Linear algebra 2: Homework set 1 Due date: September 27 13:45

(H1.1). Show that the 2×2 matrix

$$\left(\begin{array}{cc}1 & x\\ x & 2\end{array}\right)$$

is a diagonalizable matrix over \mathbb{R} for all $x \in \mathbb{R}$. Can you show the same if we replace \mathbb{R} by \mathbb{C} ?

(H1.2). Show that the matrix

$$A = \left(\begin{array}{cc} 4 & 6\\ -1 & -1 \end{array}\right)$$

is diagonalizable, and give a basis of \mathbb{R}^2 consisting of eigenvectors of A. Now consider the system of differential equations

$$\begin{array}{rcl} f' &=& 4f - g \\ g' &=& 6f - g. \end{array}$$

We can also write this as (f', g') = (f, g)A. If $\begin{pmatrix} a \\ b \end{pmatrix}$ is an eigenvector of A with eigenvalue λ , and we have functions f, g that satisfy the differential equations, then show that h = af + bg satisfies the differential equation $h' = \lambda h$. Use this to solve the system of differential equations.

(H1.3). Find an element $a \in \mathbb{R}$ for which the matrix

$$A_a = \left(\begin{array}{rrr} a & -a & -1 \\ 0 & 1 & -1 \\ 8 & -5 & 1 \end{array}\right)$$

is nilpotent. (A square matrix is nilpotent $A^k = 0$ for some integer $k \ge 1$.)

(H1.4). In this exercise we look at the properties of products of nilpotent matrices.

- 1. Give an example of a positive integer n and two nilpotent $n \times n$ matrices A and B for which AB is not nilpotent.
- 2. Show that AB is nilpotent for any nilpotent $n \times n$ matrices A and B that satisfy AB = BA.
- 3. Does there exist a positive integer n and two nilpotent $n \times n$ matrices A and B for which AB is invertible? (Give a proof for your answer.)