Linear algebra 2: Homework set 2

Due date: October 11 13:45
(H2.1). Suppose that f is an endomorphism of an n-dimensional vector space V with n distinct eigenvalues. Show that V has exactly 2^{n} subspaces that are f-invariant.
(H2.2). Let V be a 3-dimensional vector space over \mathbb{R} and let $f: V \rightarrow V$ be a nilpotent endomorpism of V. Show that V has infinitely many f-invariant subspaces if and only if $f^{2}=0$.
(H2.3). Give the Jordan normal form of the matrix

$$
\left(\begin{array}{llll}
2 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

(H2.4). For the matrix $A=\left(\begin{array}{rr}3 & 1 \\ -1 & 1\end{array}\right)$ compute the matrix e^{A}.

