Linear algebra 2: Homework set 4 Due date: November 29 13:45

(HW 4.1). Let $V = \mathbb{C}^2$ be the standard complex vector space of dimension 2. Consider the map $\phi: V \times V \to \mathbb{C}$ given by $\phi((z_1, z_2), (w_1, w_2)) = z_1 w_2 + z_2 w_1$

- 1. Is ϕ bilinear? Is ϕ sesquilinear? Is ϕ symmetric? Is ϕ hermetian? Is ϕ an inner product? Motivate your answers.
- 2. Give a basis v_1, v_2 of V so that $\phi(v_i, v_j) = 1$ if i = j and $\phi(v_i, v_j) = 0$ if $i \neq j$

(HW 4.2). Let V be the 2-dimensional subspace of \mathbb{R}^3 given by $x_1 + x_2 + 2x_3 = 0$. The standard inner product on \mathbb{R}^3 restricts to an inner product on V. Give an orthonormal basis of V for this inner product.

(HW 4.3). Let $V = \mathbb{R}^3$ be the standard 3-dimensional vector space over \mathbb{R} , and let ϕ be the symmetric bilinear map $\phi: V \times V \to \mathbb{R}$ which on the standard basis is given by the matrix

$$\left(\begin{array}{rrrr}
-1 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & -1
\end{array}\right)$$

- 1. Compute the determinant of the matrix.
- 2. Is ϕ positive definite?
- 3. What is the signature of ϕ ?
- 4. Same three questions when ϕ is given by

$$\left(\begin{array}{rrr}1 & 1 & 0\\ 1 & 1 & 1\\ 0 & 1 & 1\end{array}\right)$$