Linear algebra 2: Homework set 2 Due date: October 11 13:45

(H2.1). Suppose that f is an endomorphism of an n-dimensional vector space V with n distinct eigenvalues. Show that V has exactly 2^n subspaces that are f-invariant.

(H2.2). Let V be a 3-dimensional vector space over \mathbb{R} and let $f: V \to V$ be a nilpotent endomorphism of V. Show that V has infinitely many f-invariant subspaces if and only if $f^2 = 0$.

(H2.3). Give the Jordan normal form of the matrix

(H2.4). For the matrix $A = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$ compute the matrix e^A .