Linear algebra 2: Homework set 5

Due date: December 13 13:45

(HW 5.1). Consider \mathbb{C}^{3} with the statandard hermetian inner product $\langle\cdot, \cdot\rangle$, and let $v \in \mathbb{C}^{3}$ be a vector with $\langle v, v\rangle=1$. Define the linear map $f: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ by $f(x)=x-i\langle x, v\rangle v$.

1. Show that the adjoint of f is given by $f^{*}(x)=x+i\langle x, v\rangle v$.
2. Find the eigenvalues and eigenvectors of f.
3. Show that f is normal.
4. If f an isometry?
(HW 5.2). Give the Jordan normal form of the matrix

$$
\left(\begin{array}{rrrr}
2 & 2 & 0 & -1 \\
0 & 0 & 0 & 1 \\
1 & 5 & 2 & -2 \\
0 & -4 & 0 & 4
\end{array}\right)
$$

(HW 5.3). Let the quadratic form $q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
q\left(\binom{x}{y}\right)=3 x^{2}-4 x y
$$

1. Give a symmetric matrix A for which

$$
q\left(\binom{x}{y}\right)=\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot A \cdot\binom{x}{y} .
$$

2. Find $a, b \in \mathbb{R}$ and an orthogonal 2×2-matrix C so that $q\left(C\binom{u}{v}\right)=a u^{2}+b v^{2}$ for all $u, v \in \mathbb{R}$.
3. What values does q assume on the unit circle in \mathbb{R}^{2} ?
