Linear algebra 2: Homework set 4

Due date: November 29 13:45

(HW 4.1). Let $V=\mathbb{C}^{2}$ be the standard complex vector space of dimension 2. Consider the map $\phi: V \times V \rightarrow \mathbb{C}$ given by $\phi\left(\left(z_{1}, z_{2}\right),\left(w_{1}, w_{2}\right)\right)=z_{1} w_{2}+z_{2} w_{1}$

1. Is ϕ bilinear? Is ϕ sesquilinear? Is ϕ symmetric? Is ϕ hermetian? Is ϕ an inner product? Motivate your answers.
2. Give a basis v_{1}, v_{2} of V so that $\phi\left(v_{i}, v_{j}\right)=1$ if $i=j$ and $\phi\left(v_{i}, v_{j}\right)=0$ if $i \neq j$
(HW 4.2). Let V be the 2-dimensional subspace of \mathbb{R}^{3} given by $x_{1}+x_{2}+2 x_{3}=0$. The standard inner product on \mathbb{R}^{3} restricts to an inner product on V. Give an orthonormal basis of V for this inner product.
(HW 4.3). Let $V=\mathbb{R}^{3}$ be the standard 3-dimensional vector space over \mathbb{R}, and let ϕ be the symmetric bilinear map $\phi: V \times V \rightarrow \mathbb{R}$ which on the standard basis is given by the matrix

$$
\left(\begin{array}{rrr}
-1 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

1. Compute the determinant of the matrix.
2. Is ϕ positive definite?

3 . What is the signature of ϕ ?
4. Same three questions when ϕ is given by

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

