Linear algebra 2: Homework set 1

Due date: September 27 13:45
(H1.1). Show that the 2×2 matrix

$$
\left(\begin{array}{ll}
1 & x \\
x & 2
\end{array}\right)
$$

is a diagonalizable matrix over \mathbb{R} for all $x \in \mathbb{R}$. Can you show the same if we replace \mathbb{R} by \mathbb{C} ?
(H1.2). Show that the matrix

$$
A=\left(\begin{array}{rr}
4 & 6 \\
-1 & -1
\end{array}\right)
$$

is diagonalizable, and give a basis of \mathbb{R}^{2} consisting of eigenvectors of A . Now consider the system of differential equations

$$
\begin{aligned}
f^{\prime} & =4 f-g \\
g^{\prime} & =6 f-g .
\end{aligned}
$$

We can also write this as $\left(f^{\prime}, g^{\prime}\right)=(f, g) A$. If $\binom{a}{b}$ is an eigenvector of A with eigenvalue λ, and we have functions f, g that satisfy the differential equations, then show that $h=$ $a f+b g$ satisfies the differential equation $h^{\prime}=\lambda h$. Use this to solve the system of differential equations.
(H1.3). Find an element $a \in \mathbb{R}$ for which the matrix

$$
A_{a}=\left(\begin{array}{rrr}
a & -a & -1 \\
0 & 1 & -1 \\
8 & -5 & 1
\end{array}\right)
$$

is nilpotent. (A square matrix is nilpotent $A^{k}=0$ for some integer $k \geq 1$.)
(H1.4). In this exercise we look at the properties of products of nilpotent matrices.

1. Give an example of a positive integer n and two nilpotent $n \times n$ matrices A and B for which $A B$ is not nilpotent.
2. Show that $A B$ is nilpotent for any nilpotent $n \times n$ matrices A and B that satisfy $A B=B A$.
3. Does there exist a positive integer n and two nilpotent $n \times n$ matrices A and B for which $A B$ is invertible? (Give a proof for your answer.)
