Linear algebra 2: exercises for Section 1

Ex. 1.1. Are the vectors $\left(\begin{array}{c}2 \\ -1 \\ -2\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$, and $\left(\begin{array}{c}4 \\ -1 \\ -4\end{array}\right)$ linearly independent?
Ex. 1.2. Are the vectors $\left(\begin{array}{c}2 \\ -1 \\ -2\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$, and $\left(\begin{array}{c}4 \\ -1 \\ -5\end{array}\right)$ linearly independent?
Ex. 1.3. For which $x \in \mathbb{R}$ are the vectors $\left(\begin{array}{l}1 \\ x \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ x\end{array}\right)$ linearly dependent?
Ex. 1.4. Compute $\operatorname{det}(M)$ for

$$
M=\left(\begin{array}{rrrr}
-3 & -1 & 0 & -2 \\
0 & -2 & 0 & 0 \\
1 & 0 & -1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Ex. 1.5. Give the kernel and the image of the map $\mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ given by $x \mapsto A x$ with

$$
A=\left(\begin{array}{rrrrr}
1 & -1 & 1 & 2 & 1 \\
2 & -1 & 4 & 3 & 3 \\
-1 & 0 & -3 & -1 & 1
\end{array}\right)
$$

Ex. 1.6. For any square matrix M show that $\operatorname{rk}\left(M^{2}\right) \leq \operatorname{rk}(M)$.
Ex. 1.7. Compute the characteristic polynomial, the complex eigenvalues and the complex eigenspaces of the matrix $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ viewed as a matrix over \mathbb{C}.

Ex. 1.8. Find the eigenvalues and eigenspaces of the matrix $A=\left(\begin{array}{rr}11 & 9 \\ -12 & -10\end{array}\right)$. Is A diagonalizable?

Ex. 1.9. Same question for $A=\left(\begin{array}{rr}3 & 1 \\ -1 & 1\end{array}\right)$.

Ex. 1.10. Show that $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is not diagonalizable.
Ex. 1.11. Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $x \mapsto A x$ where $A=\left(\begin{array}{rr}3 & 1 \\ -2 & 0\end{array}\right)$. Show that \mathbb{R}^{2} has a basis consisting of eigenvectors of f, and given the matrix of f with respect to this basis. For any positive integer n give a formula for the matrix representation of f^{n}, first with repect to the basis of eigenvectors, and then with repect to the standard basis.

Ex. 1.12. Suppose that M is a diagonalizable matrix. Show that $M^{2}+M$ is diagonalizable.

Ex. 1.13. Is every 3×3 matrix whose characteristic polynomial is $X^{3}-X$ diagonalizable? Is every 3×3 matrix whose characteristic polynomial is $X^{3}-X^{2}$ diagonalizable?

Ex. 1.14. Let the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the reflection in the plane $x+2 y+z=0$. What are the eigenvalues and eigenspaces of f ?

Ex. 1.15. What is the characteristic polynomial of the rotation map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which rotates space around the line through the origin and the point $(1,2,3)$) by 180 degrees? Same question if we rotate by 90 degrees?

