Linear algebra 2: Homework set 5 Due date: December 13 13:45

(HW 5.1). Consider \mathbb{C}^3 with the statandard hermetian inner product $\langle \cdot, \cdot \rangle$, and let $v \in \mathbb{C}^3$ be a vector with $\langle v, v \rangle = 1$. Define the linear map $f: \mathbb{C}^3 \to \mathbb{C}^3$ by $f(x) = x - i \langle x, v \rangle v$.

- 1. Show that the adjoint of f is given by $f^*(x) = x + i \langle x, v \rangle v$.
- 2. Find the eigenvalues and eigenvectors of f.
- 3. Show that f is normal.
- 4. If f an isometry?

(HW 5.2). Give the Jordan normal form of the matrix

(HW 5.3). Let the quadratic form $q: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$q\begin{pmatrix} x\\ y \end{pmatrix} = 3x^2 - 4xy.$$

1. Give a symmetric matrix A for which

$$q\begin{pmatrix} x\\ y \end{pmatrix} = (x \ y) \cdot A \cdot \begin{pmatrix} x\\ y \end{pmatrix}.$$

- 2. Find $a, b \in \mathbb{R}$ and an orthogonal 2×2 -matrix C so that $q(C \begin{pmatrix} u \\ v \end{pmatrix}) = au^2 + bv^2$ for all $u, v \in \mathbb{R}$.
- 3. What values does q assume on the unit circle in \mathbb{R}^2 ?