Linear algebra 2: Homework set 3

Due date: November 8 13:45
Please email this set to: Martin Goll, gollm@math.leidenuniv.nl.
(H3.1). Let V be the vector space of functions from \mathbb{R} to \mathbb{R}. Consider the subspace W of V spanned by the functions f_{1}, f_{2}, f_{3} given by $f_{1}(x)=\cos (x), f_{2}(x)=\sin (x)$ and $f_{3}(x)=\sin (2 x)$. For $i=1,2,3$ consider $\phi_{i} \in W^{*}$ defined by $\phi_{i}(f)=f((i-1) \pi / 4)$

1. Compute the 3×3-matrix $\left(\phi_{i}\left(f_{j}\right)\right)$.
2. Deduce that f_{1}, f_{2}, f_{3} is a basis for W and that $\phi_{1}, \phi_{2}, \phi_{3}$ is a basis of W^{*}.
3. Show that there are $a, b, c \in \mathbb{R}$ so that all functions $f \in W$ satisfy

$$
\int_{0}^{\pi} x^{2} f(x) d x=a f(0)+b f(\pi / 4)+c f(\pi / 2)
$$

4. Give the basis of W that is dual to the basis $\phi_{1}, \phi_{2}, \phi_{3}$ of W^{*}.
(H3.2). Let V, W be vector spaces and let $f: V \rightarrow W$ be a linear map. Suppose that the dual map $f^{T}: W^{*} \rightarrow V^{*}$ is the zero map. Show that f is the zero map.
(H3.3). Consider the vector space $\mathcal{C}([0,1])$ of continuous real-valued functions on the unit interval with norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ as defined in Example 7.7. For $n>0$ define $g_{n} \in \mathcal{C}([0,1])$ by

$$
g_{n}(x)=\left\{\begin{array}{cl}
\sqrt{n} & \text { if } 0 \leq x \leq 1 / n \\
1 / \sqrt{x} & \text { if } 1 / n \leq x \leq 1
\end{array}\right.
$$

Show that $\left\|g_{n}\right\|_{2} \rightarrow \infty$ as $n \rightarrow \infty$, and that $\left\|g_{n}\right\|_{1} \rightarrow 2$ as $n \rightarrow \infty$. Show that the two norms are not equivalent.
(H3.4). Let V be a finite dimensional vector space over a field K and let $b: V \times V^{*} \rightarrow K$ be a bilinear map. Show that there is an endomorphism f of V so that $b(v, \phi)=\phi(f(v))$ for all $v \in V$ and $\phi \in V^{*}$.

