an elliptic surface over P1. Let f : Y → P1 be the
composition of π with the morphism f ′ : X → P1, [x : y : z : a : b : c] 7→ [x : a] = [2bc :
yz]. One easily checks that f ′, and hence f , is well-defined everywhere.

If a = 0, then clearly Ma,b,c in (3.1) has eigenvalue 0. Geometrically, this reflects
the fact that the hyperplane a = 0 intersects X in three conics, one in each of the
hyperplanes given by xyz = 0. Hence, each of the hyperplanes Ht given by x = ta in the
family of hyperplanes through the space x = a = 0 contains the conic given by a = x = 0
on X. The fibers of f consist of the inverse image under π of the other components in the
intersection of X with the family of hyperplanes Ht. The fiber above [t : 1] is therefore
given by the intersection of the two quadrics

xy + yz + zx = −a2 − b2 − c2 and tyz = 2bc (3.6)

within the intersection of two hyperplanes

x + y + z = x − ta = 0, (3.7)

which is isomorphic to P3. The conic C given by a + b = c − y = 0 on X maps under f ′

isomorphically to P1. The strict transform of C on Y gives a section of f that we will
denote by O.

Proposition 3.2.3 The morphism f and its section O give YC the structure of an elliptic
surface over P1C.
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Proof. Since Y is a K3 surface, it is minimal. Indeed, by the adjunction formula any
smooth curve C of genus 0 on Y would have self-intersection C2 = −2, while an ex-
ceptional curve that can be blown down has self-intersection −1, see [Ha2], Prop. V.3.1.
Hence, f is a relatively minimal fibration by Theorem 2.3.7. The 12 exceptional curves
give extra components in the fibers above t = ±1,±2, so f is not smooth. From the de-
scription (3.6) above, an easy computation shows that the fibers above t 6= 0,±1,±2,∞
are nonsingular. They are isomorphic to the complete intersection of two quadrics in P3,
so by [Ha2], exc. II.8.4g, almost all fibers have genus 1. ¤

Let K ∼= Q(t) denote the function field of P1Q and let E/K be the generic fiber of f . It
can be given by the same equations (3.6) and (3.7). To put E in Weierstrass form, set
λ = (t2 − 4)ν + 3t and µ = t(t2 − 4)(z − y)(tν2 − 2ν + t)/x, where ν = (x − c)/(a + b).
Then the change of variables

u =
(
µ + (λ2 + t(t2 − 1)(t + 8))

)
/2,

v =
(
µλ + λ3 + (t2 − 1)(t2 − 8)λ − 8t(t2 − 1)2

)
/2

shows that E/K is isomorphic to the elliptic curve over K given by

v2 = u
(
u − 8t(t2 − 1)

)(
u − (t2 − 1)(t + 2)2

)
.

It has discriminant ∆ = 210t2(t2 − 1)6(t2 − 4)4 and j-invariant

j =
4(t4 + 56t2 + 16)3

t2(t2 − 4)4
.

Lemma 3.2.4 The singular fibers of f are at t = 0,±1,±2 and at t = ∞. They are

described in the following table, where mt (resp. m
(1)
t ) is the number of irreducible com-

ponents (resp. irreducible components of multiplicity 1).

t type mt m
(1)
t

0,∞ I2 2 2
±1 I∗0 (4 · 733 · 3−4) 5 4
±2 I4 4 4

Proof. This is a straightforward computation. Since we have a Weierstrass form, it
also follows easily from Tate’s algorithm, see [Ta3] and [Si2], IV.9. For the parameter
j = 4 · 733 · 3−4 see Remark 2.4.18. ¤

Applying the automorphisms (b, c) 7→ (−c,−b) and (b, c) 7→ (−b,−c) and (b, c, y, z) 7→
(c, b, z, y) to the curve O, we get three more sections, which we will denote by P , T1 and
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T2 respectively. By Lemma 2.3.13, these sections correspond with points on the generic
fiber E/K. The Weierstrass coordinates (u, v) of these points are given by

T1 =
(
(t2 − 1)(t + 2)2, 0

)
,

T2 =
(
0, 0

)
,

P =
(
2t3(t + 1), 2t2(t + 1)2(t − 2)2

)
,

(3.8)

We immediately notice that the Ti are 2-torsion points.

Proposition 3.2.5 The section P has infinite order in the group S(C) ∼= E(K).

Proof. Note that S(C) and E(K) are isomorphic by the identification of Lemma 2.3.13.
By Corollary 2.4.35 there is a bilinear pairing on E(K) that induces a nondegenerate
pairing on E(K)/E(K)tors. As mentioned in Remark 2.4.36, Shioda gives an explicit
formula for this pairing, see [Shi3], Thm. 8.6. We find that 〈P, P 〉 = 3

2 6= 0, so P is not
torsion. ¤

The main theorem now follows immediately.

Proof of Theorem 3.1.1. By Proposition 3.2.5 the multiples of P give infinitely many
rational curves on Y , so the rational points on Y are dense. As π is dominant, the rational
points on X are dense as well. ¤

The multiples of P yield infinitely many parametrizations of integral, symmetric 3 × 3
matrices with zeros on the diagonal and integral eigenvalues. The section 2P , for example,
is a curve of degree 8 on X which can be parametrized by

a = t(t6 − 8t4 + 20t2 − 12),

b = −t(t6 − 4t4 + 4),

c = (t2 − 2)(t6 − 6t4 + 8t2 − 4),

and suitable polynomials for x, y, and z. The parametrization (3.2) does not come from
a section of f . We will see in Section 3.5 where it does come from.

3.3 The Mordell-Weil group and the Néron-Severi group

As mentioned in the introduction, the geometry and the arithmetic of K3 surfaces are
closely related. In the following sections we will further analyze the geometry of Y . Set
L = C(t) ⊃ Q(t) = K. In this section we will find explicit generators for the Mordell-Weil
group E(L) and for the Néron-Severi group of Y = YC. This will be used in Sections 3.4
and 3.5.

Two of the irreducible components of the singular fibers of f : Y → P1 above
t = ±2 are defined over Q(

√
3). They are all in the same orbit under G. In that same
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orbit we also find a section, given by z = 2b and 2(c − a) =
√

3(y − x). We will denote
it by Q. Its Weierstrass coordinates are given by

Q =
(
2t(t + 1)(t + 2), 2

√
3t(t2 − 4)(t + 1)2

)
.

It follows immediately that the Galois conjugate of Q under the automorphism that
sends

√
3 to −

√
3 is equal to −Q.

Recall that a complex K3 surface is called singular if its Picard number equals
20, see Remark 2.2.24.

Proposition 3.3.1 The surface Y is a singular K3 surface. The Mordell-Weil group
E(L) is isomorphic to Z2 × (Z/2Z)2 and generated by P , Q, T1 and T2. The Mordell-
Weil group E(K) is isomorphic to Z× (Z/2Z)2 and generated by P , T1 and T2.

Proof. From Shioda’s explicit formula for the pairing on E(K) (see Remark 2.4.36),
we find that 〈P, P 〉 = 3

2 and 〈Q, Q〉 = 1
2 and 〈P, Q〉 = 0. Hence, P and Q are linearly

independent and the Mordell-Weil rank r = rkE(L) is at least 2.
By Lemma 3.2.4 and Theorem 2.4.32, the rank ρ of NS(Y ) = Pic(Y ) is at least

2 + 18 = 20. As Y is a K3 surface (see Proposition 3.2.1) and 20 is the maximal Picard
number for K3 surfaces in characteristic 0, we conclude that Y is a singular K3 surface.
Using Theorem 2.4.32 again, we find that the Mordell-Weil rank of E(L) equals 2. Since
E has additive reduction at t = ±1, the order of the torsion group E(L)tors is at most
4, see [Si2], Remark IV.9.2.2. Hence we have E(L)tors = 〈T1, T2〉.

From Shioda’s explicit formula for the height pairing it follows that with sin-
gular fibers only of type I2, I4 and I∗0 , the pairing takes values in 1

4Z. Hence, the lattice
Λ =

(
E(L)/E(L)tors

)
(4) is integral, see Definition 2.1.6. In Λ we have 〈P, P 〉 = 6 and

〈Q, Q〉 = 2 and 〈P, Q〉 = 0. Hence, by Lemma 2.1.9 the sublattice Λ′ of Λ generated by P
and Q has discriminant disc Λ′ = 12 = n2 disc Λ, with n = [Λ : Λ′]. Therefore, n divides
2. Suppose n = 2. Then there is an R ∈ Λ \Λ′ with 2R = aP + bQ. By adding multiples
of P and Q to R, we may assume a, b ∈ {0, 1}. In Λ we get 4|〈2R, 2R〉 = 6a2 + 2b2.
Hence, we find a = b = 1, so 2R = P + Q + T for some torsion element T ∈ E(L)[2].
Since all the 2-torsion of E(L) is rational over L, it is easy to check whether an element
of E(L) is in 2E(L). If e is the Weierstrass u-coordinate of one of the 2-torsion points,
then there is a homomorphism

E(L)/2E(L) → L∗/L∗2,

given by S 7→ u(S) − e, where u(S) denotes the Weierstrass u-coordinate of the point
S, see [Si1], § X.1. We can use e = 0 and find that for none of the four torsion points
T ∈ E(L)[2] the value u(P + Q + T ) is a square in L. Hence, we get n = 1 and E(L) is
generated by P, Q, T1, and T2.

Suppose aP +bQ+ε1T1 +ε2T2 is contained in E(Q(t)) for some integers a, b, εi.
Then also bQ ∈ E(Q(t)). As the Galois automorphism

√
3 7→ −

√
3 sends Q to −Q,

we find that bQ = −bQ. But Q has infinite order, so b = 0. Thus, we have E(Q(t)) =
〈P, T1, T2〉. ¤
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To work with explicit generators of the Néron-Severi group of Y , we will name some of
the irreducible divisors that we encountered so far as in the table below. The exceptional
curves are given by the point on X = XC that they lie above. Other components of
singular fibers are given by their equations on X. Sections are given by their equations
and the name they already have.

D1 x = −2a, b + c =
√

3
2 (y − z) D11 [−1 : −1 : 2 : −1 : −1 : 1]

D2 [2 : −1 : −1 : −1 : 1 : −1] D12 (T1) : a − b = c + y = 0
D3 (O) : a + b = c − y = 0 D13 [2 : −1 : −1 : 1 : 1 : 1]

D4 [−1 : −1 : 2 : 1 : −1 : −1] D14 x = 2a, 2(b − c) =
√

3(y − z)

D5 a = −x, b = c D15 (Q) : z = 2b, c − a =
√

3
2 (y − x)

D6 [−1 : 2 : −1 : 1 : −1 : −1] D16 x = 2a, 2(b − c) =
√

3(z − y)
D7 (T2) : a + c = b − z = 0 D17 x = b = 0
D8 [−1 : 2 : −1 : 1 : 1 : 1] D18 a = y = 0
D9 [−1 : 2 : −1 : −1 : 1 : −1] D19 (P ) : a − c = b + y = 0
D10 a = x, b = −c D20 F (whole fiber)

Proposition 3.3.2 The sequence {D1, . . . , D20} forms an ordered basis for the Néron-
Severi lattice NS(Y ). With respect to this basis the Gram matrix of inner products is
given by




−2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1−2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1−2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 1−2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1−2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1−2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1−2 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 0 0−2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0−2 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1−2 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1−2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1−2 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1−2 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1−2 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1−2 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0−2 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0−2 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0−2 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0−2 1
0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0




.
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Proof. By Theorem 2.4.32 the Néron-Severi group NS(Y ) is generated by (O), all irre-
ducible components of the singular fibers, and any set of generators of the Mordell-Weil
group E(L). Thus, from Lemma 3.2.4 and Proposition 3.3.1 we can find a set of gen-
erators for NS(Y ). Using a computer algebra package or even by hand, one checks that
{D1, . . . , D20} generates the same lattice. A big part of the Gram matrix is easy to com-
pute, as we know how all fibral divisors intersect each other. Also, every section intersects
each fiber in exactly one irreducible component, with multiplicity 1. The sections are ra-
tional curves, so by the adjunction formula they have self-intersection −2. That leaves(
5
2

)
more unknown intersection numbers among the sections. By applying appropriate

automorphisms from G ⊂ Aut X, we find that they are equal to intersection numbers
that are already known by the above. ¤

Remark 3.3.3 By Proposition 3.3.2 the hyperplane section H is numerically equivalent
with a linear combination of the Di. This linear combination is uniquely determined by
the intersection numbers H ·Di for i = 1, . . . , 20 and turns out to be some uninformative
linear combination with many nonzero coefficients. The reason for choosing the Di and
their order in this manner is that D1, . . . , D8 and D9, . . . , D16 generate two orthogonal
sublattices, both isomorphic to E8(−1). In fact, we have the following proposition, which
will be used in Section 3.4.

Proposition 3.3.4 The Néron-Severi lattice NS(Y ) has discriminant −48. It is isomor-
phic to the orthogonal direct sum

E8(−1) ⊕ E8(−1) ⊕ Z(−2) ⊕ Z(−24) ⊕ U,

where U is the unimodular lattice with Gram matrix

(
0 1
1 0

)

Proof. The discriminant of NS(Y ) is the determinant of the Gram matrix, which equals
−48. With respect to the basis D1, . . . , D20, let C1, . . . , C4 be defined by

C1 = (0, 0, 0,−1,−2,−2,−2,−1, 1, 2, 3, 4, 4, 2, 0, 2, 1,−2, 0, 0)

C2 = (6, 12, 26, 29, 32, 19, 6, 16, 9, 18, 27, 36, 34, 23, 12, 17, 7,−3,−8, 4)

C3 = (1, 2, 4, 4, 4, 2, 0, 2, 2, 4, 6, 8, 8, 5, 2, 4, 2,−1,−1, 0)

C4 = (1, 2, 4, 5, 6, 4, 2, 3, 1, 2, 3, 4, 4, 3, 2, 2, 0, 0,−1, 1)

and let L1, . . . , L5 be the lattices generated by (D1, . . . , D8), (D9, . . . , D16), (C1), (C2),
and (C3, C4) respectively. Then one easily checks that L1, . . . , L5 are isomorphic to
E8(−1), E8(−1), Z(−2), Z(−24), and U respectively. They are orthogonal to each other,
and the orthogonal direct sum L = L1 ⊕ · · · ⊕L5 has discriminant −48 and rank 20. By
Lemma 2.1.9 we find that the index [NS(Y ) : L] equals 1, so NS(Y ) = L. ¤
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3.4 The surface Y is not Kummer

If A is an abelian surface, then the involution ι = [−1] has 16 fixed points. The quotient
A/〈ι〉 therefore has 16 ordinary double points. A minimal resolution of such a quotient
is called a Kummer surface. All Kummer surfaces are K3 surfaces. Because of their rich
geometric structure, their arithmetic can be analyzed and described more easily. Every
complex singular surface is either a Kummer surface or a double cover of a Kummer
surface, see [SI], Thm. 4 and its proof. It is therefore natural to ask whether our complex
singular K3 surface Y has the rich structure of a Kummer surface. In Corollary 3.4.3 we
will see that this is not the case.

Shioda and Inose have classified complex singular K3 surfaces by showing that
the set of their isomorphism classes is in bijection with the set of equivalence classes
of positive definite even integral binary quadratic forms modulo the action of SL2(Z),
see [SI]. A singular K3 surface S corresponds with the binary quadratic form given by
the intersection product on the oriented lattice TS = NS(S)⊥ of transcendental cycles
on S. Here the orthogonal complement is taken in the unimodular lattice H2(S,Z) of
signature (3, 19) (see [BPV], Prop. VIII.3.2). To find out which quadratic form the surface
Y corresponds to, we will use discriminant forms as defined by Nikulin [Ni], § 1.3, see
Definition 2.1.18.

Lemma 3.4.1 The embedding NS(Y ) → H2(Y ,Z) makes NS(Y ) into a primitive sub-
lattice of the even unimodular lattice H2(Y ,Z). We have disc TY = 48.

Proof. The first statement follows from Lemma 2.2.26. From Lemma 2.1.17 and 2.1.19
we find

|disc TY | = |AT
Y
| = |ANS(Y )| = |disc NS(Y )| = 48.

As TY is positive definite, we get disc TY = 48. ¤

Up to the action of SL2(Z), there are only four 2-dimensional positive definite even
lattices with discriminant 48. The transcendental lattice TY is equivalent to one of them.
They are given by the Gram matrices

(
2 0
0 24

)
,

(
4 0
0 12

)
,

(
8 4
4 8

)
,

(
6 0
0 8

)
. (3.9)

Proposition 3.4.2 Under the correspondence of Shioda and Inose, the singular K3 sur-
face Y corresponds to the matrix

(
2 0
0 24

)
.

Proof. As E8(−1) and U as in Proposition 3.3.4 are unimodular, it follows from Proposi-
tion 3.3.4 and Lemma 2.1.17 that the discriminant-quadratic form of NS(Y ) is isomorphic
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to that of Z(−2) ⊕ Z(−24). By Lemma 2.1.19 and 3.4.1 we find that the discriminant-
quadratic form associated to TY is isomorphic to that of Z(2) ⊕ Z(24), whence it takes
on the value 1

24 + 2Z. Of the four lattices described in (3.9), the lattice Z(2) ⊕ Z(24) is
the only one for which that is true. ¤

Corollary 3.4.3 The surface Y is not a Kummer surface.

Proof. By [In], Thm. 0, a singular K3 surface S is a Kummer surface if and only if its
corresponding positive definite even integral binary quadratic form is twice another such
form, i.e., if x2 ≡ 0 mod 4 for all x ∈ TS . This is not true in our case. ¤

3.5 All curves on X of low degree

Note that so far we have seen 63 rational curves of degree 2 on X, namely those in the
orbits under G of

D10 : x = a, b = −c,

D16 : x = 2a, 2(b − c) =
√

3(z − y),
D17 : x = 0, b = 0.

(3.10)

These orbits have sizes 18, 36, and 9 respectively. All of these curves correspond to
infinitely many matrices that are either trivial or not defined over Q. To find more
rational curves of low degree, we look at fibrations of Y other than f . The conic (O)
given by a + b = c − y = 0 on X determines a plane in the four-space in P5 given by
x + y + z = 0. The family of hyperplanes in this four-space that contain that plane, cut
out another family of elliptic curves on Y . One singular fiber in this family is contained
in the hyperplane section a + b = 2(c − y) on X. It is the degree 4 curve corresponding
to the parametrization in (3.2). We will now see that this is the lowest degree of a
parametrization of nontrivial matrices defined over Q.

Recall that G ⊂ Aut X is the group of automorphisms of X generated by
permutations of x, y and z, by permutations of a, b, and c and by switching the sign of
two of the coordinates a, b, and c.

Proposition 3.5.1 The union of the three orbits under the action of G of the curves
described in (3.10) consists of all 63 curves on X of degree smaller than 4.

Arguments similar to the ones used to prove Proposition 3.5.1 can be found in
[Br], p. 302. To prove this proposition we will use the following lemma.

Lemma 3.5.2 Let S be a minimal, nonsingular, algebraic K3 surface over C. Suppose
D is a divisor on S with D2 = −2.

(a) If D · H is positive for some ample divisor H on S, then D is linearly equivalent
with an effective divisor.
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(b) If D is effective and its corresponding closed subscheme is reduced and simply
connected, then the complete linear system |D| has dimension 0.

Proof. Since the canonical sheaf on S is trivial and the Euler characteristic χ of OS

equals 2, the Riemann-Roch Theorem for surfaces (see [Ha2], Thm V.1.6) tells us that

l(D) − s(D) + l(−D) =
1

2
D2 + χ = 1,

where l(D) = dimH0(S,L(D)) = dim |D| + 1 and s(D) = dimH1(S,L(D)) is the
superabundance. For (a) it is enough to prove l(D) ≥ 1. Because s(D) is nonnegative,
it suffices to show l(−D) = 0. As we have (−D) · H < 0, this follows from the fact
that effective divisors have nonnegative intersection with ample divisors. For (b), D is
effective, so we also find l(−D) = 0. In order to prove l(D) = 1, it suffices to show that
s(D) = 0 or by symmetry, that s(−D) = 0. Now L(−D) is equal to the ideal sheaf IZ of
the closed subscheme Z corresponding to D and H1(S,L(−D)) = H1(S, IZ) fits in the
exact sequence

H0(Z,OZ) → H0(S,OS) → H1(S, IZ) → H1(Z,OZ).

As S and Z are projective and connected, the first map is an isomorphism of one-
dimensional vector spaces. Hence the map H1(S, IZ) → H1(Z,OZ) is injective. By the
Hodge decomposition we know that H1(Z,OZ) is a direct summand of H1(Z,C). Hence
it is trivial, as Z is simply connected. Therefore, also H1(S, IZ) is trivial and s(−D) =
0. ¤

Proof of Proposition 3.5.1. Let C be a curve on X of degree d and arithmetic genus
ga and let C also denote its strict transform on Y . Let its coordinates with respect to
the basis {D1, . . . , D20} of NS(Y ) be given by m1, . . . , m20. Let H denote a hyperplane
section. If E is any of the 12 exceptional curves on Y , then we have H · E = 0. For any
curve D on X we have H · D = deg D. This determines H · Di for all i = 1, . . . , 20 (see
Remark 3.3.3), and we find

d = C · H = 2
(
m1 + m3 + m5 + m7 + m10 + m12 + m14+

+ m15 + m16 + m17 + m18 + m19 + 2m20

)
.

(3.11)

This implies that d is even, say d = 2k. Since we have H2 = 6, we can write the divisor
class [C] ∈ NS(Y ) as [C] = d

6H + D = k
3H + D for some element D ∈ 1

6〈H〉⊥, where the
orthogonal complement is taken inside NS(Y ). From the adjunction formula (see [Ha2],

Prop. V.1.5) we find C2 = 2ga − 2, so we get D2 = C2 − (kH
3 )2 = 2ga − 2 − 2k2

3 . By the
Hodge Index Theorem ([Ha2], Thm. V.1.9) the lattice 1

e 〈H〉⊥ is negative definite, so for

fixed k and ga there are only finitely many elements D ∈ 1
e 〈H〉⊥ with D2 = 2ga−2− 2k2

3 .
We will now make this more concrete. Set
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v1 =2m2 + m5 + m7 + m10 + m12 + m14 + m15 + m16 + m17 + m18 + 2m20 − k,

v2 =4m3 − m4 + 2m5 + 2m7 + 2m10 + 2m12 + 2m14 + 2m15 + 2m16 + m17+

+ 2m18 + 2m19 + 3m20 − 2k,

v3 =7m4 − 2m5 + 2m7 + 2m10 + 2m12 + 2m14 + 2m15 + 2m16 + m17 + 2m18+

+ 2m19 + 3m20 − 2k,

v4 =33m5 − 14m6 + 9m7 − 14m8 + 9m10 + 9m12 + 9m14 + 9m15 + 9m16 + 15m17+

+ 9m18 + 16m19 + 24m20 − 9k,

v5 =52m6 − 24m7 − 14m8 + 9m10 + 9m12 + 9m14 + 9m15 + 9m16 + 15m17 + 9m18+

+ 16m19 + 24m20 − 9k,

v6 =24m7 + m8 + 4m10 + 4m12 + 4m14 + 4m15 + 4m16 + 11m17 − 9m18 − 3m19+

+ 2m20 − 4k,

v7 =35m8 + 8m10 + 8m12 + 8m14 + 8m15 + 8m16 + 13m17 + 9m18 + 15m19+

+ 22m20 − 8k,

v8 =2m9 − m10,

v9 =211m10 − 140m11 + m12 + m14 + m15 + m16 + 41m17 + 23m18 + 50m19+

+ 64m20 − k,

v10 =282m11 − 210m12 + m14 + m15 + m16 + 41m17 + 23m18 + 50m19 + 64m20 − k,

v11 =119m12 − 94m13 + m14 + m15 + m16 − 53m17 + 23m18 + 50m19 − 30m20 − k,

v12 =144m13 − 118m14 + m15 − 118m16 − 53m17 + 23m18 − 69m19 − 30m20 − k,

v13 =86m14 − 71m15 − 58m16 − 5m17 + 23m18 − 9m19 + 18m20 − k,

v14 =1231m15 − 672m16 + 249m17 − 595m18 + 259m19 − 346m20 − 19k,

v15 =364m16 + 19m17 + 271m18 − 89m19 + 290m20 − 41k,

v16 =529m17 + 361m18 + 185m19 + 162m20 − 107k,

v17 =62m18 + m19 − 22m20 + 8k,

v18 =30m19 − 9m20 − 8k,

v19 =3m20 − 4k.

After using (3.11) to express m1 in terms of m2, . . . , m20, and k, we can rewrite the
equation C2 = 2ga − 2 as

112(3 − 3ga + k2) = 84v2
1 + 42v2

2 + 6v2
3 +

4v2
4

11
+

14v2
5

143
+

7v2
6

13
+

+
v2
7

5
+ 84v2

8 +
6v2

9

1055
+

28v2
10

9917
+

12v2
11

799
+

v2
12

102
+

7v2
13

258
+

+
7v2

14

52933
+

6v2
15

16003
+

6v2
16

6877
+

336v2
17

16399
+

28v2
18

155
+

28v2
19

5
.

(3.12)

Suppose k and ga are fixed. Since the mi are all integral, so are the vj . As the right-hand
side of (3.12) is a positive definite quadratic form in the vj , we find that there are only
finitely many integral solutions (v1, . . . , v19) of (3.12). The mi being linear combinations
of the vj , there are also only finitely many integral solutions in terms of the mi. In
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our case the even degree d is smaller than 4, so d = 2 and k = 1. As all curves have
even degree, the conic C is irreducible and hence, as all irreducible conics are, smooth.
Therefore we have ga = 0. A computer search shows that for k = 1 and ga = 0 there are
exactly 441 solutions of (3.12) corresponding to integral mi.

By Lemma 3.5.2(a) these correspond to 441 effective divisor classes [D] on
Y with D2 = −2 and H · D = 2. We will exhibit 441 of such divisors satisfying the
hypotheses of Lemma 3.5.2(b). That lemma then implies that each is the only effective
divisor in its equivalence class and we conclude that they are the only 441 effective
divisors D on Y satisfying D2 = −2 and D · H = 2.

The first 9 of these 441 divisors correspond to the curves in the orbit of D17.
Another 16 correspond to D10 + ε1E1 + ε2E2 + ε3E3 + ε4E4 where εi ∈ {0, 1} and the Ei

are the four exceptional curves of π that meet D10. Each of these 16 divisors generates
an orbit under G of size 18, giving 288 divisors on Y altogether. The last 144 divisors
correspond to the divisors in the size 36 orbits of D16 + δ1M1 + δ2M2, with δi ∈ {0, 1}
and where M1 and M2 are the exceptional curves of π in the fiber above t = 2. Of these
441 effective divisors, only 63 are the strict transform of a curve on X, all in an orbit of
one of the curves described in (3.10). ¤
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Chapter 4

An elliptic K3 surface associated

to Heron triangles

4.1 Introduction

A rational triangle is a triangle with rational sides and area. A Heron triangle is a
triangle with integral sides and area. Let Q(s) denote the field of rational functions in s
with coefficients in Q. The main theorem of this chapter states the following.

Theorem 4.1.1 There exists a sequence {(an, bn, cn)}n≥1 of triples of elements in Q(s)
such that

1. for all n ≥ 1 and all σ ∈ R with σ > 1, there exists a triangle ∆n(σ) with sides
an(σ), bn(σ), and cn(σ), inradius σ − 1, perimeter 2σ(σ + 1), and area σ(σ2 − 1),
and

2. for all m, n ≥ 1 and σ0, σ1 ∈ Q with σ0, σ1 > 1, the rational triangles ∆m(σ0) and
∆n(σ1) are similar if and only if m = n and σ0 = σ1.

Remark 4.1.2 The triples of the sequence mentioned in Theorem 4.1.1 can be computed
explicitly. We will see that we can take the first four to be

(an, bn, cn) =

(
s(s + 1)(yn + zn)

xn + yn + zn
,
s(s + 1)(xn + zn)

xn + yn + zn
,
s(s + 1)(xn + yn)

xn + yn + zn

)
, (4.1)

with
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(x1,y1, z1) =
`

1 + s,−1 + s, (−1 + s)s
´

,

x2 =(−1 + s)(1 + 6s − 2s
2
− 2s

3 + s
4)3,

y2 =(−1 + s)(−1 + 4s + 4s
2
− 4s

3 + s
4)3,

z2 =s(1 + s)(3 + 4s
2
− 4s

3 + s
4)3,

x3 =(−1 + s)(1 + 2s + 2s
2
− 2s

3 + s
4)3

(−1 − 22s + 66s
2 + 14s

3
− 72s

4 + 30s
5 + 6s

6
− 6s

7 + s
8)3,

y3 =(1 + s)(−1 + 20s + 68s
2
− 84s

3 + 139s
4 + 32s

5
− 224s

6+

64s
7 + 149s

8
− 148s

9 + 60s
10

− 12s
11 + s

12)3,

z3 =(−1 + s)s(5 + 10s + 126s
2 + 62s

3
− 225s

4 + 52s
5 + 28s

6+

12s
7 + 27s

8
− 62s

9 + 38s
10

− 10s
11 + s

12)3,

x4 =(1 + s)(−1 − 62s + 198s
2 + 1698s

3 + 7764s
4
− 8298s

5
− 10830s

6 + 43622s
7
− 15685s

8

−45356s
9
− 1348s

10 + 75284s
11

− 13088s
12

− 93076s
13 + 85220s

14 + 12s
15

− 49467s
16

+40842s
17

− 16034s
18 + 2282s

19 + 844s
20

− 546s
21 + 138s

22
− 18s

23 + s
24)3,

y4 =(−1 + s)(−1 + 54s + 550s
2
− 10s

3 + 5092s
4 + 16674s

5 + 98s
6
− 51662s

7 + 22875s
8+

41916s
9
− 63076s

10 + 45628s
11 + 13088s

12
− 63644s

13 + 38884s
14 + 17668s

15
−

31195s
16 + 8302s

17 + 8990s
18

− 9554s
19 + 4476s

20
− 1254s

21 + 218s
22

− 22s
23 + s

24)3,

z4 =(−1 + s)s(−7 − 28s − 1168s
2
− 2588s

3 + 5170s
4 + 6940s

5 + 20176s
6
− 10628s

7
−

70305s
8 + 46664s

9 + 85440s
10

− 107832s
11 + 380s

12 + 66840s
13

− 46848s
14 + 13656s

15
−

1465s
16

− 2796s
17 + 5712s

18
− 5228s

19 + 2738s
20

− 884s
21 + 176s

22
− 20s

23 + s
24)3.

Multiplying these four triples by a common denominator and substituting only integral
σ, we obtain an infinite parametrized family of quadruples of pairwise nonsimilar Heron
triangles, all with the same area and the same perimeter. For any positive integer N we
can do the same to N triples of the sequence. We find that Theorem 4.1.1 implies the
following corollary.

Corollary 4.1.3 For every integer N > 0 there exists an infinite family, parametrized
by s ∈ Z>0, of N -tuples of pairwise nonsimilar Heron triangles, all N with the same
area A(s) and the same perimeter p(s), such that for any two different s and s′ the
corresponding ratios A(s)/p(s)2 and A(s′)/p(s′)2 are different.

This corollary generalizes a theorem of Mohammed Aassila [Aa], and Alpar-
Vajk Kramer and Florian Luca [KL]. Their papers give identical parametrizations to
prove the existence of an infinite parametrized family of pairs of Heron triangles with
the same area and perimeter. The corollary also answers the question, posed by Alpar-
Vajk Kramer and Florian Luca and later by Richard Guy, whether triples of Heron
triangles with the same area and perimeter exist, or even N -tuples with N > 3. Shortly
after Richard Guy had posed this question, Randall Rathbun found with a computer
search a set of 8 Heron triangles with the same area and perimeter. Later he found
the smallest 9-tuple. Using our methods, we can find an N -tuple for any given positive
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a b c

1154397878350700583600 2324466316136026062000 2632653985016982326400
1096939160423742636000 2485350726331508315280 2529228292748458020720
1353301222256224441200 2044007602377661720800 2714209354869822810000
1326882629217053462400 2076293397636039582000 2708342152650615927600
1175291957596867110000 2287901677455234640800 2648324544451607221200
1392068029775844821400 1997996327914674087000 2721453821813190063600
1664717974861560418800 1703885276761144351875 2742914927881004201325
1159621398162242215200 2314969007387768550000 2636927773953698206800
1582886815525601586000 1787918651729320350240 2740712712248787035760
1363338670812365847600 2031949206689694692400 2716230302001648432000
1629738181200989059200 1739432097243363322800 2742347901059356590000
1958819929328111850000 1426020908550865426800 2726677341624731695200
2256059203526140412400 1195069414854334519500 2660389561123234040100
2227944754401017652000 1213597769548172408400 2669975655554518911600
2005582596002614412784 1385590865209533198216 2720344718291561361000
2462169105650632177800 1100472310428896790000 2548876763424180004200
2198208931289532607600 1234160196742812482000 2679149051471363882400
2440795514101169425200 1105486738297174396800 2565235927105365150000
2469616851505228370400 1099107024377149242000 2542794303621331359600
2623055767363274578335 1143817472264343917040 2344644939876090476625

p = a + b + c = 6111518179503708972000
A = 1340792724147847711994993266314426038400000

Table 4.1: 20 triangles with the same area and the same perimeter

integer N . For example, Table 4.1 shows 20 values of a, b, and c such that the triangle
with sides a, b, and c has perimeter p and area A as given.

We will exhibit a bijection between the set of triples (a, b, c) of sides of (rational)
triangles up to scaling and a subset of the set of (rational) points on a certain algebraic
surface X that we will describe in Section 4.2. We will prove Theorem 4.1.1 in Section
4.3 by finding infinitely many suitable curves on X. We will use that some blow-up X̃
of X can be given the structure of an elliptic surface over P1, which follows from one of
the constructions of elliptic surfaces described in Section 2.5.

The relation between the geometry and the arithmetic of K3 surfaces in general
is not clear at all, see [BT]. The last section of this chapter is therefore dedicated to a
deeper analysis of the geometry of the K3 surface Y . This section not needed for the
proof of the main theorem and serves its own interest. Section 2.6 is used in section 4.4
to determine the full Néron-Severi group of Y and the Mordell-Weil group of the generic
fiber of Y → C.

The results of this chapter and those of Sections 2.5 and 2.6 have been combined
into a preprint, see [VL2]. The main theorem has also been incorporated in Guy’s book
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on unsolved problems in number theory in the sections about Heron triangles, see [Gu],
D21 and D22.

4.2 A surface associated to Heron triangles

For a triangle with sides a, b, and c, let r, p, and A denote its inradius, perimeter, and
area respectively. The line segments from the vertices of the triangle to the midpoint of
the incircle divide the triangle in three smaller triangles of areas ar/2, br/2, and cr/2.
Adding these we find A = rp/2. Set x = p/2 − a, y = p/2 − b, and z = p/2 − c. Then
we get p = 2(x + y + z), so A = r(x + y + z). Heron’s formula A2 = (x + y + z)xyz
then yields r2(x + y + z) = xyz. Therefore, the point [r : x : y : z] ∈ P3 lies on the
surface X ⊂ P3Q given by r2(x + y + z) = xyz. Conversely, if [1 : x : y : z] lies on X,
with x, y, z > 0, then the triangle with sides a = y + z, b = x + z, and c = x + y has
inradius 1. Thus we get a bijection between the set of triples (a, b, c) of sides of triangles
up to scaling and the set of real points [r : x : y : z] on X with positive ratios x/r,
y/r, and z/r. Let G ⊂ Aut X denote the group of automorphisms of X induced by the
permutations of the coordinates x, y, and z. Let f : X 99K P1 be the rational map given
by f : [r : x : y : z] 7→ [r : x + y + z]. Note that if we let G act trivially on P1, then f
commutes with the action of G.

Lemma 4.2.1 For i = 1, 2, let ∆i denote a triangle, let ai, bi, and ci denote the sides of
∆i, and let Pi be the point on X corresponding to the equivalence class (under scaling)
of the triple (ai, bi, ci). Then ∆1 and ∆2 are similar if and only if P1 and P2 are in the
same orbit under G. Up to scaling, ∆1 and ∆2 have the same inradius and perimeter if
and only if P1 and P2 map to the same point under f .

Proof. This is obvious. ¤

To set our strategy for proving Theorem 4.1.1, note that it asserts that for fixed
σ, the infinitely many pairwise nonsimilar triangles ∆n(σ), with n ≥ 1, all have the same
perimeter 2σ(σ+1) and inradius σ−1. By Lemma 4.2.1 this is equivalent to the statement
that the infinitely many points corresponding to the triples (an(σ), bn(σ), cn(σ)) all map
under f to [σ − 1 : σ(σ + 1)], and that they are all in different orbits under G. To
prove Theorem 4.1.1, we will find a suitable infinite collection of curves on X, mapping
surjectively to P1 under f . Those maps will not be surjective on rational points, but for
rational σ each of these curves will intersect f−1([σ − 1 : σ(σ + 1)]) in a rational point.

Remark 4.2.2 Since the equation r2(x + y + z) = xyz is linear in x, we find that X is
rational. A parametrization is given by the birational equivalence P2

99K X, given by

[r : x : y : z] = [vw(u − v) : v(uv + w2) : w2(u − v) : uv(u − v)], or

[u : v : w] = [yz : r2 : yr].
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4.3 Proof of the main theorem

The rational map f is defined everywhere, except at the three intersection points M1 =
[0 : 0 : 1 : −1], M2 = [0 : 1 : 0 : −1], and M3 = [0 : 1 : −1 : 0] of X with the line L given
by r = x + y + z = 0. A straightforward computation shows that X has exactly three
singular points N1 = [0 : 1 : 0 : 0], N2 = [0 : 0 : 1 : 0], and N3 = [0 : 0 : 0 : 1]. They
are all ordinary double points, forming a full orbit under G, and all mapping to [0 : 1]

under f . Let π : X̃ → X be the blow-up of X at the six points Mi and Ni. Let M̃i and
Ñi denote the exceptional curves above Mi and Ni respectively.

Proposition 4.3.1 The surface X̃ is smooth. The rational map f ◦π extends to a mor-
phism f̃ : X̃ → P1. It maps the M̃i isomorphically to P1 and together with the section
O = f̃ |−1

fM3
it makes X̃k into an elliptic surface over P1 for any algebraically closed field

k of characteristic 0.

Proof. Ordinary double points are resolved by blowing up once, see [Ha2], exc. I.5.7.
Hence X̃ is the minimal desingularization of X blown up at the Mi. The rational map f
sends all points of X (except for the Mi) in the plane through L given by t1r = t0(x+y+z)
to the point [t0 : t1]. Hence this proposition follows from Proposition 2.5.3. ¤

Remark 4.3.2 In this explicit case, it would have been easier to check by hand that f̃
makes X̃k into an elliptic surface over P1. From Theorem 2.3.7 it follows that, in order
to prove that f̃ is a minimal fibration, it suffices to check that no reducible fiber contains
a rational curve with self-intersection −1. As the only singular points of X lie above
[0 : 1] ∈ P1, it follows that for all τ 6= 0,∞, the fiber X̃τ above [τ : 1] is given by the
intersection of X with the plane given by r = τ(x + y + z). Hence for τ 6= 0,∞, the fiber
is isomorphic to the plane curve given by τ2(x + y + z)3 = xyz, which is nonsingular as
long as τ(27τ2 − 1) 6= 0. For τ with 27τ2 = 1 we get a nodal curve, whence a fiber of
type I1, following the Kodaira-Néron classification of special fibers, see [Si2], IV.8 and
[Ko2]. At τ = 0 and τ = ∞ one checks that the fibers are of type I6 and IV respectively.
None of these fibers contains an exceptional curve.

Remark 4.3.3 From the previous remark, it follows that the fiber of f̃ above every
rational point [τ : 1] ∈ P1 with τ > 0, is a curve of genus 1, which can therefore not
be rationally parametrized. Therefore, there is no rational parametrization of infinitely
many rational triangles, all having the same area and the same perimeter.

Remark 4.3.4 Later we will see a Weierstrass form for the generic fiber of f̃ . Based on
that, Tate’s algorithm (see [Si2], IV.9 and [Ta3]) describes the special fibers of a minimal
proper regular model. They coincide with the fibers described in Remark 4.3.2, which
gives another proof of the fact that f̃ is relatively minimal.
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Let E denote the generic fiber of f̃ , an elliptic curve over k(P1) ∼= Q(t). By
Lemma 2.3.13 we can identify the sets X̃(P1) and E(k(P1)). The curve E is isomorphic
to the plane curve in P2Q(t) given by

t2(x + y + z)3 = xyz. (4.2)

The origin O = M̃3 then has coordinates [x : y : z] = [1 : −1 : 0]. Let P denote the

section M̃1 = [0 : 1 : −1]. A standard computation shows that the M̃i correspond with
inflection points. As they all lie on the line given by x + y + z = 0, we find that P has
order 3 and 2P = M̃2 = [1 : 0 : −1]. This also follows from the following lemma, which
gives a different interpretation of the action of G.

Lemma 4.3.5 The automorphism X̃ → X̃ induced by the 3-cycle (x y z) on the coordi-
nates of X corresponds with translation by P on each nonsingular fiber and on the generic
fiber of f̃ . Similarly, the automorphism induced by (x y) corresponds with multiplication
by −1.

Proof. Let Aut (E) be the group of all automorphisms of the generic fiber E and let
Aut (E,O) be the subgroup of those automorphisms that fix the point O. Then Aut (E) is
isomorphic to the semi-direct product E(Q(t))⋊Aut (E,O) of the group of translations,
isomorphic to E(Q(t)), and the group Aut (E,O). Consider the composition

S3 = G → Aut (E) ∼= E(Q(t)) ⋊ Aut (E,O) → Aut (E,O).

As the automorphism group of an elliptic curve over a field of characteristic 0 is abelian,
we find that the commutator subgroup A3 of S3 is contained in the kernel of this com-
position. We conclude that the automorphism ϕ induced by (x y z) is a translation by
ϕ(O) = P . Hence ϕ = TP on E. As E is dense in X̃, we find ϕ = TP on X̃, see [Ha2], exc.
II.4.2. Let End (E,O) denote the ring of all endomorphisms of E that fix O. The auto-
morphism ψ induced by (x y) fixes O, so we have ψ ∈ Aut (E,O) ⊂ End (E,O). As the
endomorphism ring of an elliptic curve over a field of characteristic 0 is a commutative
integral domain, and we have ψ2 = 1 and ψ 6= 1, we find ψ = [−1]. ¤

As mentioned before, we want infinitely many τ for which the fiber Xτ above
[τ : 1] has infinitely many rational points [ri : xi : yi : zi] with xi/ri, yi/ri, zi/ri > 0,
and all in different orbits under G. If the Mordell-Weil rank of E(Q(t)) ∼= X̃(P1) had
been positive, we might have been able to find infinitely many such points for almost all
rational τ satisfying some inequalities. Unfortunately, the next theorem tells us that this
is not the case.

Theorem 4.3.6 The Mordell-Weil group E(C(t)) is isomorphic to Z×Z/3Z. It is gen-
erated by the 3-torsion point P and the point Q given by [r : x : y : z] = [t : it : −it : 1].
The Mordell-Weil group E(R(t)) is equal to 〈P 〉 ∼= Z/3Z.
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Proof. As X̃ is rational, the Néron-Severi group NS(X̃C) is a unimodular lattice of rank
10, see [Shi3], Lemma 10.1. Let T ⊂ NS(X̃C) be as in Theorem 2.4.32. From Remark
4.3.2 and Theorem 2.4.32, we find that T has rank 2+(6−1)+(3−1)+(1−1)+(1−1) = 9
and we can find explicit generators. Consider the lattice T + 〈(P ), (Q)〉. Computing the
explicit intersections of our generators, we find that the lattice T + 〈(P ), (Q)〉 has rank
10, and thus it has finite index in NS(X̃C). Also, it is already unimodular, so it is equal
to NS(X̃C). Hence, E(C(t)) is generated by P and Q and has rank 1.

Complex conjugation on Q permutes the x- and y-coordinates, so by Lemma
4.3.5 we find Q = −Q in E(C(t)). If mQ + nP is real for some integers m, n, then so is
mQ and hence mQ = mQ = −mQ, so 2mQ = 0. Since Q has infinite order, we conclude
that m = 0, so E(R(t)) = 〈P 〉. ¤

To find more curves over Q, we will apply a base change to our base curve P1

by a rational curve on X̃. As we have a parametrization of X, it is easy to find such a
curve. Taking u = s and v = w = 1 in the parametrization of Remark 4.2.2, we find a
curve C on X parametrized by

β : P1 → C, [s : 1] 7→ [r : x : y : z] = [s − 1 : s + 1 : s − 1 : s(s − 1)].

We will denote its strict transform on X̃ by C as well. The map f̃ induces a 2-1 map
from C to P1. The composition f̃ ◦ β is given by [s : 1] 7→ [s − 1 : s(s + 1)]. Hence, if we
identify the function field K = k(C) of C with Q(s), then the field extension K/k(P1) is
given by Q(t) →֒ Q(s), t 7→ (s − 1)s−1(s + 1)−1. Throughout the rest of this chapter, as
in Theorem 4.1.1 and Remarks 4.3.2 and 4.3.3, one should think of σ and τ as specific
values for the indeterminates s and t respectively.

Let Y denote the fibered product X̃ ×P1 C, let δ denote the projection Y → X̃,
and let g denote the projection Y → C. The generic fiber of g is isomorphic to EK =
E ×k(P1) K. The identity on C and the composition O ◦ f̃ |C : C → X̃ together induce a

section C → Y of g, which we will also denote by O. The closed immersion C → X̃ and
the identity on C together induce a section of g which we will denote by R.

Y

g

δ
X̃

π

ef X

fP1
∼=
β

C

R

ef |C
P1

Proposition 4.3.7 The fibration g and its section O make Yk into an elliptic surface
over Ck for any algebraically closed field k of characteristic 0.

Proof. One easily checks that f̃ |C : C → P1 is unramified at the points of P1 where f̃
has singular fibers. Hence, this proposition follows immediately from Proposition 2.5.15
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and Proposition 4.3.1. ¤

From (4.2) we find that EK is isomorphic to the plane cubic over K given by

(s − 1)2(x + y + z)3 = s2(s + 1)2xyz.

The linear transformation

p = −4(s − 1)2(x + y)z−1, q = 4(s − 1)2s(s + 1)(x − y)z−1, (4.3)

or, equivalently,
x = −s(s + 1)p + q,

y = −s(s + 1)p − q,

z = 8(s − 1)2s(s + 1),

(4.4)

gives the Weierstrass equation

q2 = (p − 4(s − 1)2)3 + s2(s + 1)2p2 = F (s, p) (4.5)

with

j = j(EK) = j(E) =
(24t2 − 1)3

t6(27t2 − 1)
,

∆ = 212(s − 1)6s4(s + 1)4(s4 + 2s3 − 26s2 + 54s − 27).

(4.6)

The Weierstrass coordinates of P and R are given by

(pP , qP ) = (4(s − 1)2, 4s(s + 1)(s − 1)2) and

(pR, qR) = (8 − 8s, 8s2 − 8).

Proposition 4.3.8 The section R has infinite order in the group Y (C) ∼= EK(K).

Proof. The p-coordinate of 2R+P equals 4(s4−6s3 +10s2−2s+1)(s−1)−2, so 2R+P
is contained in the kernel of reduction at s−1. In characteristic 0 the kernel of reduction
has no nontrivial torsion (see [Si1], Prop. VII.3.1), so we find that 2R + P has infinite
order, whence so does R. ¤

For every integer n ≥ 1, let γn : P1 → X denote the compositionP1 β−→ C
(2n−1)R−→ Y

δ−→ X̃
π−→ X. (4.7)

Theorem 4.1.1 will follow from the following proposition.

Proposition 4.3.9 Let σ > 1 be a real number. For every integer n ≥ 1, let rn, xn, yn,
and zn be such that γ([σ : 1]) = [rn : xn : yn : zn] and set

an =
(σ − 1)(yn + zn)

rn
, bn =

(σ − 1)(xn + zn)

rn
, cn =

(σ − 1)(xn + yn)

rn
.

Then for every n ≥ 1 there is a triangle ∆n with sides an, bn, cn, perimeter 2σ(σ + 1),
inradius σ − 1, and area σ(σ2 − 1). If σ is rational, then the triangles ∆n are pairwise
nonsimilar.
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Proof. Let a real number σ > 1 be given and set c = β([σ : 1]) ∈ C. Then f̃ |C(c) = [τ : 1]
for τ = (σ − 1)σ−1(σ + 1)−1 > 0, so the fiber Yc is isomorphic to the fiber X̃τ of f̃
above [τ : 1]. All roots of ∆ in (4.6) are less than 1, so this fiber is nonsingular. By
Remark 4.3.2, it is isomorphic to the intersection Eτ of X with the hyperplane given
by r = τ(x + y + z). This intersection Eτ can be given the structure of an elliptic
curve with M3 as origin. The specialization map Y (C) → Yc(Q) : S 7→ S ∩ Yc = S(c)
induces a homomorphism ψ : Y (C) → Eτ ⊂ X sending a section S of g to π(δ(S(c))).
Set Θn = γn([σ : 1]) ∈ X = [rn : xn : yn : zn]. Then we have Θn = ψ((2n − 1)R) ∈ Eτ ,
so on Eτ we get Θn = (2n − 1)Θ1. The elliptic curve Eτ has a Weierstrass model
q2 = F (σ, p), see (4.5). For n ≥ 1, let (pn, qn) denote the Weierstrass coordinates of Θn,
so (p1, q1) = (8 − 8σ, 8σ2 − 8).

Note that F (σ, 0) = −64(σ−1)6 < 0, but for p1 = 8−8σ < 0 we have F (σ, p1) =
q2
1 > 0. We conclude that for any real point on Eτ with Weierstrass coordinates (p, q),

the condition p < 0 is equivalent to the point lying on the real connected component of
Eτ that does not contain O. Since Θ1 lies on this component, so do all its odd multiples
Θn.

If Θn = Mi for i = 1, 2, or 3, then 3Θn = O, which contradicts the fact that
Θn lies on the real component of Eτ that does not contain O. Hence f is well-defined
at Θn and from [rn : xn + yn + zn] = f(Θn) = [τ : 1], with τ > 0, we find rn 6= 0 and
xn + yn + zn 6= 0, whence xnynzn 6= 0. To make computations easier, we may assume
zn = 8(σ − 1)2σ(σ + 1) > 0. As Θn lies on the real connected component that does not
contain O, we have pn < 0 and therefore also pn < 4(σ − 1)2. That implies

(σ(σ + 1)pn)2 = q2
n − (pn − 4(σ − 1)2)3 > q2

n

and combined with pn < 0 this gives −σ(σ + 1)pn > |qn|. By (4.4) we get

xn = −σ(σ + 1)pn + qn > 0,

yn = −σ(σ + 1)pn − qn > 0.

From rn = τ(xn + yn + zn) we also find rn > 0. We conclude xn/rn, yn/rn, zn/rn > 0,
which proves that there is a triangle with sides an, bn, and cn. This triangle has inradius
σ − 1, perimeter 2(σ − 1)(xn + yn + zn)/rn = 2(σ − 1)/τ = 2σ(σ + 1) and hence area
σ(σ2 − 1).

Now suppose σ is rational. We will show that Θ1 has infinite order. Assume
that Θ1 has finite order. As Θ1 lies on the real component that does not contain O, it
has even order, so by Mazur’s Theorem (see [Si1], Thm. III.7.5 for statement, [Maz],
Thm. 8 for a proof) we find that mΘ1 = O for m = 8, 10, or 12. For each of these three
values for m we can compute explicit rational functions ξm, ηm ∈ Q(s) such that the
coordinates of mΘ1 are given by (ξm(σ), ηm(σ)). For m = 8, 10, or 12, these rational
functions turn out to not have any rational poles, so Θ1 has infinite order. To show that
the triangles are pairwise nonsimilar, it suffices by Lemma 4.2.1 to show that the Θn lie
in different orbits under G. Suppose that Θn and Θn′ are in the same orbit under G for
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some n, n′ ≥ 1. Then by Lemma 4.3.5 we get Θn = ±Θn′ + kP for k = 0, 1 or 2. Hence
3 ((2n − 1) ∓ (2n′ − 1)) Θ1 = 3(Θn ∓ Θn′) = 3kP = O, so 2n − 1 = ±(2n′ − 1), as Θ1

has infinite order. From n, n′ ≥ 1 we find n = n′ and hence k = 0. Thus, Θn = Θn′ . ¤

Proof of Theorem 4.1.1. Consider the open affine subset U ⊂ X defined by r 6= 0,
which is isomorphic to SpecA for A = Q[x, y, z]/

(
x + y + z − xyz

)
. For each n ≥ 1, let

Vn ⊂ P1 be a dense open affine subset such that the composition γn of morphisms in
(4.7) maps Vn to U . This is possible because the image of P1 is not entirely contained
in the closed subset of X given by r = 0. Then there is a ring Bn ⊂ Q(s) such that Vn

is isomorphic to SpecBn and the composition in (4.7) is given by a ring homomorphism
ϕn : A → Bn ⊂ Q(s). Let xn(s), yn(s), zn(s) ∈ Q(s) be the images under ϕn of x, y, z ∈
A respectively. Then for any real number σ > 1 the values rn, xn, yn, and zn from
Proposition 4.3.9 can be given by 1, xn(σ), yn(σ), and zn(σ) respectively. It follows from
Proposition 4.3.9 that 1 and 2 of Theorem 4.1.1 are true for an(s) = (yn(s)+zn(s))(s−1),
bn(s) = (xn(s) + zn(s))(s − 1), and cn(s) = (xn(s) + yn(s))(s − 1). Note that if σ0 6= σ1,
then ∆n(σ0) is automatically not similar to ∆m(σ1) for any m, n ≥ 1. ¤

Corollary 4.3.10 The set of rational points on Y is Zariski dense in Y .

Proof. The infinitely many multiples of the section R give infinitely many curves on Y ,
each with infinitely many rational points. Hence the Zariski closure of the set of rational
points is Y . ¤

Remark 4.3.11 The four triples given in Remark 4.1.2 correspond to the sections
R, 3R, 5R, and 7R.

Remark 4.3.12 As mentioned before, Randall Rathbun found with a computer search
a set of 8 Heron triangles with the same area and perimeter. His triangles correspond
to τ = r/(x + y + z) = 28/195. The 8 points on the corresponding elliptic curve above
[τ : 1] = [28 : 195] generate a group of rank 4. This yields relatively many points of
relatively low height. As in the proof of Proposition 4.3.9 we can take any n points on
the real connected component that does not contain O and scale them to have the same
perimeter and area. This is how we found the values in Table 4.1.

4.4 Computing the Néron-Severi group and the Mordell-

Weil group

As in Section 2.6, in this section also all cohomology is étale cohomology, so we often
will leave out the subscript ét. We consider the elliptic surface Y → C of the previous
section over the algebraic closure and let Y and C denote YQ and CQ respectively. Set

L = k(C) ∼= Q(s) ⊃ Q(s) = k(C) = K and recall that we have encountered several points

of E(L), such as P = M̃1, the point Q from Theorem 4.3.6, and R induced by the closed
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immersion C → X̃. By Theorem 4.3.6 and Proposition 4.3.8 the points Q and R both
have infinite order in E(L). Suppose there are integers m, n such that mQ + nR = 0.
Since complex conjugation sends Q and R to −Q and R respectively, we find that also
−mQ+nR = 0, whence 2mQ = 2nR = 0. Therefore m = n = 0, so Q and R are linearly
independent, and P , Q, and R generate a group isomorphic to Z2 ×Z/3Z. We will show
that this is the full Mordell-Weil group E(L).

Proposition 4.4.1 The surface Y is a K3 surface. Its Néron-Severi lattice has rank 18.
The rank of the Mordell-Weil group Y (C) ∼= E(L) equals 2.

Proof. To prove that Y is a K3 surface, it suffices by definition to show that we have
dimH1(Y ,OY ) = 0 and that any canonical divisor KY is linearly equivalent to 0.

By Theorem 2.4.24 we get Pic0 Y ∼= Pic0 C = 0, as C is isomorphic to P1. We
conclude that NS(Y ) ∼= Pic(Y ), so algebraic and numerical equivalence on Y coincide
with linear equivalence. As X̃ is rational, we have χ(O eX) = χ(OP2) = 1, see [Ha2], Cor.

V.5.6. By Proposition 2.5.15 we get χ(OY ) = (deg f̃ |C) · χ(O eXQ) = 2. From Theorem

2.3.10 we then find that KY = 0 in PicY . Hence, the canonical sheaf ωY is isomorphic
to OY . We find from Serre duality that H2(Y ,OY ) ∼= H0(Y , ωY ) ∼= H0(Y ,OY ). Since
Y is connected and projective, we get dimH2(Y ,OY ) = dimH0(Y ,OY ) = 1. Therefore,
we get

dimH1(Y ,OY ) = dimH0(Y ,OY ) + dimH2(Y ,OY ) − χ(OY ) = 1 + 1 − 2 = 0.

As seen in the proof of Proposition 2.5.15, the singular fibers of g come in pairs of
copies of a singular fiber of f̃ . Hence, from Remark 4.3.2 and Theorem 2.4.32 we find
ρ = 2 + 2 ((6 − 1) + (3 − 1) + (1 − 1) + (1 − 1)) + rkE(L) = 16 + rkE(L) with ρ =
rkNS(Y ). Since Q and R are linearly independent, we have rkE(L) ≥ 2, so we get
ρ ≥ 18.

We will show ρ ≤ 18 by reduction modulo a prime of good reduction. Take
p = 11 and let A = Z(p) be the localization of Z at p with residue field k = A/p ∼= Fp.
Let X be the closed subscheme of P3

A given by r2(x + y + z) = xyz and f : X 99K P1
A the

rational map that sends [r : x : y : z] to [r : x + y + z].
As X is projective and XQ ∼= X, there are A-points Mi and Ni on X such that

(Ni)Q = Ni and (Mi)Q = Mi. Let π′ : X̃ → X be the blow-up at the 6 points Ni and Mi,

and let f̃ : X̃ → P1
A be the morphism induced by the composition f ◦π′. Let C ⊂ X̃ be the

strict transform of the curve in X parametrized by

[r : x : y : z] = [s − 1 : s + 1 : s − 1 : s(s − 1)].

Let Y denote the fibered product Y = C×P1
A

X̃, and let g denote the projection Y → C.

Then Y is a model of Y over A, i.e., YQ ∼= Y . Note that Y ∼= YQ. Set Ỹ = Yk and

C̃ = Ck. The following diagram shows how the base changes of Y that we will deal with
are related. A similar diagram holds for C.
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Y

∼=

Y

∼=

Ỹ

∼=

YQ YQ Y Yk Yk

SpecQ SpecQ Spec A Spec k Spec k

We will show that Y is smooth over Spec A. Note that for each of the Ni and Mi there
is an affine neighborhood U = Spec S ⊂ X for some A-algebra S, on which that point
corresponds to an ideal I ⊂ S satisfying pS ∩ In = pIn. Set T = S ⊗A k ∼= S/pS and
J = IT . Then Uk = Spec T and we have

In ⊗A k ∼= In/pIn ∼= In/(pS ∩ In) ∼= In · S/pS ∼= InT = Jn.

This implies

Proj
(
T ⊕ J ⊕ J2 ⊕ . . .

) ∼= Proj
(
S ⊕ I ⊕ I2 ⊕ . . .

)
×Spec A Spec k,

which tells us that the blow-up of the reduction Xk at the points (Mi)k and (Ni)k is
isomorphic to X̃ ×A k, i.e., the reduction X̃k of X̃.

One easily checks that Xk is geometrically regular outside the three ordinary
double points (Mi)k. Hence, this blow-up of Xk at the points (Mi)k and (Ni)k is smooth
over k, see [Ha2], exc. I.5.7. Thus X̃k is smooth over k. As the morphism Ck → P1

k

is unramified at the points of P1
k where f̃k has singular fibers (as is easily checked),

Yk is smooth over k as well (cf. Proposition 2.5.15). Since the other fiber YQ ∼= Y of
Y → Spec A is also smooth over its ground field Q, we conclude that Y is smooth over
Spec A (cf. Remark 2.3.12).

Let ϕ : Yk → Yk denote the absolute Frobenius of Yk as in Section 2.6. Let ϕ∗
i

denote the induced automorphism on H i(Ỹ ,Ql). By Corollary 2.6.4 the Picard number
ρ is bounded from above by the number of eigenvalues λ of ϕ∗

2 for which λ/p is a root
of unity. We will count these eigenvalues using the Lefschetz trace formula and the Weil
conjectures. The characteristic polynomial of (ϕ∗

i )
n acting on H i(Ỹ ,Ql) is

Pi(t) = det (t · Id− (ϕ∗
i )

n) =

bi∏

i=1

(t − αij).

By the Weil conjectures, Pi(t) is a rational polynomial and the roots have absolute value
|αij | = pni/2, see [De], Thm. 1.6.

By Lemma 2.6.1 we have dim H i(Y ,Ql) = dimH i(Ỹ ,Ql) for 0 ≤ i ≤ 4. Since
Y is a K3 surface, the Betti numbers equal dimH i(Ỹ ,Ql) = bi = 1, 0, 22, 0, 1 for i =
0, 1, 2, 3, 4 respectively. Therefore, from the Weil conjectures we find Pi(t) = 1−t, 1, 1, 1−
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n 1 2 3

Tr(ϕ∗
0)

n 1 1 1
Tr(ϕ∗

1)
n 0 0 0

Tr(ϕ∗
3)

n 0 0 0
Tr(ϕ∗

4)
n p2 p4 p6

#Yk(Fpn) 298 16908 1792858
Tr(ϕ∗

2)
n 176 2266 21296

Tr(ϕ∗
2)

n|V 16p 18p2 16p3

Tr(ϕ∗
2,W )n 0 88 0

Table 4.2: computing Tr(ϕ∗
2,W )n

p2t for i = 0, 1, 3, 4 respectively, whence Tr ϕ∗
i = 1, 0, 0, p2 for i = 0, 1, 3, 4. Similarly, we

get Tr(ϕ∗
i )

n = 1, 0, 0, p2n for i = 0, 1, 3, 4 and n ≥ 1. That means that for any n ≥ 1, if
we know the number of Fpn -points of Yk, then from the Lefschetz Trace Formula (see
[Mi2], Thm. VI.12.3)

#Yk(Fpn) =
4∑

i=0

(−1)i Tr ((ϕ∗
i )

n)

we can compute Tr(ϕ∗
2)

n.

Let V denote the image in H2(Ỹ ,Ql) under the composed map in (2.12) of
the 18-dimensional subspace of NS(Y )⊗Ql that we already know, i.e., generated by the
irreducible components of the singular fibers of g and the sections O, Q, and R.

All these generators of V are defined over the k = Fp, except for the image of Q,

which is defined over Fp2 . In the Mordell-Weil group modulo torsion Ỹ (C̃)/Ỹ (C̃)tors we
have ϕ(Q) = −Q. Hence V is ϕ∗

2-invariant and we find that Tr(ϕ∗
2)

n|V = 17pn+(−1)npn.

Set W = H2(Ỹ ,Ql)/V and let ϕ∗
2,W denote the automorphism on W induced

by ϕ∗
2. Then W has dimension 4 and from just linear algebra we get

char(ϕ∗
2) = char(ϕ∗

2|V ) · char(ϕ∗
2,W ) (4.8)

and
Tr(ϕ∗

2)
n = Tr(ϕ∗

2)
n|V + Tr(ϕ∗

2,W )n.

This last equality allows us to compute Tr(ϕ∗
2,W )n for n ≥ 1, which is done for n = 1, 2, 3

in Table 4.2.
We computed the number of points on Yk(Fpn) as follows. As Yk has the

structure of elliptic surface over Ck, we can let the computer package Magma compute
the number of points above every point of Ck(Fpn) with a nonsingular elliptic fiber.
Adding to that the contribution of the singular fibers gives the total number of points.

For any linear operator T on an m-dimensional vector space with characteristic
polynomial

char T = Xm + c1X
m−1 + c2X

m−2 + . . . + cm−1X + cm,
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we have c1 = −t1, c2 = 1
2(t21 − t2), and c3 = −1

6(t31 + 2t3 − 3t1t2) with tn = Tr Tn.
From this and Table 4.2 we find that the characteristic polynomial of ϕ∗

2,W equals h =

X4 − 44X2 + c4 for some c4. By the Weil conjectures, and (4.8), the roots of h have
absolute value p and their product c4 is rational, so c4 = ±p4. As not all roots of
X4 − 44X2 − 114 have absolute value 11, we get h = X4 − 44X2 + 114. If α is a root of
h then β = (α/p)2 satisfies 11β2 − 4β + 11 = 0. As the only quadratic roots of unity are
±
√
−1 and ζi

6, we find that β is not a root of unity, and thus neither is α/p. From (4.8)
it follows that α/p is a root of unity for at most 22 − 4 = 18 roots α of char(ϕ∗

2). From
Corollary 2.6.4 we find ρ ≤ 18. ¤

Corollary 4.4.2 The Mordell-Weil group E(L) is generated by P , Q, and R and is
isomorphic to Z2 × Z/3Z.

Proof. As Y → C is a relatively minimal fibration and Y is regular and projective, the
Néron model of Y /C is obtained from Y by deleting the singular points of the singular
fibers, see [Si2], Thm. IV.6.1, and [BLR], § 1.5, Prop. 1. Note that at σ = 0 and σ = −1
we have additive reduction (type IV), whence the identity component of the reduction
has no torsion. Since we are in characteristic 0, the kernel of reduction E1(L) has no
torsion either, see [Si1], Prop. VII.3.1. It follows that the group E0(L) of nonsingular
reduction has no torsion, see [Si2], Rem. IV.9.2.2. By the classification of singular fibers
we find that E(L)/E0(L) has order at most 3, see [Si2], Cor. IV.9.2 and Tate’s Algorithm
IV.9.4. We conclude that E(L)tors has order 3 and is generated by P .

With Shioda’s explicit formula for the Mordell-Weil pairing ([Shi3], Thm. 8.6),
we find 〈Q, R〉 = 0 and 〈Q, Q〉 = 〈R, R〉 = 1. Hence, as seen before, Q and R are linearly
independent. As the rank rkE(L) equals 2 by Proposition 4.4.1, the group generated
by Q and R has finite index in the Mordell-Weil lattice E(L)/E(L)tors. If the Mordell-
Weil lattice were not generated by Q and R, then it would contain a nonzero element
S = aQ + bR with a, b ∈ Q and −1

2 < a, b ≤ 1
2 , so that 〈S, S〉 = a2 + b2 ≤ 1

2 . The
types of singular fibers are I1, I6, and IV by Remark 4.3.2). From Table 2.2 we find
that the number of simple irreducible components in these singular fibers are 1, 6, and
3 respectively. It follows from Proposition 2.4.38 that the values of the Mordell-Weil
pairing are contained in 1

mZ with m = lcm{1, 6, 3} = 6. As for any rational a, b the
3-adic valuation of a2 + b2 is even, we conclude that in fact we have 〈S, S〉 ∈ 1

2Z, so that
a2 + b2 ≥ 1

2 . Thus, we find a2 + b2 = 1
2 , whence a = b = 1

2 . Therefore, 2S = Q + R + εP
for some ε ∈ {0, 1, 2}. After adding εP to S if necessary, we may assume ε = 0 without
loss of generality.
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It suffices to check Q + R 6∈ 2E(K). Let (pS , qS), (p2S , q2S), and (pQ+R, qQ+R)
denote the Weierstrass coordinates of S, 2S, and Q + R respectively. Using addition
formulas, we can compute pQ+R ∈ Q(i)(s) explicitly and express p2S in terms of pS . Let
u be defined by pS − 4(s− 1)2 = 2(s− 1)u. Then in terms of u, the equation p2S = pQ+R

simplifies to

u4 + 4(s − 1)(s + 1)(s + i)u3 + 2(s2 + (1 + i)s − 2 + i)s2(s + 1)2u2+

8(s2 + (1 + i)s − 2 + i)(s − 1)s2(s + 1)2u + 8(s + i)s2(s − 1)2(s + 1)3 = 0
(4.9)

By Gauss’s Theorem any root u ∈ L = Q(s) of this equation is contained in Q[s] and
divides the constant term 8(s + i)s2(s − 1)2(s + 1)3. Hence, any root u is of the form

u = csk(s + 1)l(s − 1)m(s + i)n,

for some constant c and exponents k, l, m, and n. Considering the four Newton polygons,
we find k = 0, l = 1, and m, n ∈ {0, 1}. One easily checks that for none of the four
possibilities for m, n there is a c such that (4.9) is satisfied. ¤

Corollary 4.4.3 The discriminant of the Néron-Severi lattice NS(Y ) equals −36.

Proof. From Lemma 2.4.37, we find the following equation, relating the discriminant of
the Néron-Severi lattice to that of the Mordell-Weil lattice.

|disc NS(Y )| =
disc E(L)/E(L)tors ·

∏
m

(1)
v

|E(L)tors|2

Here m
(1)
v is the number of irreducible components of multiplicity 1 of the fiber of g

above v ∈ C. In the proof of Corollary 4.4.2 we have seen that discE(L)/E(L)tors = 1,
so we get

|disc NS(Y )| =
1 · 6 · 6 · 3 · 3

32
= 36.

By the Hodge index Theorem disc NS(Y ) is negative, so we get disc NS(Y ) = −36. ¤
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Chapter 5

K3 surfaces with Picard number

one and infinitely many rational

points

5.1 Introduction

In the previous two chapters we solved two Diophantine open problems by showing that
the rational points on a certain K3 surface are Zariski dense. In general, little is known
about the arithmetic of K3 surfaces. It is for instance an open question if there exists a
K3 surface X over a number field K such that the set X(K) of rational points is neither
empty, nor dense. The K3 surfaces we analyzed in the previous chapters have an elliptic
fibration and relatively high geometric Picard numbers 18 and 20. The density of rational
points on these surfaces is consistent with a theorem of Bogomolov and Tschinkel that
was already mentioned in the introduction of chapter 3. Recall that if X is a variety over
a number field K, then we say that the rational points on X are potentially dense if there
exists a finite field extension L of K such that the set X(L) of L-rational points is Zariski
dense in X. Bogomolov and Tschinkel proved that if the geometric Picard number of a
K3 surface X over a number field is at least 2, then in most cases the rational points
on X are potentially dense, see [BT]. However, it is not yet known whether there exists
a K3 surface over a number field and with geometric Picard number 1 on which the
rational points are potentially dense. Neither do we know if there exists a K3 surface
over a number field and with geometric Picard number 1 on which the rational points
are not potentially dense.

In December 2002, at the AIM workshop on rational and integral points on
higher-dimensional varieties in Palo Alto, Swinnerton-Dyer and Poonen asked a related
question. They asked whether there exists a K3 surface over a number field and with
Picard number 1 that contains infinitely many rational points. In this chapter we will
show that such K3 surfaces do indeed exist. The main theorem of this chapter states
something stronger. A polarization of a K3 surface X is a choice of an ample divisor H



89

on X. The degree of such a polarization is H2. A K3 surface polarized by a very ample
divisor of degree 4 is a smooth quartic surface in P3.

Theorem 5.1.1 In the moduli space of K3 surfaces polarized by a very ample divisor of
degree 4, the set of surfaces defined over Q with geometric Picard number 1 and infinitely
many rational points is dense in both the Zariski topology and the real analytic topology.

We will prove this theorem by exhibiting an explicit family of quartic surfaces
in P3Q with geometric Picard number 1 and infinitely many rational points. Proving that
these surfaces contain infinitely many rational points is the easy part. It is much harder
to prove that the geometric Picard number of these surfaces equals 1. It has been known
since Noether that a general hypersurface in P3C of degree at least 4 has geometric Picard
number 1. A modern proof of this fact was given by Deligne, see [SGA 7 II], Thm. XIX.1.2.
Despite this fact, it has been an old challenge, attributed to Mumford, to find even just
one explicit quartic surface, defined over a number field, whose geometric Picard number
equals 1. Deligne’s result does not imply that such surfaces exist, as “general” means
“up to a countable union of closed subsets of the moduli space.” A priori, this could
exclude all surfaces defined over Q! Terasoma and Ellenberg have proven independently
that such surfaces do exist. The following theorems state their results.

Theorem 5.1.2 (Terasoma, 1985) For any given positive integers (n; a1, . . . , ad) not
equal to (2; 3), (n; 2), or (n; 2, 2), and with n even, there is a smooth complete intersection
X over Q of dimension n defined by equations of degrees a1, . . . , ad such that the middle
geometric Picard number of X is 1.

Proof. See [Te]. ¤

Theorem 5.1.3 (Ellenberg, 2004) For every even integer d there exists a number
field K and a polarized K3 surface X/K of degree d, with geometric Picard number 1.

Proof. See [Ell]. ¤

The proofs of Terasoma and Ellenberg are ineffective in the sense that they
do not give explicit examples. In principle it might be possible to extend their methods
to test whether a given explicit K3 surface has geometric Picard number 1. In prac-
tice however, it is an understatement to say that the amount of work involved is not
encouraging.

Shioda has found explicit examples of surfaces with geometric Picard number
1. In fact, he has shown that for every prime m ≥ 5 the surface in P3 given by

wm + xym−1 + yzm−1 + zxm−1 = 0

has geometric Picard number 1, see [Shi2]. However, for m = 4 this equation determines
a K3 surface with geometric Picard number 20, i.e., a singular K3 surface.
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In the next section we will prove the main theorem of this chapter. Having
explicit examples of K3 surfaces with geometric Picard number 1, we can use a computer
search to look into the distribution of rational points on such surfaces. This is what
section 5.3 is devoted to.

The results of this chapter have been combined into a preprint, see [VL3].

5.2 Proof of the main theorem

First we will give a family of smooth quartic surfaces in P3 with Picard number 1. Let
R = Z[x, y, z, w] be the homogeneous coordinate ring of P3Z. Throughout the rest of this
chapter, for any homogeneous polynomial h ∈ R of degree 4, let Xh denote the scheme
in P3Z given by

wf + 2zg = 3pq + 6h, (5.1)

with f, g, p, q ∈ R equal to

f = x3 − x2y − x2z + x2w − xy2 − xyz + 2xyw + xz2 + 2xzw + y3+

+ y2z − y2w + yz2 + yzw − yw2 + z2w + zw2 + 2w3,

g = xy2 + xyz − xz2 − yz2 + z3,

p = z2 + xy + yz,

q = z2 + xy.

Its base extensions to Q and Q are denoted Xh and Xh respectively. We will use the
following lemma.

Lemma 5.2.1 Let V be a vector space of dimension n and T a linear operator on V .
Let ti denote the trace of T i. Then the characteristic polynomial of T is equal to

fT (x) = det(x · Id−T ) = xn + c1x
n−1 + c2x

n−2 + . . . + cn,

with the ci given recursively by

c1 = −t1 and − kck = tk +
k−1∑

i=1

citk−i.

Proof. Let the eigenvalues be denoted by x1, . . . , xn. For fixed k, set

ai = (−1)i
∑

xk−i
m

∏

j∈J

xj ,

where the sum ranges over the set

{(m, J) | J ⊂ {1, . . . , n}, #J = i, m ∈ {1, . . . , n} \ J}.
As (−1)ici is the i-th symmetric function in the xj , one checks that citk−i = ai − ai−1.
Together with the identities a0 = tk and ak−1 = −kck this implies the lemma. ¤
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Theorem 5.2.2 For any h ∈ R the quartic surface Xh is smooth over Q and has geo-
metric Picard number 1. The Picard group PicXh is generated by a hyperplane section.

Proof. For p = 2, 3, let Xp/Fp denote the fiber of Xh → SpecZ over p. As they are
independent of h, one easily checks that Xp is smooth over Fp for p = 2, 3. As the
morphism Xh → SpecZ is flat and projective, it follows that the generic fiber Xh of
Xh → SpecZ is smooth over Q as well, cf. [Ha2], exc. III.10.2.

We will first show that X2 and X3 have geometric Picard number 2. For p = 2, 3,
let Φp denote the absolute Frobenius of Xp. Set Xp = Xp × Fp and let Φ∗

p(i) denote the

automorphism on H i
ét(Xp,Ql) induced by Φp × 1 acting on Xp = Xp ×Fp Fp. Then by

Corollary 2.6.4 the geometric Picard number of Xp is bounded from above by the number
of eigenvalues λ of Φ∗

p(2) for which λ/p is a root of unity. We will find the characteristic
polynomial of Φ∗

p(2) from the traces of its powers. These traces we will compute with
the Lefschetz formula

#Xp(Fpn) =
4∑

i=0

(−1)i Tr(Φ∗
p(i)

n). (5.2)

As Xp is a smooth hypersurface in P3 of degree 4, it is a K3 surface and its Betti numbers
are b0 = 1, b1 = 0, b2 = 22, b3 = 0, and b4 = 1. It follows that Tr(Φ∗

p(i)
n) = 0 for i = 1, 3,

and for i = 0 and i = 4 the automorphism Φ∗
p(i)

n has only one eigenvalue, which by
the Weil conjectures equals 1 and p2n respectively. From the Lefschetz formula (5.2) we
conclude Tr(Φ∗

p(2)n) = #Xp(Fpn) − p2n − 1. After counting points on Xp over Fpn for
n = 1, . . . , 11, this allows us to compute the traces of the first 11 powers of Φ∗

p(2). With
Lemma 5.2.1 we can then compute the first coefficients of the characteristic polynomial
fp of Φ∗

p(2). Writing fp = x22 + c1x
21 + . . . + c22 we find

p c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

2 −3 −2 12 0 −32 64 −128 128 256 0 −2048

3 −5 −6 72 27 −891 0 9477 −4374 −78732 19683 708588

The Weil conjectures give a functional equation p22fp(x) = ±x22fp(p
2/x). As in

our case (both for p = 2 and p = 3) the middle coefficient c11 of fp is nonzero, the sign of
the functional equation is positive. This allows us to compute the remaining coefficients
of fp. If λ is a root of fp then λ/p is a root of f̃p(x) = p−22fp(px). Hence, the number

of roots of f̃p(x) that are also a root of unity gives an upper bound for the geometric
Picard number of Xp. After factorization into irreducible factors, we find

f̃2 =
1

2
(x − 1)2

(
2x20 + x19 − x18 + x16 + x14 + x11+

+2x10 + x9 + x6 + x4 − x2 + x + 2
)

f̃3 =
1

3
(x − 1)2

(
3x20 + x19 − 3x18 + x17 + 6x16 − 6x14 + x13 + 6x12 − x11+

−7x10 − x9 + 6x8 + x7 − 6x6 + 6x4 + x3 − 3x2 + x + 3
)
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Neither for p = 2 nor for p = 3 the roots of the irreducible factor of f̃p of degree

20 are integral. Therefore these roots are not roots of unity and we conclude that f̃p

has two roots that are roots of unity, counted with multiplicities. By Corollary 2.6.4 this
implies that the geometric Picard number of Xp is at most 2.

Note that besides the hyperplane section H, the surface X2 also contains the
conic C given by w = z2 +xy = 0. We have H2 = deg X2 = 4 and H ·C = deg C = 2. As
the genus g(C) of C equals 0 and the canonical divisor K on X2 is trivial, the adjunction
formula 2g(C) − 2 = C · (C + K) yields C2 = −2. Thus H and C generate a sublattice
of NS(X2) of rank 2 with Gram matrix

(
4 2
2 −2

)
.

We conclude that the inner product space NS(X2)Q has rank 2 and discriminant −12 ∈Q∗/Q∗2, see Definition 2.1.10. Similarly, X3 contains the line L given by w = z = 0. The
hyperplane section on X3 and L generate a sublattice of NS(X3) of rank 2 with Gram
matrix

(
4 1
1 −2

)
.

We conclude that the inner product space NS(X3)Q also has rank 2, and discriminant
−9 ∈ Q∗/Q∗2.

Let ρ denote the geometric Picard number ρ = rk NS(Xh). It follows from
Proposition 2.6.2 that there is an injection NS(Xh)Q →֒ NS(Xp)Q of inner product
spaces for p = 2, 3. Hence we get ρ ≤ 2 and if we had equality, then both these injections
would be isomorphisms and NS(X2)Q and NS(X3)Q would be isomorphic as inner product
spaces. This is not the case because they have different discriminants. We conclude ρ ≤ 1.
As a hyperplane section H on Xh has selfintersection H2 = 4 6= 0, we find ρ = 1. Since
NS(Xh) is a 1-dimensional even lattice (see Lemma 2.2.26), the discriminant of NS(Xh)
is even. The sublattice of finite index in NS(Xh) generated by H gives

4 = disc〈H〉 = [NS(Xh) : 〈H〉]2 · disc NS(Xh).

Together with disc NS(Xh) being even this implies [NS(Xh) : 〈H〉] = 1, so H generates
NS(Xh). ¤

Remark 5.2.3 In the proof we counted points over Fpn for p = 2, 3 and n = 1, . . . , 11 in
order to find the traces of powers of Frobenius up to the 11-th power. We could have got
away with less counting. In both cases p = 2 and p = 3 we already know a 2-dimensional
subspace W of NS(Xp)Ql

⊂ H2(Xp,Ql)(1), generated by the hyperplane section H and
another divisor class. Therefore it suffices to find out the characteristic polynomial of



93

Frobenius acting on the quotient V = H2(Xp,Ql)(1)/W . This implies it suffices to know
the traces of powers of Frobenius acting on V up to the 10-th power.

An extra trick was used for p = 3. The family of planes through the line L
given by w = z = 0 cuts out a fibration of curves of genus 1. We can give all nonsingular
fibers the structure of an elliptic curve by quickly looking for a point on it. There are
efficient algorithms available in for instance Magma to count the number of points on
these elliptic curves.

Using these few speed-ups we let a computer run for one night to compute the
characteristic polynomial of several random surfaces given by an equation of the form
(5.1). If the middle coefficient was zero, no more effort was spent on trying to find the sign
of the functional equation (see proof of Theorem 5.2.2) and the surface was discarded.
After one night two examples over F3 were found with geometric Picard number 2 and
one example over F2. This allows us to construct two families of surfaces with geometric
Picard number 1 with the Chinese Remainder Theorem. One of these families consists of
the surfaces Xh. A program written in Magma that checks the characteristic polynomial
of Frobenius on X2 and X3 is electronically available from the author upon request.

Remark 5.2.4 For p = 2, 3, let Ap ⊂ NS(Xp) denote the lattice as described in the
proof of Theorem 5.2.2, i.e., A2 is generated by a hyperplane section and a conic, and
A3 is generated by a hyperplane section and a line. Then in fact Ap equals NS(Xp) for
p = 2, 3. Indeed, we have disc Ap = [NS(Xp) : Ap]

2 · disc NS(Xp). For p = 2 this implies
disc NS(X2) = −12 or disc NS(X2) = −3. The latter is impossible because modulo 4
the discriminant of an even lattice of rank 2 is congruent to 0 or −1. We conclude
disc NS(X2) = −12, and therefore [NS(X2) : A2] = 1, so A2 = NS(X2).

For p = 3 we find disc NS(X3) = −9 or disc NS(X3) = −1. Suppose the latter
equation held. By the classification of even unimodular lattices we find that disc NS(X3)
is isomorphic to the lattice with Gram matrix

(
0 1
1 0

)
.

By a theorem of Van Geemen this is impossible, see [VG], 5.4. From this contradiction
we conclude disc NS(X3) = −9 and thus [NS(X3) : A3] = 1, so A3 = NS(X3). For
a more concrete proof, note that the index [NS(X3) : A3] divides 3. Suppose we had
A3 ( NS(X3). Then there is an element D ∈ NS(X3) \ A3 with 3D ∈ A3, say 3D =
aH + bL. After replacing D by εD + kH + lL for some integers k, l and ε ∈ {±1},
we may assume a ∈ {0, 1} and b ∈ {0,±1}. From 9|(3D)2 = 4a2 + 2ab − 2b2 we find
(a, b) = (1,−1). Since L is contained in a hyperplane, we find that 3D = H − L is
effective. Set χ = χ(X3,OX3

) = 2. Because the canonical sheaf KX3
on X3 is trivial

and we have D2 = 0, the theorem of Riemann-Roch on surfaces yields h0(X3,L(D)) −
h1(X3,L(D)) + h0(X3,L(−D)) = χ = 2 > 0. This implies that D or −D is effective.
Since 3D = H−L is effective, the divisor −D is not effective, so D is effective. Then from
deg D = D · H = 1 we find that D is a line, and thus nonsingular with genus g(D) = 0.
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This contradicts the adjunction formula 2g(D)− 2 = D · (D + KX3
) = 0, where the last

equality follows from the fact that KX3
is trivial and D2 = 0.

Since there are
(
4+3
3

)
= 35 monomials of degree 4 in Q[x, y, z, w], the quartic

surfaces in P3Q are parametrized by the space P34Q , which we will denote by M . Let

M ′ ∼= P27 ⊂ M denote the subvariety of those surfaces X for which the coefficients of
the monomials x4, x3y, x3z, y4, y3x, y3z, and x2z2 in the defining polynomial of X are
all zero. Note that the vanishing of the coefficients of the first 6 of these monomials is
equivalent to the tangency of the plane Hw given by w = 0 to the surface X at the points
P = [1 : 0 : 0 : 0] and Q = [0 : 1 : 0 : 0]. Thus, the vanishing of these coefficients yields a
singularity at P and Q in the plane curve CX = Hw ∩X. If the singularity at P in CX is
not worse than a double point, then the vanishing of the coefficient of x2z2 is equivalent
to the fact that the line given by y = w = 0 is one of the limit-tangent lines to CX at P .

Proposition 5.2.5 There is a nonempty Zariski open subset U ⊂ M ′ with X0 ∈ U such
that every surface X ∈ U defined over Q has infinitely many rational points.

Proof. The singular X ∈ M ′ form a closed subset of M ′. So do the surfaces X for which
the intersection Hw ∩ X has worse singularities than just two double points at P and
Q. Leaving out these closed subsets we obtain an open subset V of M ′. Let X ∈ V be
given. The plane quartic curve CX = X ∩ Hw has two double points, so the geometric
genus g of the normalization C̃X of CX equals pa − 2, where pa is the arithmetic genus
of CX , see [Ha2], exercise IV.1.8. As we have pa = 1

2(4 − 1)(4 − 2) = 3, we get g = 1.
Now assume X is defined over Q. One of the limit-tangents to CX at P is given by
w = y = 0. Its slope, being rational, corresponds to a rational point P ′ on C̃X above
P . Fixing this point as the unit element O = P ′, the curve C̃X obtains the structure of
an elliptic curve. Let D ∈ Pic0(C̃X) be the pull back under normalization of the divisor
P − Q ∈ Pic0(CX). By the theory of elliptic curves there is a unique point R on C̃X

(depending on X) such that D is linearly equivalent to R−O, see [Si1], Prop. III.3.4. As
D is defined over Q, so is R. By Mazur’s theorem (see [Si1], Thm. III.7.5 for statement,
[Maz], Thm. 8 for a proof), the point R has finite order if and only if mR = O for some
m ∈ {1, 2, . . . , 10, 12}. Note that we have lcm(1, 2, . . . , 10, 12) = 2520. Take for U the
complement in V of the closed subset of those X for which we have 2520R = O for the
corresponding point R on C̃X . Then each X ∈ U contains an elliptic curve with infinitely
many rational points. By choosing a Weierstrass equation, one verifies easily that if we
take X = Xh with h = 0, then the corresponding point R on C̃X satisfies mR 6= O for
m ∈ {1, 2, . . . , 10, 12}. Therefore, we find X0 ∈ U , so U is nonempty. ¤

Remark 5.2.6 If C̃X is the normalization of CX as in the proof of Proposition 5.2.5,
then generically there is another rational point P ′′ on C̃X above P , besides P ′. Generically
this point also has infinite order and the Mordell-Weil rank of C̃X is at least 2 with
independent points P ′′ and R as in the proof of Proposition 5.2.5. For X = Xh with
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h = 0 the curve C̃X is given by

3x2y2 + xy2z + 4xyz2 + 2xz3 + 5yz3 + z4 = 0.

As the point P = [1 : 0 : 0] is a cusp, there is only one point above P on C̃X in this case.
Both points on C̃X above Q = [0 : 1 : 0] are rational and we have an extra rational point
[1 : 1 : −1]. These generate the full Mordell-Weil group of rank 3.

Lemma 5.2.7 Let X be a variety over Q such that the set X(R) of real points is Zariski
dense in X. If a set S ⊂ X(R) is dense in the real analytic topology, then S is dense in
the Zariski topology.

Proof. As this is a local question, we may assume X is affine, say X = Spec A. Suppose
there is a Zariski open U of X such that U ∩S = ∅. There is an element f ∈ A, such that
the open subset V (f) = {x ∈ X | f(x) 6= 0} is contained in U . By assumption, there is
a point x ∈ X(R) ∩ V (f). Let x be such a point. Then we have f(x) 6= 0, so in a small
open neighborhood W of x in the real analytic topology we also have f(y) 6= 0 for all
y ∈ W . This implies W ⊂ V (f) ⊂ U , so we also find W ∩ S = ∅. This contradicts the
assumption that S is dense in the real analytic topology. ¤

From the local and global Torelli theorem for K3 surfaces, see [PS], one can
find a very precise description of the moduli space of polarized K3 surfaces in general,
see [Be]. A polarization of a K3 surface Z by a very ample divisor of degree 4 gives an
embedding of Z as a smooth quartic surface in P3. An isomorphism between two smooth
quartic surfaces in P3 that sends a hyperplane section to a hyperplane section comes from
an automorphism of P3. We conclude that the moduli space of K3 surfaces polarized by
a very ample divisor of degree 4 is isomorphic to the open subset in M = P34 of smooth
quartic surfaces modulo the action of PGL(4) by linear transformations of P3. We are
now ready to prove the main theorem of this chapter.

Proof of Theorem 5.1.1. By the description of the moduli space of K3 surfaces po-
larized by a very ample divisor of degree 4 given above, it suffices to prove that the set
S ⊂ M(Q) of those surfaces with geometric Picard number 1 and infinitely many rational
points is dense in M . Let U be as in Proposition 5.2.5. We will first show that S ∩ U is
dense in U . To show that S ∩U is dense in U in the real analytic topology, consider any
X ∈ U(R), say with defining polynomial F ∈ R[x, y, z, w]. We can approximate F with
a polynomial h′ ∈ Q[x, y, z, w], such that the surface defined by h′ is also contained in
U . After scaling we may assume h′ has integral coefficients. By taking h = Nh′ for an
arbitrarily large integer N , the surface Xh will be arbitrarily close to the surface defined
by h′ and hence close to the surface X defined by F . Checking the coefficients of the
defining equation of Xh in (5.1) we see Xh ∈ M ′. By choosing Xh close enough to X,
we can ensure that Xh is contained in U , so Xh contains infinitely many rational points.
By Theorem 5.2.2 the surface Xh has geometric Picard number 1. The fact that S ∩U is
dense in U in the Zariski topology follows from Lemma 5.2.7, as the set of real surfaces
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is Zariski dense in M ′. As U is a dense open subset of M ′ (both in the Zariski and in
the real analytic topology) it follows that S ∩ M ′ is dense in M ′.

Let W denote the Q-vector space of 4 × 4-matrices and let T denote the dense
open subset of P(W ) corresponding to elements of PGL(4). Let ϕ : T × M ′ → M be
given by sending (A, X) to A(X). Note that T × (S∩M ′) is dense in T ×M ′ and ϕ sends
T (Q) × S to S. Hence, in order to prove that S is dense in M , it suffices to show that
ϕ is dominant, which can be checked after extending to the algebraic closure. A general
quartic surface in P3 has a one-dimensional family of bitangent planes, i.e., planes that
are tangent at two different points. This is closely related to the theorem of Bogomolov
and Mumford, see the appendix to [MM]. In fact, for a general quartic surface Y ⊂ P3,
there is such a bitangent plane H, such that the two tangent points are ordinary double
points in the intersection H ∩ Y . Let Y be such a quartic surface and H such a plane,
say tangent at P and Q. Then there is a linear transformation that sends H, P , and Q
to the plane given by w = 0, and the points [1 : 0 : 0 : 0] and [0 : 1 : 0 : 0]. Also, one of
the limit-tangent lines to the curve Y ∩H at the singular point P can be sent to the line
given by y = w = 0. This means that there is a linear transformation B that sends Y to
an element X in M ′. Then ϕ(B−1, X) = Y , so ϕ is indeed dominant. ¤

Remark 5.2.8 The explicit polynomials f, g, p, and q for Xh in (5.1) were found by
letting a computer pick random polynomials modulo p = 2 and p = 3 such that the
surface Xh with h = 0 is contained in M ′ as in Proposition 5.2.5. The computer then
computed the characteristic polynomial of Frobenius and tested if there were only 2
eigenvalues that were roots of unity, see Remark 5.2.3.

By requiring more coefficients to vanish than is required for M ′, we can also
find quartic surfaces Y for which the plane Hw given by w = 0 is tangent also at the
third point [0 : 0 : 1 : 0]. In that case the intersection Hw ∩ Y has geometric genus 0
and if it has a point defined over Q, then the intersection is birational to P1. The quartic
surface Z given by

w(x3 + y3 + z3 + x2z + xw2) = 3x2y2 − 4x2yz + x2z2 + xy2z + xyz2 − y2z2 (5.3)

is an example of such a surface. As in the proof of Theorem 5.2.2, modulo 3 the surface
Z contains the line z = w = 0. Also, the reduction of Z at p = 2 contains a conic again,
as the right-hand side of (5.3) factors over F4 as (xy + xz + ζyz)(xy + xz + ζ2yz), with
ζ2 + ζ + 1 = 0. An argument very similar to the one in the proof of Theorem 5.2.2
shows that Z also has geometric Picard number 1 with the Picard group generated by
a hyperplane section. The only difference is that Frobenius does not act trivially on the
conic w = xy + xz + ζyz = 0.

The hyperplane section Hw ∩ Z is a curve of geometric genus 0, parametrized
by

[x : y : z : w] = [−(t2 + t − 1)(t2 − t − 3) : 2(t + 2)(t2 + t − 1) : 2(t + 2)(t2 − t − 3) : 0].

The Cremona transformation [x : y : z : w] 7→ [yz : xz : xy] gives a birational map from
this curve to a nonsingular plane curve of degree 2.
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Remark 5.2.9 In finding the explicit surfaces Xh not much computing power was
needed, as we constructed the surface to have good reduction at small primes p so
that counting points over Fpn was relatively easy. Based on ideas of for instance Alan
Lauder, Daqing Wan, Kiran Kedlaya, and Bas Edixhoven, it should be possible to de-
velop more efficient algorithms for finding characteristic polynomials of (K3) surfaces.
Together with these algorithms, the method used in the proof of Theorem 5.2.2 becomes
a strong tool in finding Picard numbers of K3 surfaces over number fields.

Kloosterman has used this method to construct an elliptic K3 surface with
Mordell-Weil rank 15 over Q, see [Kl]. In the proof of Theorem 5.2.2 we were able to
compute the discriminant up to squares of the Néron-Severi lattice of Xp because we
knew a priori a sublattice of finite index. Kloosterman realized that it is not always
necessary to know such a sublattice. The image in Q∗/Q∗2 of the discriminant of the
Néron-Severi lattice can also be deduced from the Artin-Tate conjecture, which has been
proved for ordinary K3 surfaces in characteristic p ≥ 5, see [NO], Thm. 0.2, and [Mi1],
Thm. 6.1. It allows one to compute the ratio disc NS(Xp) ·# Br(Xp)/(NS(Xp)

2
tors) from

the characteristic polynomial of Frobenius acting on H2(Xp,Ql). For an elliptic surface
the Brauer group has square order, so this ratio determines the same element in Q∗/Q∗2

as disc NS(Xp).

5.3 More rational points

We now have an infinite family of explicit K3 surfaces with geometric Picard number 1
at our disposal. Heuristics say that on such a surface the number of rational points with
height at most B grows asymptotically like log B. Here the height of a point [x : y : z : w]
with x, y, z, w ∈ Z and gcd(x, y, z, w) = 1 is defined to be the maximum of the absolute
value of the coordinates x, y, z, and w. These heuristics assume the surface has no special
characteristics, such as in our examples the existence of a curve with infinitely many
rational points. We will therefore only consider the complement of these curves.

We have done a computer search for rational points on two explicit surfaces,
namely the surface X = Xh with h = 0 and the surface Y given by equation (5.3). On
both surfaces we discard the points on the hyperplane Hw given by w = 0, as we already
know these contain infinitely many rational points. We will also discard the points on Y
that are contained in the hyperplane Hx given by x = 0, as the intersection Hx ∩ Y can
be parametrized by

[x : y : z : w] = [0 : 1 + t3 : t(1 + t3) : −t2].

This curve has a triple point at [0 : 0 : 0 : 1]. Table 5.1 shows all points found on X
(outside Hw) with height at most 1500 and on Y (outside Hw ∪Hx) with height at most
400. They are ordered by height.

Remark 5.3.1 The picture on the cover of this thesis shows the K3 surface Y . More
precisely, it shows the affine part given by z = 1 and |x|, |y|, |w| ≤ 5. The curves shown are
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X \ Hw Y \ (Hw ∪ Hx)

[x : y : z : w] = [x : y : z : w] =

[0 : 1 : 1 : 1] [1 : 1 : 0 : 1]
[1 : 1 : 0 : 1] [1 : −4 : −6 : 3]

[2 : 3 : −1 : 3] [5 : 7 : 4 : 3]
[−2 : 1 : −3 : 1] [6 : −2 : 7 : 4]
[−2 : 1 : 7 : 5] [−1 : 5 : −9 : 3]

[−4 : 11 : −5 : 6] [−3 : 3 : 5 : 9]
[−2 : 1 : −13 : 10] [27 : −3 : 0 : 1]
[10 : 13 : −7 : 13] [13 : −9 : −29 : 7]
[9 : 17 : −5 : 16] [31 : 20 : 30 : 3]

[−19 : 5 : −1 : 16] [32 : −10 : 30 : 21]
[12 : −16 : −2 : 19] [38 : −43 : −24 : 12]
[24 : 14 : −4 : 15] [−47 : 9 : 21 : 9]
[12 : 29 : −13 : 24] [3 : −34 : 26 : 53]
[1 : −43 : −4 : 37] [54 : 15 : −30 : 52]
[−25 : 47 : 37 : 32] [29 : 3 : 69 : 9]
[−35 : 62 : 32 : 37] [29 : −64 : 74 : 28]

[−39 : −34 : 30 : 36] [−48 : −9 : 94 : 36]
[37 : 65 : −40 : 25] [−64 : 96 : 36 : 27]
[65 : 38 : −40 : 25] [−64 : 16 : 100 : 3]

[−74 : 37 : −34 : 72] [34 : 75 : −80 : 100]
[18 : 80 : −10 : 25] [2 : 5 : −30 : 116]
[127 : 61 : −46 : 57] [125 : −75 : −45 : 27]

[−44 : −127 : 68 : 64] [−7 : 44 : −174 : 12]
[120 : 157 : −63 : 162] [6 : 128 : −201 : 108]

[232 : 75 : 22 : 72] [−55 : −28 : 162 : 269]
[−239 : 358 : 200 : 292] [101 : −211 : −259 : 289]
[−384 : 117 : 359 : 80] [−347 : 150 : 300 : 396]

[−266 : −422 : 316 : 263]
[−446 : −104 : 118 : 293]
[−67 : 455 : −117 : 338]
[13 : −217 : −430 : 499]

[338 : −959 : −182 : 1016]
[1084 : 583 : −521 : 503]

[−1106 : −209 : 812 : 196]
[−514 : 1445 : 194 : 736]

Table 5.1: Rational points on X and Y of height at most 1500 and 400 respectively
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the intersection of Y with the hyperplanes Hw and Hx, both of which contain infinitely
many rational points. All rational points outside these curves with height at most 400
are plotted as well. These are the 27 points from the right column in Table 5.1, but only
13 of them are visible.

Remark 5.3.2 Some of the points in Table 5.1 may lie on a curve of geometric genus
≤ 1. As the Picard groups PicX and PicY are generated by a hyperplane section, such
a curve is the intersection of a hypersurface of some degree with X or Y respectively. For
both X and Y we computed the genus of this curve of intersection for all hyperplanes
(degree 1) through 3 of the points of Table 5.1. All these curves of intersection turn out
to have geometric genus 3 as expected. The program used to check this is electronically
available from the author upon request.

The following graphs show how the number of points with height at most B
grows in terms of B. As mentioned before, this is expected to grow like log B. We will
not draw any conclusions from these graphs about the asymptotic behavior, nor will
we speculate about the rational points being infinite in number, let alone about their
density. With an analytic method developed by Noam Elkies, see [Elk], a more efficient
algorithm for finding rational points can be implemented than the one we have used.
This will allow us to obtain more precise data about the distribution of rational points
on K3 surfaces.
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5.4 Conclusion and open problems

We end with the conclusion that still very little is known about the arithmetic of K3 sur-
faces, but this chapter has brought us closer to understanding the distribution of rational
points on K3 surfaces with geometric Picard number 1. We reiterate three questions that
remain unsolved.

Question 2 Does there exist a K3 surface over a number field such that the set of
rational points is neither empty nor dense?

Question 3 Does there exist a K3 surface over a number field with geometric Picard
number 1, such that the set of rational points is potentially dense?

Question 4 Does there exist a K3 surface over a number field with geometric Picard
number 1, such that the set of rational points is not potentially dense?
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